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Abstract
Thefield ofmachine learning-based interatomic potentials (ML-IAPs)has seen increasing
development in recent years. In this work, we compare three widely usedML-IAPs–themoment
tensor potential (MTP), the spectral neighbor analysis potential (SNAP), and the tabulatedGaussian
approximation potential (tabGAP)with a conventional non-ML-IAP, the embedded atommethod
(EAM) potential.We evaluated these potentials on the basis of their accuracy and efficiency in
determining basic structural parameters and Peierls stress under equivalent conditions. Three
tungsten (W)-based alloys (Mo-W,Nb-W, andTa-W) are considered, and their lattice parameter,
formation energy, elastic tensor, and Peierls stress of edge dislocation are calculated. Comparedwith
DFT results,MTPdemonstrates the highest accuracy in predicting the lattice parameter and the best
computational efficiency among the threeML-IAPs, while tabGAP accurately predicts two
independent elastic constants,C11 andC12. Despite being the slowest, SNAP shows the highest
accuracy in predicting the third independent elastic constantC44 and its Peierls stress value is
comparable to that based onMTP.

1. Introduction

Binary alloys are promising structuralmaterials. For example, the equalmolar titanium-zirconium alloy
possesses approximately 2.5 times hardness and tensile strength comparedwith pure titanium andpure
zirconium and is being used in biomedicalmaterials [1]. Alloying tungstenwith rhenium solves the tungsten’s
lowductility issue and increases its toughness in themeanwhile [2]. Binary transitionmetal-alloyed
nanoparticles are becomingmore popular, as their application ranges from (electro-)catalysis to biomedical
devices, owing to their good bio-compatibility, easy size control, high performance, and low cost [3]. Recently,
biodegradable zinc-copper alloys were developed for cardiovascular implant [4]. Investigating binary alloys is
also considered as one preliminary step for developingmulti-principal element alloys (MPEAs), which consist of
three ormore principalmetallic elements [5–7].MPEAs are drawing growing attention because of their
enhanced properties in extreme environments [8]. For example, face-centered cubic (fcc)MPEAs have shown
high damage tolerance and strength at cryogenic temperatures [9, 10], while body-centered cubic (bcc)MPEAs
possess highmelting points and exceptionalmechanical strength at elevated temperatures [11, 12]. Due to the
infinite possibility of compositions and their ratios, predicting the properties ofMPEAs is difficult [13, 14]. So it
is useful tofirst study binary systems to obtain the characteristic traits of constituent elements and their
combinations [15].

In the past century, binary alloy systems have been characterized experimentally [16].Most researchwas
done onNi-based and Fe-based alloys [17–21]. For transitionmetal alloys fromgroupsV andVI,most studies
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concerned themechanical and thermodynamic properties of ternary or quaternary alloy systems [12, 22–25].
There is a significant knowledge gap for randombinary alloys comprising groupV andVImetals.

Among thosemetals, tungsten (W) has the highestmelting point and excellent thermal conductivity and
thus serves in the high heatflux environment [26]. In addition,Wattains good sputtering resistance and low
tritium retention,making it a promising candidate for the plasma-facingmaterial in fusion reactor diverters
[27]. In themeantime,Whas some shortcomings such as a high ductility-to-brittle transition temperature and a
high tendency for embrittlement subject to neutron irradiation [28, 29]. To address these issues, several
modification techniqueswere used and alloying is one of them [30]. In alloyingW, two key questions are: (i)
‘what is the alloyingmetal?’ and (ii) ‘howmuch alloyingmetal should be added toW?’. The goal is to improve,
and preferably,maximize the strength ofW-based randombinaries. In these alloys, plastic deformation and
strengthening are fundamentally controlled by dislocation gliding, which requires aminimum resolved shear
stress called the Peierls stress.

