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a b s t r a c t

A nanocrystalline metal’s strength increases significantly as its grain size decreases, a phenomenon known 
as the Hall-Petch relation. Such relation, however, breaks down when the grains become too small. 
Experimental studies have circumvented this problem in a set of Ni-Mo alloys by stabilizing the grain 
boundaries (GB). Here, using atomistic simulations with a machine learning-based interatomic potential 
(ML-IAP), we demonstrate that the inverse Hall-Petch relation can be correctly reproduced due to a change 
in the dominant deformation mechanism as the grain becomes small in the Ni-Mo polycrystals. It is found 
that the atomic von Mises strain can be significantly reduced by either solute doping and/or annealing for 
small-grain-size polycrystals, leading to the increased strength of the polycrystals. On the other hand, for 
large-grain-size polycrystals, annealing weakens the material due to the large atomic movements in GB. 
Over a broad range of grain size, the superposition of the solute and annealing effects on polycrystals 
enhances the strength of those with small grain size more than those with large ones, giving rise to the 
continuous strengthening at extremely small grain sizes. Overall, this study not only demonstrates the 
reliability of the ML-IAP, but also provides a comprehensive atomistic view of complex strengthening 
mechanisms in nanocrystals, opening up a new avenue to tailor their mechanical properties.

© 2023 Elsevier B.V. All rights reserved. 

1. Introduction

The strength of polycrystalline materials is known to increase 
with the reduction of the grain size [1,2], called the Hall-Petch re-
lation. One possible strengthening mechanism is based on disloca-
tion pileups at grain boundaries (GBs), which hinds dislocation 
motion [3]. However, the dislocation-based deformation mechanism 
transits to GB-dominated plasticity at extremely fine grain sizes 
[4–6], leading to an inverse Hall-Petch relation. Solute segregation is 
another strategy to increase the material strength [7–10]. Solute- 
dislocation interaction is believed to be a key factor for the solute 
strengthening effect [8,11]. Pan and Sansoz [7] recently found that 
the solute clusters from heterogeneous solute segregation can sup-
press strain localization, and are responsible for solute strength-
ening. Moreover, Hu et al [9] have demonstrated that Mo segregation 
can stabilize GBs in nanocrystalline Ni-Mo alloys, leading to an in-
creased strength and a resurgence of Hall-Petch strengthening with 

grain size down to a few nanometers. Experimental results [9] also 
show that annealing can enhance the Hall-Petch strengthening. 
However, the atomistic strengthening mechanisms, particularly re-
garding the coupling effects of solute, annealing, and grain sizes, still 
need clarification because they are difficult to uncover in experi-
ments [9].

Due to the high computational cost, the density functional theory 
(DFT) calculations have been limited to several hundreds of atoms. 
Therefore, higher-scale computational tools such as molecular dy-
namics (MD) have become an important approach to study me-
chanical properties and the associated underlying mechanisms 
[12–15] in metals and alloys. Atomistic simulations using linear- 
scaling interatomic potentials can potentially access large systems 
and long timescales. The accuracy of the atomistic simulations lar-
gely depends on the interatomic potentials used [16]. Li et al [17]
reported a mechanism transition from GB-accommodated plastic 
deformation to dislocation-based plasticity below the optimal size 
for the maximum strength after segregating Mo solute atoms in Ni- 
Mo alloys using MD simulations with an embedded atom method 
(EAM) potential. Sansoz et al [18] recently used an EAM potential to 
systematically study the effects of solute concentration on the Hall- 
Petch strengthening limits with hybrid Monte-Carlo/MD (MC/MD) 
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simulations in Ag-Cu alloys. The EAM potential, and broadly most 
classical interatomic potentials, are fitted mainly to elemental 
properties and thus generally perform poorly for alloys. Recently, the 
development of machine learning-based interatomic potential (ML- 
IAP) [19–22,23] provides another possibility, which can reach near- 
DFT accuracy at several of orders magnitude lower cost than DFT. In 
the last few years, ML-IAP has been extensively applied to revealing 
the contributing factors of alloys’ mechanical properties, including 
the lattice distortion [24,25], short-range ordering [26,27], defect 
and dislocation properties [28,29], etc. To the best of our knowledge, 
prediction of the inverse Hall-Petch relation by ML-IAP has not been 
realized yet. In addition, although plenty of theoretical studies have 
been performed to study different strengthening mechanisms, the 
coupling between these mechanisms, e.g. coupling between grain 
size strengthening, solute and annealing effects, remains elusive.

