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Abstract

The field of machine learning-based interatomic potentials (ML-IAPs) has seen increasing
development in recent years. In this work, we compare three widely used ML-IAPs—the moment
tensor potential (MTP), the spectral neighbor analysis potential (SNAP), and the tabulated Gaussian
approximation potential (tabGAP)with a conventional non-ML-IAP, the embedded atom method
(EAM) potential. We evaluated these potentials on the basis of their accuracy and efficiency in
determining basic structural parameters and Peierls stress under equivalent conditions. Three
tungsten (W)-based alloys (Mo-W, Nb-W, and Ta-W) are considered, and their lattice parameter,
formation energy, elastic tensor, and Peierls stress of edge dislocation are calculated. Compared with
DFT results, MTP demonstrates the highest accuracy in predicting the lattice parameter and the best
computational efficiency among the three ML-IAPs, while tabGAP accurately predicts two
independent elastic constants, C;; and C,,. Despite being the slowest, SNAP shows the highest
accuracy in predicting the third independent elastic constant Cy4 and its Peierls stress value is
comparable to that based on MTP.

1. Introduction

Binary alloys are promising structural materials. For example, the equal molar titanium-zirconium alloy
possesses approximately 2.5 times hardness and tensile strength compared with pure titanium and pure
zirconium and is being used in biomedical materials [1]. Alloying tungsten with rhenium solves the tungsten’s
low ductility issue and increases its toughness in the meanwhile [2]. Binary transition metal-alloyed
nanoparticles are becoming more popular, as their application ranges from (electro- )catalysis to biomedical
devices, owing to their good bio-compatibility, easy size control, high performance, and low cost [3]. Recently,
biodegradable zinc-copper alloys were developed for cardiovascular implant [4]. Investigating binary alloys is
also considered as one preliminary step for developing multi-principal element alloys (MPEAs), which consist of
three or more principal metallic elements [5—7]. MPEAs are drawing growing attention because of their
enhanced properties in extreme environments [8]. For example, face-centered cubic (fcc) MPEAs have shown
high damage tolerance and strength at cryogenic temperatures [9, 10], while body-centered cubic (bcc) MPEAs
possess high melting points and exceptional mechanical strength at elevated temperatures [11, 12]. Due to the
infinite possibility of compositions and their ratios, predicting the properties of MPEAs is difficult [13, 14]. So it
is useful to first study binary systems to obtain the characteristic traits of constituent elements and their
combinations [15].

In the past century, binary alloy systems have been characterized experimentally [16]. Most research was
done on Ni-based and Fe-based alloys [17-21]. For transition metal alloys from groups V and VI, most studies
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concerned the mechanical and thermodynamic properties of ternary or quaternary alloy systems [12, 22-25].
There is a significant knowledge gap for random binary alloys comprising group V and VI metals.

Among those metals, tungsten (W) has the highest melting point and excellent thermal conductivity and
thus serves in the high heat flux environment [26]. In addition, W attains good sputtering resistance and low
tritium retention, making it a promising candidate for the plasma-facing material in fusion reactor diverters
[27]. In the meantime, W has some shortcomings such as a high ductility-to-brittle transition temperature and a
high tendency for embrittlement subject to neutron irradiation [28, 29]. To address these issues, several
modification techniques were used and alloying is one of them [30]. In alloying W, two key questions are: (i)
‘what is the alloying metal?’ and (ii) ‘how much alloying metal should be added to W?’. The goal is to improve,
and preferably, maximize the strength of W-based random binaries. In these alloys, plastic deformation and
strengthening are fundamentally controlled by dislocation gliding, which requires a minimum resolved shear
stress called the Peierls stress.