In this study, wewill address how alloyingmetals, such asMo,Nb, andTa, with given atomic percentages,
change the basic structural parameters and Peierls stress comparedwith pureW. The structural parameters,
including lattice parameters and elastic constants, and Peierls stress of dislocation at the atomic scale can be
calculated using either themolecular static (MS)method or density functional theory (DFT), using simulation
tools such as LAMMPS [31] andVASP [32], respectively. DFT calculations depend on quantummechanical
descriptions for the potential energy surface (PES)which has the highest accuracy and best transferability [33].
However, it is limited to systems containing∼100–1000 atoms due to the high computational cost,makingDFT
unsuitable for large-scale simulations [34, 35]. In themeantime,MS simulations can be employed to study
systems containingmillions or even billions of atoms; however, their accuracy significantly depends on the
interatomic potentials (IAPs) [36, 37]. Formetallic alloys, embedded-atommethod (EAM)potential [38] and its
derivative (e.g.,modified EAM [39]were previously considered state-of-the-art. They showed great predictive
capabilities formetals. Atfirst, EAMpotentials formostmetallic elements were developed byfitting toDFT or
experimental data [40]; then potentials for alloy systems like binary, ternary, quaternary, andMPEAswere
gradually developed [41].

Recently, numerousmachine learning-based IAPs (ML-IAPs) emerged for a variety ofmetals and alloys [42].
It wasfirst introduced in 1995 by Blank et al [43], whomodeled a neural network system for predicting the PES.
Later, in 2010, Bartok et al [44]presented theGaussian approximation potential (GAP) for diamond. GAP
doesn’t have any fixed functional form, hence capable ofmodeling complex potential energy landscapes. Then,
in 2015, the spectral neighbor analysis potential (SNAP)was introduced byThompson et al [45]. SNAPdescribes
the local environment of each atomby a set of bispectrum components of the local neighbor density projected
onto a basis of 4Dhyperspherical harmonics. In 2016, Shapeev [46] introduced themoment tensor potential
(MTP). SNAPs have been employed to calculate basic structural parameters and Peierls stress in several pure bcc
metals (includingW) [47], showing that they performbetter than EAMpotential, with respect toDFT data.

In this paper, we are extending that piece of work to severalML-IAPs and comparing their performance in
severalW-based randombinary alloys. ThreeML-IAPs are considered: SNAP,MTP, and tabulatedGAP (tab-
GAP). EAMpotentials are also included for comparative analysis. All four potentials are applied to obtaining
basic structural parameters and Peierls stress of edge dislocation in three sets of randombinary alloys:Mo1−xWx,
Nb1−xWx, andTa1−xWx, with x varying from0 to 1, in increments of 0.1. To quantify the performance of these
ML-IAPs, DFT and experimental values [48] are presented and comparedwith our results, whenever possible.
This study does not aim to conclusively evaluate the quality or accuracy of the potentials based solely on these
comparisons. The primary objective is to present the data, allowing readers to form their own interpretations in
the context of their specific needs and objectives.

2.Methodology

2.1. Interatomic potentials
In this study, we use one EAMpotential and threeML-IAPs. The EAMpotential is the one developed for the
CrMoNbTaVWsystem [15]. TheML-IAPs include SNAP, originally developed forNbMoTaW [8], a tabulated
GAP, forMoNbTaVW [49], andMTP, forMoNbTaW [50]. In all these IAPs, the force on an atom Fi is the
derivative of the total potential energy Etot with respect to its position ri, i.e.,

F
E

r
1i

i

tot ( )=
¶
¶

EAMpotential. In EAM formulation, the potential energy of an atom i is a sumof two terms: an embedding
potential and a pair potential [51], i.e.,
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Here, ρj is the contribution to the atomic density from atom j, rij is the distance between atoms i and j, andfij is
the short-range pair potential [52]. In equation (2), both sums are taken over all neighboring atoms of the atom i.
This enables a detailed description of the interactions between atomswhile considering their environments [38].

ML-IAPs. In allML-IAPs, an atom’s potential energy is a function of the local environment descriptor.
DifferentML-IAPs differ in (i) descriptors for the local environment around each atom and (ii) theMLmodel
used tomap the descriptors to the PES [53]. Comparedwith non-ML-IAPs such as the EAMpotential, main
features of theML-IAPs include (i) the PES is based on numerical interpolationwith respect toDFTdata, and (ii)
the PES is correlated to local environment descriptors instead of atomposition vectors [44, 46, 53].