In this work, we utilize our previously developed spectral 
neighbor analysis potential (SNAP) [30] to investigate the grain size, 
solute, and annealing effects in Ni-Mo polycrystalline systems. We 
demonstrate that the ML-IAP can accurately predict the inverse Hall- 
Petch relation and reveal the different plasticity mechanisms with 
the dominant role involving GB or dislocation at different grain sizes. 
Our results indicate that both solute doping and annealing can re-
duce the atomic von Mises strain of the polycrystals at yielding 
under uniaxial tensile strain, stabilize the GB, and thus increase the 
strength of the polycrystals at small grain sizes, leading to the re-
surgence of the Hall-Petch strengthening at grain sizes within ten 
nanometers. For large grain-size polycrystals, solute doping can in-
crease the dislocation density giving rise to the enhancement of the 
polycrstal strength, while annealing, on the other hand, would in-
duce sizable atomic strain at the GB during plastic flow deformation, 
leading to a decrease in the strength of the polycrystals.

2. Method

2.1. Polycrystal model setup

We generated the initial Ni polycrystal models using the Voronoi 
tessellation method [31] implemented in the Atomsk [32] code. A 
number of cubic supercells were constructed with different side 
lengths, six grains were then randomly inserted giving rise to a 
series of polycrystals with different average grain diameters. We 
present seven polycrystals with average grain diameters of 4.1, 6.1, 
6.8, 7.5, 8.8, 10.2 and 11.6 nm and corresponding edge lengths of 6, 9, 
10, 11, 13, 15, 17 nm, respectively. Periodic boundary conditions are 
imposed on all three dimensions. Neighboring atoms with a distance 
less than 1.5 Å were removed at the GBs. The number of atoms in the 
polycrystals ranges from ∼ 20, 000 to ∼ 454, 600. The Ni-Mo poly-
crystalline models were constructed by randomly replacing 10% of Ni 
atoms with Mo. This percentage is lower than the limit of solubility 
of Mo in Ni [9]. Three atomistic models with different average grain 
diameters are shown in Fig. 1.

2.2. Interatomic potential

We performed the hybrid MD and Monte Carlo (MC) calculations 
using the large-scale atomic/molecular massively parallel simulator 
(LAMMPS) package [33] with the Ni-Mo SNAP model [30], previously 
developed by the lead author. SNAP uses the bispectrum basis to 
describe the local environment [34]. The atomic energies and forces 
are a function of the bispectrum coefficients of the atomic neighbor 
density function. For the linear relation used in this work, the total 
potential energy Etot and force fj on atom j are expressed as a func-
tion of k projected bispectrum components Bk, i.e.,
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where α is the atomic type, Nα is the total number of type α atoms, k 
is the neighboring site of type α atoms, K is the total number of 
neighboring sites, βα,k are the fitting parameters in the model. To 
construct the bispectrum coefficients, we write the atomic neighbor 
density function as:
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where δ(r − rik) is the Dirac delta function with its center at each 
neighboring site k. To make the neighbor atomic density zero at the 
cutoff radius Rc, a cutoff function fc is employed. Sk

atom is the atomic 
weight, which differs for different atom types. The atomic density 
function can be represented using a generalized Fourier series ex-
pressed in four-dimensional spherical harmonics Um m
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where C j m j m
jm
1 1 2 2

are Clebsch-Gordon coefficients. j1, j2, j are orders of 
the bispectrum coefficients, satisfying the conditions ∥j1 

− j2∥≤ j ≤ ∥j1 + j2∥.
The training data of this ML-IAP include (1) Ni, Mo, Ni3Mo 

compound, Ni4Mo compound, and their distorted structures, (2) 
surface structures of Ni and Mo, (3) snapshots of ab initio molecular 
dynamics (AIMD) simulations at different temperatures and dis-
tortions, (4) alloy structures constructed from partial substitution. 
Test structures are generated by performing additional Ni surface 
calculations with Miller indices up to four and extracting snapshots 
from AIMD simulations on the vacancy-containing supercell of Ni. 
The details of the data description and availability of the data can 
be found in our previous SNAP work [30]. We propose a two-step 
model fitting workflow to fit the model parameters for the Ni-Mo 
system. The first step involves the independent optimization of the 
radius cutoff for each elemental system, i.e., Ni and Mo. The atomic 
weights for each element are optimized in the second optimization 
step. The reliability of this potential has been checked and vali-
dated with the following properties: (1) lattice constants, (2) sur-
face energies, (3) elastic constants, (4) defect properties, (5) 
melting points, and (6) phase diagram. Our previous work has 
shown that compared to the EAM model [35], this binary Ni-Mo 
SNAP model agrees better with experiments in the prediction of a 
Ni-Mo phase diagram and is closer to DFT values in the prediction 
of many key properties, such as elastic constants, formation en-
ergies, melting points, etc., across the entire binary composition 
range. In contrast, the existing Ni-Mo EAM potential has significant 
errors in the prediction of the phase diagram and completely fails 
in binary compounds [30].

