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We performed molecular dynamics simulations to
study the equilibrium melting point of silicon using
(i) the solid–liquid coexistence method and (ii) the
Gibbs free energy technique, and compared our novel
results with the previously published results obtained
from the Monte Carlo (MC) void-nucleated melting
method based on the Tersoff-ARK interatomic
potential (Agrawal et al. Phys. Rev. B 72, 125206.
(doi:10.1103/PhysRevB.72.125206)). Considerable
discrepancy was observed (approx. 20%) between
the former two methods and the MC void-nucleated
melting result, leading us to question the applicability
of the empirical MC void-nucleated melting method
to study a wide range of atomic and molecular
systems. A wider impact of the study is that it
highlights the bottleneck of the Tersoff-ARK potential
in correctly estimating the melting point of silicon.

1. Introduction
Near-melting phenomena are rather complex and
detailed explanations of the thermodynamic mechanisms
involved in the melting process are somewhat unclear
in the literature and so are the methods employed
to estimate the melting temperature [1]. In the past,
various numerical techniques including the molecular
dynamics (MD) method have been employed to estimate
the equilibrium melting point of various materials.
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According to Zhang & Maginn [2], the methods for the calculation of the melting point can be
categorized into the following:

(i) Direct methods, including one-phase [3,4], hysteresis [5], void-nucleated [6–12] and
solid–liquid coexistence [13–17] methods.

(ii) Gibbs free energy-based methods (thermodynamic integration method [18–24]), such as
Hoover and Ree’s single-occupancy cell [25,26], Frenkel and Ladd’s Einstein crystal [27]
and the pseudo-supercritical path [28].

Among the direct methods, the solid–liquid coexistence method is a reliable choice in which the
melting point could be bracketed within a desired interval; however, it requires a relatively large
simulation cell and multiple simulation runs, and is thus a time-consuming method. In the free
energy method, the Gibbs free energy of the solid and liquid phases is computed at different
temperatures, and then the melting point is assumed to be the temperature at which both phases
exhibit the same Gibbs free energies. Calculation of the melting temperature through introduction
of voids in a perfect crystal to avoid overestimation of the melting point is another approach
known as the void-nucleated method. As per this method, an increase in the size of the void
causes the melting temperature versus void size curve to first exhibit a decrease and then to
attain a plateau region where the melting point becomes independent of the size of the voids.
The temperature of this plateau region is taken, empirically, as the thermodynamic melting point
of the material. Agrawal et al. [6–8] in their exploratory works noted that the theoretical basis
and in-depth thermodynamic considerations for this method are not established, making this
method empirical in nature. In this work, we present an MD simulation case study by comparing
the simulated equilibrium melting point of silicon using (i) the solid–liquid coexistence method,
(ii) the Gibbs free energy method, and (iii) published results obtained using the void-nucleated
method. Our simulations were informed by the Tersoff-ARK potential [6], which was categorically
developed with the motivation to accurately describe the melting point and the density of the
liquid phase of silicon.

2. Computational details and results
We employed an open-source code LAMMPS [29] to study the solid–liquid coexistence method
to obtain the phase instability temperature (Tins) of silicon crystal using the one-phase method.
A 15 × 15 × 15 supercell of silicon containing 27 000 atoms was heated in the canonical ensemble
(NVT). To avoid the so-called hysteresis phenomenon, a low heating rate of 9 × 109 K s−1 was used
to permit the solid atoms to gently attain thermodynamic equilibrium. Also, reflective boundaries
were used to avoid the spurious effects of superheating of the cell while using periodic boundary
conditions (PBCs). As shown in figure 1, Tins was obtained as 1397 K. At this critical value of Tins,
the value of the Lindemann index [30] experiences an upward jump due to a destabilized cluster
of atoms caused by thermal excitation [31]. This critical value of temperature is referred to as the
first-order melting transition. It is believed that the solid–liquid transition starts with nucleation
in order to overcome the Gibbs free energy barrier to the formation of a nucleus of the daughter
phase (namely, via thermal fluctuation) [5]. The bulk molten temperature (Tem) was found to be
1616 K. The structural changes during melting (from covalent to metallic) cause an atomic volume
shrinkage (calculated using Voronoi tessellation [32]) of approximately 9.2%, which is consistent
with the reported experimental values [33,34]. Apart from the solid–liquid coexistence method,
the hysteresis method [5] with PBCs was also employed; however, the supercooling temperature
(T−) was not realized. In general, apart from some special cases, T− is immensely difficult to
obtain as crystal nucleation is a rare event [2].