SNAP. SNAP calculates the potential energy of an atombased on its representation in the spectral space,
which is a spacewhere atoms are represented as points based on their positions and interatomic distances [45].
SNAPuses the bispectrumbasis to describe the local environment [44]. The atomic energies and forces are a
function of the bispectrum coefficients of the atomic neighbor density function. The potential energy and the
bispectrum components are usually assumed to have a linear relationship. To establish this relationship, a neural
networkmodel is used. Clusters of atoms that are close to one anothermake up themajority of the energy in an
arrangement of atoms [45]. The total potential energyEtot and force fj on atom j are expressed as a function of k
projected bispectrum componentsBk, i.e.,
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whereα is the atomic type,Nα is the total number of typeα atoms, k is the neighboring site of typeα atoms,K is
the total number of neighboring sites. SNAPuses coefficients denoted asβα,k in its linear equation tomodel the
activation energies for typeα atoms. The distribution of neighboring atoms surrounding atom i at position r can
be expressed as a summation of δ-functions locatedwithin a three-dimensional spatial domain. The atomic
neighbor density function can be expressed as [8]

f r Sr r r 5i
r
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k

ikc atom

ik Rc
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<

where δ(r− rik) is theDirac delta functionwith its center at each neighboring site k. Tomake the neighbor
atomic density zero at the cutoff radiusRc, a cutoff function fc is employed. S k

atom differs for different atom types.
The atomic density function can be represented using a generalized Fourier series expressed in four-dimensional
spherical harmonicsUm m

j
, ¢ as:
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, ¢ are coefficients. The bispectrum coefficients can be expressed as:
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¢ are the coupling coefficients analogouswithClebsch-Gordon coefficients [45]. These

coefficients represent the relationship between the activation energy andmolecular features for a specific type of
atom and are derived from fitting themodel toDFT data.

MTP.MTP is based on the idea of interatomic pairwise potential energymoments.MTPbuilds contracted
rotationally invariant local environment descriptors for each atom in the system. These descriptors are then used
to create a polynomial regressed correlation between the PES and these descriptors [46]. The potential energy Ei
can be expressed as:

r rE B 8i
l

l( ) ( ) ( )å b=

whereB(r) are basis functions, eachmultiplied by a coefficientβl that is used to describe the local environment of
atom i. The basis functionsB are derived from themoment tensors and provide a compact representation of the
interatomic interactions in the local environment. Themoment tensors are also called descriptors and can be
expressed as:
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where the functions fμ represent the radial distribution of the local environment around atom i, and they are
specific to the type of neighbor atom j, zj. The terms rij⊗ ...⊗ rij are tensors that capture the angular information
about the local environment and have a rank of v. These tensors describe the shape and orientation of the local
environment relative to atom i. The functions fμ and the tensors rij⊗ ...⊗ rijwork together to provide a
comprehensive description of the local environment of atom i. The basis functionsB(r) are created by combining
themoment tensorsMμ,v into a scalar.

Another two important hyperparameters inMTP are: the cutoff radius rcut, which sets the extent of atomic
interactions in the local environment, andmaximum level levmax which controls the completeness of basis
functionsB(r). They determine the accuracy, cost of computation, and likelihood of overfitting ofMTP [50].

tabGAP.TheGAPmodel usesGaussian process regression to predict the energy of amaterial [54]. The
prediction ismade by combiningmultiple kernelsKusing linearweightsαs that are optimized during the
regression. An advantage ofGAP is that it can usemultiple different descriptors at the same time, each
represented by a separate term in the prediction, and all of them are trained as a singlemodel. The total energy of
a systemof atoms can be expressed as a sumof an external repulsive potential Erep and other factors, i.e.,

q qE E K , . 10
d

d
i s

s d d i d stot rep
2

, ,( ) ( )å ååd a= +

where d represents a specific descriptor, and i is used to iterate over all descriptor environments within the
system. The summation over s is calculated using sparseGaussian process regression and is based on a chosen set
of descriptor environments from the training data. Erep is the screenedCoulombpotential and d

2d is a weighting
factor for the descriptor d. The kernel functionKd is used for the descriptor d, and qd,i is the output for the
descriptor for the local atomic environment i.