2.3. Annealing and tensile deformation

The polycrystals were thermally equilibrated at 300 K for 0.1 ns 
for pure Ni polycrystal and 0.4 ns for Ni-Mo polycrystal, via MD (for 
pure Ni polycrystal) and MC/MD (for Ni-Mo polycrystal with Mo 
solutes) simulations, respectively, in an isothermal-isobaric NPT 
ensemble. For annealing, the polycrystal will be further annealed at 
an annealing temperature (600 K) for 0.75 ns, and then quenched 
from the annealing temperature to room temperature in 0.15 ns, 
followed by another equilibrium at room temperature for 50 ps. 
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Uniaxial tensile deformation was then applied in the z-direction at 
a strain rate of 5 × 108 s−1 for 0.2 ns at 300 K. To maintain zero 
lateral pressure (constant uniaxial strain rate), we use NPT en-
semble in the x- and y-directions during the deformation. The time 
step was set to 1 fs. To capture the randomness in the distribution 
of GBs and Mo atoms, we performed three simulations with dif-
ferent initial polycrystalline structures for each grain size.

2.4. Analysis method

We use OVITO [36] to visualize the atomic configurations, and 
analyze simulation results by identifying phase structures (common 
neighbor analysis [37]) and calculating the von Mises strains [38]
and dislocation density.

More specifically, the procedures to calculate and define von 
Mises shear strain are as follows: 

1. Two atomic configurations are required, a current (deformed) 
configuration and a reference configuration. For each atom i in 
the current system, its position relative to its neighbors changes 
after deformation. We denote this change as,

p p j C{ } { },ji ji i
0 0

(6) 

where pij
0 and pij are the three-dimensional vectors representing 

the distance between atoms j and i in the reference configuration 
and the current configuration, respectively. Atom j is one of the 
nearest neighbors of atom i, and Ci

0 is the total number of the 
nearest neighbors of atom i.

2. Based on pij
0 and pij, a local transformation matrix
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can be calculated for atom i, such that Ji minimizes the expres-
sion,
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3. The atomic local strain tensor Ti is then calculated from Ji ac-
cording to the formula

=T J J1 2( I)i i i
T (9) 

4. The von Mises shear strain (Vi
Mises) is subsequently calculated as
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Vi
Mises is assigned to each atom and is one form of the atomic 

strain. In the remainder of this paper, we use the terms “von Mises 
strain” and “atomic strain” interchangeably. Analysis of the atomic 
strain is used to quantify the plastic deformation, which is usually 
correlated with the yield strength of the alloys. Therefore, atomic 
strain should be correlated with the stress at yielding.

We use the dislocation extraction algorithm (DXA) [39] in OVITO 
to obtain the total dislocation length in deformed samples, and only 
consider the dislocation in the grain interiors. We perform the cal-
culations by first deleting the GB atoms (identified using the 
common neighbor analysis), and then analyzing the remaining 
structure with DXA.

3. Results

3.1. Hall-Petch and inverse Hall-Petch relations

To test the Hall-Petch and inverse Hall-Petch relations, we plot 
the stress-strain curves with varying grain sizes of Ni polycrystals, as 
shown in Fig. 2a. Since we start from perfect dislocation-free 
structures and the dislocations need to be nucleated at a large stress 
from GBs, no dislocations are observed at small strains. As the strain 
increases to around 4%, the dislocations appear and massive plastic 
deformation occurs, corresponding to a stress dropping. When the 
strain surpasses about 8%, the stress becomes more steady. Hence, 
we calculate the average stress in the strain interval from 8% to 10%, 
and take it as the flow stress. Fig. 2b shows that the flow stress 
depends strongly on the grain size. Specifically, as the grain size 
decreases from 11.6 nm, the flow stress first increases, and after 
reaching the maximum (at the grain size of around 7 nm), it de-
creases. This is the well-known Hall-Petch and inverse Hall-Petch 
relations [4–6].