In this study, we will address how alloying metals, such as Mo, Nb, and Ta, with given atomic percentages,
change the basic structural parameters and Peierls stress compared with pure W. The structural parameters,
including lattice parameters and elastic constants, and Peierls stress of dislocation at the atomic scale can be
calculated using either the molecular static (MS) method or density functional theory (DFT), using simulation
tools such as LAMMPS [31] and VASP [32], respectively. DFT calculations depend on quantum mechanical
descriptions for the potential energy surface (PES) which has the highest accuracy and best transferability [33].
However, it is limited to systems containing ~100—1000 atoms due to the high computational cost, making DFT
unsuitable for large-scale simulations [34, 35]. In the meantime, MS simulations can be employed to study
systems containing millions or even billions of atoms; however, their accuracy significantly depends on the
interatomic potentials (IAPs) [36, 37]. For metallic alloys, embedded-atom method (EAM) potential [38] and its
derivative (e.g., modified EAM [39] were previously considered state-of-the-art. They showed great predictive
capabilities for metals. At first, EAM potentials for most metallic elements were developed by fitting to DFT or
experimental data [40]; then potentials for alloy systems like binary, ternary, quaternary, and MPEAs were
gradually developed [41].

Recently, numerous machine learning-based IAPs (ML-IAPs) emerged for a variety of metals and alloys [42].
It was first introduced in 1995 by Blank et al [43], who modeled a neural network system for predicting the PES.
Later, in 2010, Bartok ef al [44] presented the Gaussian approximation potential (GAP) for diamond. GAP
doesn’t have any fixed functional form, hence capable of modeling complex potential energy landscapes. Then,
in 2015, the spectral neighbor analysis potential (SNAP) was introduced by Thompson et al [45]. SNAP describes
the local environment of each atom by a set of bispectrum components of the local neighbor density projected
onto a basis of 4D hyperspherical harmonics. In 2016, Shapeev [46] introduced the moment tensor potential
(MTP). SNAPs have been employed to calculate basic structural parameters and Peierls stress in several pure bec
metals (including W) [47], showing that they perform better than EAM potential, with respect to DFT data.

In this paper, we are extending that piece of work to several ML-IAPs and comparing their performance in
several W-based random binary alloys. Three ML-IAPs are considered: SNAP, MTP, and tabulated GAP (tab-
GAP). EAM potentials are also included for comparative analysis. All four potentials are applied to obtaining
basic structural parameters and Peierls stress of edge dislocation in three sets of random binary alloys: Mo, W,
Nb, ,W,,and Ta; ,W,, withxvarying from 0 to 1, in increments of 0.1. To quantify the performance of these
ML-IAPs, DFT and experimental values [48] are presented and compared with our results, whenever possible.
This study does not aim to conclusively evaluate the quality or accuracy of the potentials based solely on these
comparisons. The primary objective is to present the data, allowing readers to form their own interpretations in
the context of their specific needs and objectives.

2. Methodology

2.1. Interatomic potentials

In this study, we use one EAM potential and three ML-IAPs. The EAM potential is the one developed for the
CrMoNbTaVW system [15]. The ML-IAPs include SNAP, originally developed for NbMoTaW [8], a tabulated
GAP, for MoNbTaVW [49], and MTP, for MoNbTaW [50]. In all these IAPs, the force on an atom F;is the
derivative of the total potential energy E,, with respect to its position r;, i.e.,

_ 8E tot

F;
or;

()]

EAM potential. In EAM formulation, the potential energy of an atom 7 is a sum of two terms: an embedding
potential and a pair potential [51], i.e.,
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Here, pjis the contribution to the atomic density from atom j, ;; is the distance between atoms iand j, and ¢;;is
the short-range pair potential [52]. In equation (2), both sums are taken over all neighboring atoms of the atom i.
This enables a detailed description of the interactions between atoms while considering their environments [38].

ML-IAPs. In all ML-IAPs, an atom’s potential energy is a function of the local environment descriptor.
Different ML-IAPs differ in (i) descriptors for the local environment around each atom and (ii) the ML model
used to map the descriptors to the PES [53]. Compared with non-ML-IAPs such as the EAM potential, main
features of the ML-IAPs include (i) the PES is based on numerical interpolation with respect to DFT data, and (ii)
the PES is correlated to local environment descriptors instead of atom position vectors [44, 46, 53].