The tabGAPmodel first uses theGAP framework for training [44]. InGAP, the local environment descriptor
is formed fromboth two-body (2b) and three-body (3b)Gaussian functions of interatomic distances with bond
anglesmultiplied by a smooth cutoff function [42]. The use of low-dimensional descriptors (2b, 3b) in the
prediction ofGAP energies has several advantages [55]. These descriptors can be efficientlymapped onto
discrete grids and interpolated using cubic splines, which is faster than the original Gaussian process regression.
The energies from each descriptor are combined using 1D and 3D spline interpolations to create a tabGAP. The
total potential energy can be expressed as:

E S r S r r, , cos 11
i j

N

ij
i j k

N
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,
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where S represents 1D and 3D cubic-spline interpolations. The 3D spline performs interpolation between points
on a grid based on the values of r r, , cosij ik ijk( )q [55], where θijk is the angle between the interatomic bonds
between atoms i, j, and k.

Table 1 provides a summary of all four potentials, which includes the fitting parameters, the appliedmachine
learning techniques, and the essential parameters of DFT-calculated training data alongwith its validation. Both
SNAP andMTPpotentials are trained using the same set of training data. The cutoff energy of tabGAP closely
mirrors that ofMTP and SNAP’s training data, exhibiting only a slight difference.

Table 1. Summary of different potential fitting processes and basic parameters of training data.

IAP Fitting parameters Machine learning technique Basic parameters forDFT calculations

SNAP [8] Formation energies,

atomic forces

Least square algorithm, differ-

ential evolution algorithm

cutoff energy 520 eV, K-pointmesh 4 × 4 × 4, supercell

size 3 × 3 × 3, energy threshold 10−5 eV, force thresh-

old 0.02 eV/Å

tabGAP [55] Total energies, forces,

virial stresses

Gaussian process regression Cutoff energy 500 eV,maxK-point spacing .15/Å, smear-

ing parameter 0.1 eV, supercell size 3 × 3 × 3

MTP [50] Total energies, atomic

forces

Linear regression cutoff energy 520eV, K-pointmesh 4 × 4 × 4, supercell

size 3 × 3 × 3, energy threshold 10−5 eV, force thresh-

old 0.02 eV/Å

EAM [15] — — Cutoff energy 600 eV, smearingwidth 0.2 eV, K-point

mesh 11 × 11 × 11

4
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2.2.Molecular static simulations
Weused LAMMPS [31] for allMS simulations. For the same type of simulation, the same computational
resources are used among different IAPs to compare their computation time. To calculate the basic structural
parameters, a cubic simulation cell is built, with all boundaries being periodic. To determine the lattice
parameter a0, we use the ‘energy-volumemethod’ [47]. Theminimumbulk energy is recorded asEbulk, and a0
can be derived from the corresponding cell size. From Ebulk, we derived the formation energyEform of each
binary alloy [56], via

E
E n E n E

n n
12form

bulk A A B B

A B

( )=
- -

+

where nA and nB are the number of atoms of elements A andB in the binary compound respectively. EA andEB
are the cohesive energy of elements A andB respectively. To calculate the three independent elastic constants
C11,C12 andC44, we employ the ‘stress-strainmethod’ [57]. Based on these three constants, we can obtain
importantmoduli such as bulkmodulus and shearmodulus.

To calculate the Peierls stress, we use the periodic array of dislocation (PAD)model [58]. The
crystallographic orientations are set to be x[111], y 110[ ¯ ], and z 112[ ¯]. Periodic boundary conditions are applied
in the x and z directions, while in the y direction, the boundaries are traction-free. An edge dislocationwith
Burgers vector of ab 2 1110( )= á ñ is inserted into the center of the simulation cell. The dislocation line is
alignedwith the z axis and the x–z plane corresponds to the slip plane, inwhich the dislocation lies. Scripts to
create the PADmodels inNb can be downloaded at https://github.com/shuozhixu/PhysScr_2023.