When the grain size is large (e.g. diameter ≥8 nm in our simu-
lations), the flow stress increases with a decreasing grain size, which 
is consistent with the Hall-Petch relation. This is because, at large 
grain sizes, dislocation-based deformation dominates, which is in-
dicated by our stress-strain and dissociated dislocation (DD)-strain 
curves in Fig. 3a. The evolution of the strength of the stress is 
strongly correlated with the dissociated dislocation. In addition, we 
plotted the dislocation density in the grain interiors as a function of 
the grain sizes at 9% applied strain, as shown in Fig. 3b. It is clear that 

Fig. 1. The polycrystalline models with different grain sizes. Configurations of nanostructured alloys with edge lengths of (a) 6 nm, (b) 11 nm, and (c) 17 nm and average grain size 
of (a) 4.1 nm, (b) 7.5 nm, and (c) 11.6 nm. Green spheres are atoms in local FCC structures, while white spheres are atoms in disordered structures, i.e., atoms within GB. All atoms 
are Ni, except those blue ones which are Mo.
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at large grain sizes, the dislocation density will increase as the grain 
size decreases, leading to an increase in strength due to dislocation 
interactions and entanglements. As the grain size further decreases, 
GB-mediated plasticity plays a more important role. We plotted the 
average atomic strain at yielding (from 0% to 3% applied strain) as a 
function of the strain for different grain sizes, as shown in Fig. 3c. 
Noting that at small applied strain, the induced atomic strain is 
mainly contributed from the GB (see Fig. S2 of the supplementary 
information for atomic strain distributions). We can see that smaller 
grain sizes will induce larger atomic strains under small tensile 
strain, leading to a decrease in the flow stress. In particular, when 
the grain size is small (e.g. the average grain diameter = 4.1 nm), we 
observe an abrupt increase in the atomic strain around 2.5% strain in 
the average atomic strain-tensile strain curve. This abrupt change 
can exactly be identified in the stress-strain curve with obvious 
plasticity, as shown in Fig. 3d, which indicates that the GB-mediated 
plasticity dominates for polycrystals at small grain sizes and further 
demonstrates the validity of the SNAP model.

3.2. Solute strengthening

We further investigated the solute effects on the mechanical 
properties of the polycrystals by replacing 10% of all Ni atoms with 
Mo. As shown by the red points in Fig. 2b, the flow stress increases 
by a significant amount for all ranges of grain sizes, compared with 
pure Ni. To find out the underlying strengthening mechanism, we 
first analyze the segregation of Mo atoms. After MC/MD simulations, 
solute Mo atoms segregate at GBs, as shown in Fig. 4a. This segre-
gation effect becomes even stronger as the grain size decreases. In 
the meanwhile, there still exists a significant amount of Mo atoms in 
the bulk region, which is consistent with the experimental results 
[9]. We further compare the average atomic strain of the doped 
systems with those without Mo doping in small grain size systems, 
as shown in Fig. 4b. It is clear that after doping 10% Mo, the atomic 
strain at yielding is significantly reduced for grain sizes of 4.1 nm and 
6.1 nm. This doping effect is weakened as the grain size increases 
(see Fig. S1 in the supplementary information). Therefore, for the 
small grain-size polycrystals when the GB-mediated plasticity 

dominates, solute doping can greatly reduce the atomic strain 
leading to increased flow stress. The calculations of normalized ex-
cess free volume in the GB also support this conclusion. We define 
the normalized excess free volume (denoted as k) as below,

= × × × + ×k V N v N v N v N v( ) ( )GB Ni,GB Ni Mo,GB Mo Ni,GB Ni Mo,GB Mo

(11) 

where VGB is the total volume of GB atoms; NNi,GB and NMo,GB are 
numbers of Ni and Mo atoms in GBs, respectively; vNi and vMoare the 
volumes of Ni and Mo atoms in the respective bulk. We use the 
common neighbor analysis algorithm in OVITO [36] to identify the 
GB atoms. In principle, GBs are less dense than a perfect crystal 
leading to a positive value of k. As shown in Fig. 4c, the excess vo-
lume is reduced after Mo solute doping for different grain sizes. This 
means that the GB is denser after 10% Mo doping, making it more 
difficult for GB atoms jumping and free volume migrations. As a 
result, the resistance to GB-mediated plasticity increases, which will 
benefit for the flow stress increasing.