SNAP. SNAP calculates the potential energy of an atom based on its representation in the spectral space,
which is a space where atoms are represented as points based on their positions and interatomic distances [45].
SNAP uses the bispectrum basis to describe the local environment [44]. The atomic energies and forces are a
function of the bispectrum coefficients of the atomic neighbor density function. The potential energy and the
bispectrum components are usually assumed to have a linear relationship. To establish this relationship, a neural
network model is used. Clusters of atoms that are close to one another make up the majority of the energy in an
arrangement of atoms [45]. The total potential energy E, and force f;on atom j are expressed as a function of k
projected bispectrum components By, i.e.,

Eior = Z(ﬁa oNo + Z ﬁa kz Bk 1) (3

« k=1 i=1

6Bk i

ZZ&E

a k=1 i=1

(€]

where v is the atomic type, N, is the total number of type o atoms, k is the neighboring site of type o atoms, K is
the total number of neighboring sites. SNAP uses coefficients denoted as 3, x in its linear equation to model the
activation energies for type o atoms. The distribution of neighboring atoms surrounding atom i at position r can
be expressed as a summation of d-functions located within a three-dimensional spatial domain. The atomic
neighbor density function can be expressed as [8]

P = o(r) + Z j;(rik)sftomé(r — Tip) ®)

Tik<Rc

where §(r — r;;) is the Dirac delta function with its center at each neighboring site k. To make the neighbor
atomic density zero at the cutoff radius R., a cutoff function f is employed. S differs for different atom types.
The atomic density function can be represented using a generalized Fourier series expressed in four-dimensional
spherical harmonics Ur{;’ ! A8t

Pi (r) = Z Z 14711 m' Un]1 m’ (©)

j=0m,m'=—

where u . are coefficients. The bispectrum coefficients can be expressed as:

1 J, . .
R — ]m N L3
BJI’]2’J - Z Z Z (um m/)C] my j,1m; CJ m'j,m m' um/l,nn um/z,mz @)
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where C ]] ':1/,1 | are the coupling coefficients analogous with Clebsch-Gordon coefficients [45]. These
coefficients rzepresent the relationship between the activation energy and molecular features for a specific type of
atom and are derived from fitting the model to DFT data.

MTP. MTP is based on the idea of interatomic pairwise potential energy moments. MTP builds contracted
rotationally invariant local environment descriptors for each atom in the system. These descriptors are then used
to create a polynomial regressed correlation between the PES and these descriptors [46]. The potential energy E;

can be expressed as:

Ei(r) =) BiB(r) ®)
I

where B(r) are basis functions, each multiplied by a coefficient 3; that is used to describe the local environment of
atom i. The basis functions B are derived from the moment tensors and provide a compact representation of the
interatomic interactions in the local environment. The moment tensors are also called descriptors and can be
expressed as:
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Table 1. Summary of different potential fitting processes and basic parameters of training data.

IAP Fitting parameters Machine learning technique Basic parameters for DFT calculations
SNAP [8] Formation energies, Least square algorithm, differ- cutoffenergy 520 eV, K-point mesh 4 x 4 x 4, supercell
atomic forces ential evolution algorithm size3 x 3 X 3, energy threshold 107> eV, force thresh-
0ld0.02 eV /A
tabGAP [55]  Total energies, forces, Gaussian process regression Cutoff energy 500 eV, max K-point spacing .15/4, smear-
virial stresses ing parameter 0.1 eV, supercell size 3 x 3 x 3
MTP [50] Total energies, atomic Linear regression cutoff energy 520eV, K-point mesh 4 x 4 x 4, supercell
forces size 3 x 3 x 3, energy threshold 10~ eV, force thresh-
0ld 0.02 eV /A
EAM[15] — — Cutoff energy 600 eV, smearing width 0.2 eV, K-point

mesh 11 x 11 x 11

M, ,(r) = Zf“(“’ijl: Zj, Zj) 1@ ... @1y 9
j —

v times

where the functions f,, represent the radial distribution of the local environment around atom ¢, and they are
specific to the type of neighbor atom j, z;. The terms r;; ® ... ® r;;are tensors that capture the angular information
about the local environment and have a rank of v. These tensors describe the shape and orientation of the local
environment relative to atom i. The functions f,, and the tensors r;;® ... ® r;;work together to provide a
comprehensive description of the local environment of atom i. The basis functions B(r) are created by combining
the moment tensors M,, ,, into a scalar.