Each simulation cell begins as a cuboid and transforms into a triclinic shape as the shear strain òxy increases
until themaximum strain of 0.12 is attained. The strain increment is set to |Δòxy|= 2× 10−5 [59]. Energy
minimization using the conjugate gradient algorithm and the fast inertial relaxation enginemethod [60] are
conducted following each strain increment. Once the dislocation linemoves by at least 1 nm,we record the
resolved shear stress and take it as the Peierls stressσp. Note that all points on the dislocation linemove together
and the line remains straight during glide. In other words, there is no kink or jog. To visualize the atomic
structure and dislocationmovement, we usedOVITO [61].

3. Results and discussion

3.1. Lattice parameter
Figure 1 shows values of the lattice parameter a0 predicted by four IAPs. InMo-Walloys, a0 increases as the
percentage ofW increases. The threeML-IAPs used in this study predicted a value of a0 within 0.4% variation,
which is negligible. However, the average difference between the EAMpotential and theML-IAPs is 1.4%. From
table 2with respect to theDFT-based a0 of theMo0.5W0.5 alloy, the EAMpotential, SNAP, tabGAP, andMTP
yield error percentages of 0.51%, 0.1%, 0.17%, and 0.06%, respectively. In other words, theMTPproduces the
smallest errorwhile the EAMpotential is the largest [62]. Similarly, forNb-Walloys, the value of a0 varies within
0.33% among allML-IAPs. The difference between the EAMpotential andML-IAPs is 2%. The same trend is
also observed for the Ta-Walloys, where the average difference between the EAMpotential andML-IAPs is
1.6%,with a difference of 0.1% among the latter three potentials.We note that inNb-WandTa-Walloys, a0
decreases as the percentage ofW increases, in contrary to the trend inMo-Walloys.

Figure 1. Lattice parameters based on different IAPs in three alloys are plottedwith respect to the percentage of W in the alloy. The
experimental andDFTdata are from [62, 67].

5
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3.2. Formation energy
As discussed in section 2.2, the formation energyEform is a by-product of the lattice parameter calculation.
Figure 2 summarizes values ofEform based on four IAPs. ForNb-WandTa-Walloys, all themethods predict the
same trend inEform. As the amount ofW in the alloy increases, Eform increases till theWpercentage reaches 60%.
However, the absolute values of the Eform anticipated by the different IAPs vary to some extent. For example,
Eform predicted by EAM is lower than that predicted by the othermethods, whileMTPpredicts the highest Eform.
ForMo-Walloys, the slope of the decrease is steeper forMTP and tabGAP compared to EAMand SNAP.
Additionally, values ofEform based onMTP and tabGAP aremore negative compared to EAMand SNAP for all
Wpercentages. There is a significant difference between the Eform values predicted by the different IAPs. For
example, at 0.1Wpercentage, Eform predicted byMTP and tabGAP are about three timesmore negative than the
values predicted by EAMand SNAP. The plots also show that the uncertainties or errors associatedwith each
method are relatively small. Overall, the plots suggest that the different computationalmethods agree well with
each other in predicting the formation energy of the alloys.

3.3. Elastic constants
Infigure 3, the elastic constants predicted by the four IAPs exhibit a similar overall trend, butwith notable
discrepancies among their absolute values. Specifically, forC11, tabGAPpredicts themost accurate value for the
Mo-Walloys,Mo,Nb, andTa, when comparedwithDFT values. For all puremetals, the EAMpotentials yield
the second-best values ofC11 with respect toDFT, after tabGAP. In themeantime,MTP-based values show the
highest differences with respect toDFTdata in all three sets of alloys.