The phase instability temperature obtained by the one-phase method can be used as an initial
estimate for the solid–liquid coexistence simulation to bracket the melting point. For this purpose,
a simulation box comprising m × n × l periodic solid cells was employed in a way that the longer
direction 〈001〉 lies normal to the solid–liquid interface. The system was then equilibrated near
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Figure 1. Variation of the Lindemann index upon gradual heating. T ins corresponds to the phase instability temperature (or
first-order melting transition temperature), while Tem corresponds to the bulk molten temperature of silicon. (Online version
in colour.)

the initial guess of melting temperature in the isobaric–isothermal ensemble (NPT). To preserve
the hydrostatic pressure conditions, an anisotropic barostat was employed. To prepare the solid–
liquid coexisting system, the central half of the system was heated and melted at a fairly high
temperature under the NVT ensemble, whereas the other half of the cell was kept fixed. The
melted half of the system was then further equilibrated in the NPT ensemble at the initially
estimated melting temperature and zero pressure. During equilibration of the melted half, the
other half was kept fixed and the length of the system in the 〈001〉 direction was permitted to
relax. Then, the solid and liquid halves were brought into contact and the system was equilibrated
in the NPT ensemble at the same temperature to zero the 〈001〉 direction pressure. To abate the
impact of non-hydrostatic stresses on the melting temperature, the simulation cell was further
relaxed in the NPT ensemble with the anisotropic barostat. The entire simulation was repeated at
different temperatures until the melting temperature converged. One may question whether the
melting temperature is size dependent owing to the increased fraction of loosely bounded surface
atoms at reduced dimension [35]. To answer this question, a convergence check was performed
to determine the dependence of the estimated melting point on the size of the simulation box.
Figure 2 compares the evolution of the average potential energy per atom of the solid–liquid
coexistence for two different system sizes at different temperatures simulated for a relatively
longer simulation time (10 ns). Figure 2a shows that, for a 320-atom simulation cell, when the
temperature is below 1410 K, the average potential energy of the solid–liquid coexistence system
decreases with time, indicating that the crystal phase tends to grow and the system solidifies.
Contrary to this, at temperatures above 1415 K, the potential energy increases, suggesting that the
simulation cell undergoes melting transition. Accordingly, the equilibrium melting temperature
of silicon for a 320-atom simulation cell was obtained as 1412.5 ± 2.5 K. Likewise, as depicted in
figure 2b, the equilibrium melting temperature of silicon for a 108 000-atom simulation box was
determined as 1365 ± 5 K. Figure 3a presents the calculated melting point versus the number of
atoms in MD simulations, where the calculated melting point converges for a simulation cell
containing approximately 20 800 atoms. We infer that the calculation of the melting point using
simulation cells containing fewer than 320 atoms was non-trivial owing to the high levels of
energy fluctuations. In all, according to figure 3a, the equilibrium melting temperature of silicon
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Figure 2. Evolution of the average potential energy of the solid–liquid coexistence cell versus the simulation time at various
temperatures for (a) a 320-atom simulation cell and (b) a 108 000-atom simulation cell. (Online version in colour.)

using the solid–liquid coexistence method is 1365 ± 5 K. Notice that there are implications that
the melting point is slightly crystallographic orientation dependent; however, the variation is
much less than the variation of the melting point caused by changing the number of atoms in the
simulation box.