For large grain size polycrystals, the dislocation-based deformation 
becomes much more important. We thus plot the intragranular dis-
location density in the grain interiors for large grain sizes, as shown in 
Fig. 4d. We can observe that dislocation density increases after Mo 
doping for large grain sizes. The increase of the dislocation density will 
in general result in the increase of the strength due to dislocation 
interactions and entanglements. This explains that the flow stress 
increases after Mo doping for polycrystals with large grain sizes.

3.3. Annealing effect

To study the annealing effect on the mechanical properties of the 
polycrystal, we annealed both the pure Ni and the doped with 10% 
Mo polycrystals with small grain size (e.g. grain diameter equals 
4.1 nm) at 600 K. We calculated the average atomic strain for all four 
polycrystals, pure Ni (Pure), Ni with 10% Mo doping (Dope), pure Ni 
after annealing at 600 K (Anneal), and Ni with 10% Mo doping after 
annealing at 600 K (Dope-Anneal). As shown in Fig. 5a, doping or 
annealing alone will reduce the atomic strain at yielding with a 
considerable amount. With both doping and annealing, the atomic 

Fig. 2. The grain-size dependence of the flow stress. (a) Stress-strain curves after averaging three different simulations with average grain sizes ranging from 4.1 nm to 11.6 nm for 
Ni polycrystals. (b) The flow stress of pure Ni polycrystal (green) and Ni-Mo polycrystal with 10% Mo doping (red), defined as the average stress in the strain interval from 8% to 
10% deformation. The error bars indicate the standard deviation of the three calculations with different initial polycrystalline structures. A maximum in the flow stress is seen for 
the grain size of around 7 nm for clean Ni and slightly left shift (smaller grain size) for Ni-Mo. The blue point is the flow stress for Ni-Mo polycrystal after annealing at 600 K. The 
dark dashed line is guided for eyes for continuous Hall-Petch strengthening at even smaller grains after stabilizing the nano-polycrystals (using the maximum strength in each 
grain size).
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strain will reduce further compared with doping and annealing 
alone (also see Fig. S3 in the supplementary information for the 
strain distributions). The strain energy of the polycrystals, defined as 
(ENC − EBulk)∕N, where ENC and EBulk are potential energy of the na-
nocrystal and its corresponding bulk, respectively; N is the number 
of atoms in the system, is 0.154 eV/atom for pure Ni, reduced to 
0.145 eV/atom after annealing and 0.122 eV/atom after Mo doping, 
and further reduced to 0.112 eV/atom with both doping and an-
nealing. In another word, both doping and annealing can stabilize 
the GB, making the GB-mediated plasticity more difficult. This can 
also be observed from the stress-strain curves in Fig. 5b. The plas-
ticity occurs in pure Ni polycrystals much earlier (red curve), fol-
lowed by the doping or annealing alone polycrystals, (green and blue 
curves); while the polycrystal with both doping and annealing has 
the stress increasing linearly for a much wider range of strain, re-
sulting in the largest strength compared to other three polycrystals. 
Therefore, with both doping and annealing, the strength of the 
small-size polycrystals can be improved further, e.g., grain diameter 
small than 7 nm (see blue points in Fig. 2b).

On the other hand, annealing has the opposite effect on large- 
size polycrystals, e.g., grain diameter larger than 7 nm, as shown by 
blue points in Fig. 2b. In other words, further annealing after doping 
will reduce the strength of the large-size polycrystals. To reveal the 
underlying atomistic behavior, we plotted the average atomic strain 
during plastic flow deformation for both small-size (grain diameter 
equals 4.1 nm) and large-size (grain diameter equals 7.5 nm) 

polycrystals, as shown in Fig. 6. It is clearly observed that the atomic 
strain during plastic deformation can be further reduced after an-
nealing for small-size polycrystals, while for large-size polycrystals 
annealing will increase the atomic strain significantly, mainly at GB 
(see Fig. S4 in the supplementary information for the atomic strain 
distribution in the model structure).