RegardingC12, EAMshows the least difference when comparedwithDFTdata, followed by SNAP
potentials, whileMTPs predict the least accurate values. ForC44, with respect toDFT, SNAP is shown to be the
best IAP, followed by EAM,while tabGAPs fair theworst. Overall, there is no single IAP that is the best in
predicting all three elastic constants.

Based onC11,C12, andC44, we then derive the bulkmodulusBmod in all randombinaries and puremetals,
following is the relationship: [63]

B C C2 3 13mod 11 12( ) ( )= +

Results infigure 4 show that, for Ta-W,Nb-Walloys,Bmod increases gradually with an increasingW
percentage, demonstrating themost uniformbehavior among the three alloys, across all the IAP. In contrast, for
Mo-Walloys, the bulkmodulus (Bmod) predictions exhibit themost variability across different IAPs. There is an
observable overall trend of theBmod increasing whenW increased. From table 1we can see the difference in the
bulkmoduli predicted from all four potentials with respect toDFT values forMo0.5W0.5. Comparedwith the

Figure 2. Formation energies based on different IAPs in three alloys are plottedwith respect to the percentage ofW in the alloy.

Table 2.Basic structural parameters of theMo0.5W0.5 alloy, predicted by the four IAPs, as comparedwith experimental
andDFT data. Error percentage relative toDFT values are shown in parentheses.

Exp [62] DFT [62] EAM SNAP tabGAP MTP

a0 (Å) 3.16 3.18 3.16 (-0.6%) 3.18(0%) 3.17(0%) 3.18(0%)
C11 (GPa) — 480 493(2.7%) 513(6.8%) 479(0%) 433(−9.8%)
C12 (GPa) — 194 192(-1%) 197(1.5%) 174(-10.3%) 159(−18%)
C44 (GPa) — 117 133(13.7%) 134(14.5%) 95(-18.8%) 99(−15.4%)
Bmod (GPa) — 289 292(1%) 302(4.5%) 276(-4.5%) 250(−13.5%)

6
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DFT values, EAMpotentials produced the closest, whereMTPs produced the values with the biggest difference
when predicting theBmod.

Table 3 presents the determined elastic constants for puremetals from all four potentials, which are then
compared to values obtained frombothDFT and experimentalmeasurements. None of the potentials
consistently producemore accurate results across allmaterials and elastic constants. As tabGAPwas not
specifically calibrated tomodel elastic constants, it yields results that display greater variancewhen compared to
theDFT values. However, the EAMmethod appears to provide a relatively close estimate to the experimental
values formostmaterials,making it potentially themost accurate overall, while tabGAP andMTP showmore
significant discrepancies.

3.4. Peierls stress
The characteristics of a dislocation in ametal are closely related to the Peierls stress, which is the resolved shear
stress required tomove a dislocationwithin its glide plane [64]. Peierls stress and Peierls barrier are the two

Figure 3.Three independent elastic constants based on different IAPs in three alloys are plottedwith respect to the percentage ofW in
the alloy. The experimental andDFTdata from [62, 67].

Figure 4.Bulkmoduli based on different IAPs in three alloys are plottedwith respect to the percentage ofW in the alloy. TheDFT and
experimental values are taken from [62, 67].

7
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primary indicators of the lattice’s resistance to dislocationmotion. Both have a connection to themechanismof
the dislocation transferring from aPeierls valley to a nearby valley [65]. Regarding the study’s emphasis on edge
dislocations, the rationale is twofold. Primarily, there is relatively little research focused on edge dislocations
compared to screw dislocations. Additionally, the complexity of calculating the Peierls stress for screw
dislocations, largely due to their tendency to cross slip to different planes, underscore the relevance of focusing
on edge dislocations in this study [59, 66].