We also employed the Gibbs free energy technique to calculate the melting point of silicon
with the same potential function but using a different MD simulation toolbox, ‘MD++’ [36].
Simulation cells with different numbers of atoms were constructed using PBCs along all three
directions. At zero pressure, the Helmholtz free energy of the solid phase FS at 1300 K was
calculated by adiabatic switching from the solid phase described by the actual potential model
to the harmonic approximation of the same potential function [37]. As the equilibrium volume
was achieved during this process, FS can be inferred as the Gibbs free energy at zero pressure.
Then, the Gibbs free energy for the solid phase GS as a function of temperature in the range of
1300 K < T < 1500 K (in increments of 0.02 K) was calculated using the reversible scaling method
[38]. For the liquid phase, the Helmholtz free energy (also the Gibbs free energy) at zero pressure
and 1500 K was calculated by adiabatic switching from the liquid to a purely repulsive potential
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Figure 3. The calculated melting point versus the number of atoms in the MD simulation cell using (a) the solid–liquid
coexistence method and (b) the Gibbs free energy method. (Online version in colour.)

and then to the ideal gas limit. Again, the Gibbs free energy for the liquid phase GL as a function of
temperature between 1200 K and 1500 K was calculated using the reversible scaling method [38].
In the end, both GS and GL were plotted as a function of temperature T on the same scale and the
melting temperature was determined as the intersection of the two curves [39,40]. Figure 4 shows
the Gibbs free energy per atom of both the solid phase and the liquid phase for two different
supercells. The results of the convergence study are shown in figure 3b, where the equilibrium
melting point is determined as 1373 ± 1.5 K. Overall, figure 3 also suggests that the Gibbs free
energy method converges for a smaller number of atoms (approx. 2000 silicon atoms) as opposed
to the solid–liquid coexistence method, which requires about 20 000 silicon atoms to converge.
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Figure 4. Gibbs free energy per atom for both the solid phase and the liquid phase for (a) a 216-atom simulation cell and
(b) a 13 824-atom simulation cell. (Online version in colour.)

We did not perform the void-nucleated calculations and have taken these data directly from
the developers of the Tersoff-ARK potential. Agrawal et al. [6] deployed the Monte Carlo (MC)
simulations of the void-nucleated melting method and reported the melting point of silicon as
1711 K, which is approximately 20% higher than we obtained from the solid–liquid coexistence
method (1365 ± 5 K) and the Gibbs free energy method (1373.1 ± 1.5 K) using the same Tersoff-
ARK potential. It is imperative to note that the simulation size used by the developers of the
Tersoff-ARK potential is very small (216 silicon atoms), and it is not clear how the size effect has
influenced the calculated melting temperature in the presence of voids. Of interest is that the
MC void-nucleated melting method was used to estimate the melting point of silicon given by
the original Tersoff potential [41,42], and the value obtained was around 2509 K [6], which is in
fair accordance with the results of the solid–liquid coexistence method (2584 K [43]); therefore the
system size (216 atoms) seems to be a less influential factor in the reported erroneous value of the
melting point of silicon obtained by the developers of the Tersoff-ARK potential. The authors posit
that either the introduction of voids in such a small simulation box or the improper postulation
of considering the transition temperature in the plateau region as the melting point may have led
to incorrect estimations of the melting point in the Tersoff-ARK paper.
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On the other hand, the work of the Koning et al. [44] suggests that the source of such a
discrepancy can be the hysteresis occurring in the void-nucleated method. They reported that the
melting point of argon given by the MD void-nucleated method [11] is 5% higher than that of the
thermodynamic results. In another study carried out by Agrawal et al. [8], the MD void-nucleated
melting method overestimated the melting point of nitromethane by up to 4% as opposed to the
solid–liquid coexistence method. Zhang & Maginn [2] conducted an interesting study showing
that at least three ‘plateau’ temperatures (approx. 500 K, approx. 450 K and approx. 350 K) were
recognizable for a complex atomistic model of the ionic liquid 1-n-butyl-3-methylimidazolium
chloride [BMIM][Cl] while using the MD void-nucleated method, posing a key question as to
which plateau temperature corresponds to the true melting temperature. We emphasize that the
results obtained in our work are based on two rigorous and accurate techniques and the fact that
the experimental value of the melting point of silicon is about 1687 K [45].

3. Concluding remarks
In this work, we have calculated and compared the equilibrium melting point of silicon using
three techniques, namely the MD solid–liquid coexistence, the MD Gibbs free energy and the MC
void-nucleation techniques. The former two methods provide a close approximation while the
latter method revealed a 20% discrepancy with respect to the former two methods. Our results
cast doubt on the validity of the empirical assumption used in the MC void-nucleated method
that the melting temperature in the plateau region near the critical void size is the true melting
point. These results identify the bottleneck of the Tersoff-ARK potential in correctly estimating
the melting point of silicon.
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