4. Discussion

ML-IAP has received plenty of interest in the field of materials 
science due to its high accuracy and good scalability [40]. It has been 
used to investigate a variety of mechanical properties in metal and 
alloys, including the dislocation properties [26,41,42], stacking faults 
[27,43,44], phase transition [45,46], etc. However, few studies were 
dedicated to the GB strengthening problem, e.g., different grain sizes 
in polycrystals. This is mainly due to the high computational cost of 
ML-IAPs compared to the classical force fields, e.g., EAM potential 
[30]. Here, with the help of high-performance computing clusters, 
We successfully study polycrystals using ML-IAP because this type of 
IAP, like the classical ones, still scales linearly with the number of 
atoms and is orders of magnitude computationally cheaper than DFT 
calculations. We demonstrated that the ML-IAP can successfully 
reproduce the Hall-Petch and inverse Hall-Petch relations in poly-
crystalline metals and reveal their underlying mechanisms.

Complex alloy strengthening mechanisms have been extensively 
explored, including GB strengthening, solute strengthening, annealing 

Fig. 3. The evolution of dissociated dislocation, stress, and atomic strain as a function of the tensile strain in the Ni polycrystals. (a) Stress-strain and dissociated dislocation-strain 
curves for polycrystal with large grain size (grain diameter = 11.6 nm). (b) Dislocation density as a function of grain sizes at 9% strain. (c) The average atomic strain as a function of 
tensile strain for different grain sizes. (c) Stress-strain and average atomic strain-strain curves for Ni polycrystal with small grain size (grain diameter = 4.1 nm). The black vertical 
lines indicate the locations with abrupt changes and guide for eyes.
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strengthening, etc. GB strengthening, also known as Hall-Petch 
strengthening, will fail at extremely fine grain sizes, e.g., nanometer 
sizes. While after coupling with solute effects, the Hall-Petch max-
imum strengthening limit can be modified to lower grain size [18]. 
Annealing adds extra complications to the strengthening mechan-
isms, which will further strengthen the alloys for small grain size 

polycrystals while weakening the large-size ones by triggering large 
atomic movements in GB during plastic deformation (see Fig. S4 in 
the supplementary information). The enhancement of the strength in 
small grain size polycrystals with solute doping and annealing can 
lead to the resurgence of Hall-Petch strengthening down to even 
smaller grain sizes, as shown in Fig. 2b (dashed black line).

Fig. 4. GB analysis of the polycrystal model. (a) Mo percentage in GB as a function of grain size. (b) The average atomic strain as a function of tensile strain for small grain sizes w/ 
and w/o doping of Mo. (c) Normalized excess free volume, and (d) dislocation density for different grain sizes w/ and w/o doping of Mo at 9% applied strain.

Fig. 5. Annealing effects on small-size polycrystal model. (a) The average atomic strain at yielding as a function of tensile strain under different conditions for polycrystal with 
grain diameter 4.1 nm. (b) The stress-strain curves under different conditions for polycrystal with grain diameter 4.1 nm. Pure: as-prepared Ni polycrystal after MC/MD calcu-
lations at room temperature; Dope: Doping the Ni polycrystal with 10% Mo; Anneal: anneal the pure Ni polycrystal at 600 K; Dope-Anneal: anneal the 10% Mo doped polycrystal 
at 600 K.
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5. Conclusion

In this study, we investigated the complex strengthening me-
chanisms in Ni-Mo alloys by considering polycrystals with seven 
different grain sizes. Using a ML-IAP, we have shown that Hall-Petch 
strengthening continues as the grain size decreases until reaching a 
critical point ( ∼ 7 nm of grain size), after which the inverse Hall- 
Petch relation starts. A switch of the dominant mechanism from the 
dislocation based to GB-mediated plasticity is observed as the grain 
size decreases, which is responsible for the Hall-Petch to inverse 
Hall-Petch transition. Solute strengthening can increase the strength 
for different grain sizes of polycrystals due to the reduced atomic 
strain in small grain-size polycrystals and increased dislocation 
density in large grain-size polycrystals. Adding the annealing effects, 
the strength can be enhanced further for small-grain-size poly-
crystals, while for large-size polycrystals, annealing will lower the 
strength instead. This lowers the critical grain size (from 6.8 nm to 
6.1 nm) for the transition between Hall-Petch and inverse Hall-Petch 
effects. Therefore, the combined effects of solute doping and an-
nealing on the different grain sizes of polycrystals can postpone the 
inverse Hall-Petch relation and strengthen the materials con-
tinuously down to even smaller grain sizes. Our atomistic simula-
tions reveal the underlying complex strengthening mechanisms in 
nano-sized polycrystals, theoretically supporting the potential of 
achieving ultra-strong nanograined materials.
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