Figure 5 illustrates the Peierls stress of an edge dislocation inMo-W,Nb-W, andTa-Walloys predicted by
the four IAPs. Among different IAPs, the same alloy is characterized by the same initial structure (except for the
different lattice parameters), which is essential to ensure the comparability of the results. It is found that the
trends of the Peierls stress are largely consistent for different IAPs, albeit with some exceptions. To our best
knowledge, there have not been any previous reports of either ab initio calculations ormeasured values for the
Peierls stresses of edge dislocations in any of themetals under consideration [47]. So taking theMTP values as
references, some insights can be gained in terms of other IAPs. It’s important to note that the choice ofMTPdoes
not imply its superiority,MTPonly serves as a commonbaseline against which othermodels can be compared.
Specifically, the EAMpotentials have the smallest deviation fromMTP inMo-Walloys, while tabGAP shows the
largest deviation. Conversely, tabGAP shows the least deviation inNb-Walloys, while EAMpotentials exhibit
the largest deviation. For Ta-Walloys, the EAMpotentials demonstrate the least variance, while tagGAP is the
largest.

3.5. Efficiency
In evaluating the efficiency of the IAPs, the same computational resources were employed to execute identical
calculations. The LAMMPS version that was used for all calculations was the one released on January 7th, 2022.
For the simulations, three nodes, each equippedwith 32 cores, were used.Here, the Peierls stress simulations in
Mo0.5W0.5, Nb0.5W0.5, andTa0.5W0.5 are chosen for assessing the computational efficiency. Fromfigure 6, it
could be said that SNAP requires the greatest amount of computational time, while the EAMpotential
demonstrates the highest level of computational efficiency. Among theML-IAPs,MTP exhibits an average
around five-fold increase in computational speed compared to SNAPwhen using identical computational
resources. The analysis can aid in selecting the right IAPs for specific computations.

Figure 5.Peierls stress based on different IAPs in three alloys are plottedwith respect to the percentage ofW in the alloy.

Figure 6.Computational time consumed by different IAPs, when calculating the Peierls stress of an edge dislocation in theMo0.5W0.5,
Nb0.5W0.5, andTa0.5W0.5 alloy.
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4. Conclusion

In this study,MS simulations are performed to calculate basic structural parameters and Peierls stress of an edge
dislocation inMo-W,Nb-W, andTa-Walloys and their corresponding puremetals:Mo,Nb, Ta, andW.Nine
combinations of each set of binary alloy are investigated. The simulations utilized four IAPs, including the EAM
potential, which is a non-ML-IAP, and threeML-IAPs: SNAP, tabGAP, andMTP. Results showdiscrepancies
among the values obtained from the four IAPs. In terms of the lattice parameter, as comparedwithDFTdata,
MTPdiffers the least while EAM themost. All four IAPs predict that the lattice parameter increases with an
increasingWconcentration, with the exception of theMo-Walloys, which showed the opposite trend. In terms
of the formation energy, all four IAPs lead to similar results. The errors introduced by the fitting procedure are
relatively small compared to themagnitude of the formation energy itself.

In addition to lattice parameters and formation energies, the accurate prediction of elastic constants is also
crucial for understanding alloys, and this study provides important insights. It is found that tabGAP is
particularly effective in predictingC11 andC12 for both puremetals andMo-Walloys, as its predictions are the
closest to the correspondingDFT values. In contrast, SNAP is found to be themost accurate in predicting theC44

values for the puremetals, whereasMTP is themost accurate for the binary alloys. In predicting the Peierls stress
of an edge dislocation, with respect to theMTP-based values, SNAPs are found to provide the closest values,
followed by the EAMpotentials and tabGAPs.

This study also compares the efficiency of the four IAPs. Results show that the EAMpotential is themost
efficient, requiring the least amount of computational time, followed byMTP, then tabGAP, and SNAPbeing
the slowest when calculating the Peierls stress. Taken together, our study highlights the trade-off between
computational efficiency and accuracy in developing or choosing IAPs in future computationalmaterials
science research. The specific focus on lattice constants, elastic constants, formation energy, and Peierls stress in
this studywas intentional, offering a basic but crucial insight into thematerials' behavior.While this paper
represents an initial step, the findings aim to guidemore comprehensive research in the future. It is essential to
highlight that the use of differentMachine Learning-based potentials in atomistic simulations can yield
significant variations, even in basic parameters.
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