Another two important hyperparameters in MTP are: the cutoff radius 7., which sets the extent of atomic
interactions in the local environment, and maximum level lev,,,, which controls the completeness of basis
functions B(r). They determine the accuracy, cost of computation, and likelihood of overfitting of MTP [50].

tabGAP. The GAP model uses Gaussian process regression to predict the energy of a material [54]. The
prediction is made by combining multiple kernels K using linear weights « that are optimized during the
regression. An advantage of GAP is that it can use multiple different descriptors at the same time, each
represented by a separate term in the prediction, and all of them are trained as a single model. The total energy of
a system of atoms can be expressed as a sum of an external repulsive potential E,.,, and other factors, i.e.,

Eior = Erep + Z 6;22 ast(qd’,‘) qd,s)- (10)
d i s

where d represents a specific descriptor, and i is used to iterate over all descriptor environments within the
system. The summation over sis calculated using sparse Gaussian process regression and is based on a chosen set
of descriptor environments from the training data. E,.,, is the screened Coulomb potential and 6% is a weighting
factor for the descriptor d. The kernel function K} is used for the descriptor d, and g, ; is the output for the
descriptor for the local atomic environment i.

The tabGAP model first uses the GAP framework for training [44]. In GAP, the local environment descriptor
is formed from both two-body (2b) and three-body (3b) Gaussian functions of interatomic distances with bond
angles multiplied by a smooth cutoff function [42]. The use of low-dimensional descriptors (2b, 3b) in the
prediction of GAP energies has several advantages [55]. These descriptors can be efficiently mapped onto
discrete grids and interpolated using cubic splines, which is faster than the original Gaussian process regression.
The energies from each descriptor are combined using 1D and 3D spline interpolations to create a tabGAP. The
total potential energy can be expressed as:

N N
Ewt = Sior + (i) + > Sit (5 Tits €05 0y6) (11)

i<j ij<k

where S represents 1D and 3D cubic-spline interpolations. The 3D spline performs interpolation between points
onagrid based on the values of (r;;, i, cos 0;;) [55], where 0 is the angle between the interatomic bonds
between atoms 1, j, and k.

Table 1 provides a summary of all four potentials, which includes the fitting parameters, the applied machine
learning techniques, and the essential parameters of DFT-calculated training data along with its validation. Both
SNAP and MTP potentials are trained using the same set of training data. The cutoff energy of tabGAP closely
mirrors that of MTP and SNAP’s training data, exhibiting only a slight difference.

4
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Figure 1. Lattice parameters based on different IAPs in three alloys are plotted with respect to the percentage of W in the alloy. The
experimental and DFT data are from [62, 67].

2.2. Molecular static simulations
We used LAMMPS [31] for all MS simulations. For the same type of simulation, the same computational
resources are used among different IAPs to compare their computation time. To calculate the basic structural
parameters, a cubic simulation cell is built, with all boundaries being periodic. To determine the lattice
parameter ao, we use the ‘energy-volume method’ [47]. The minimum bulk energy is recorded as Ey, i, and aq
can be derived from the corresponding cell size. From Ey, i, we derived the formation energy Eg,.,, of each
binary alloy [56], via

Epuik — naEx — npEp

Eform = (12)
na + np

where 11, and np are the number of atoms of elements A and B in the binary compound respectively. Ex and Ey
are the cohesive energy of elements A and B respectively. To calculate the three independent elastic constants
Ci1, C1 and Cyy, we employ the ‘stress-strain method’ [57]. Based on these three constants, we can obtain
important moduli such as bulk modulus and shear modulus.

To calculate the Peierls stress, we use the periodic array of dislocation (PAD) model [58]. The
crystallographic orientations are set to be x[111], ¥ [110], and z[112]. Periodic boundary conditions are applied
in the x and z directions, while in the y direction, the boundaries are traction-free. An edge dislocation with
Burgers vector of b = (a0/2) (111) is inserted into the center of the simulation cell. The dislocation line is
aligned with the z axis and the x—z plane corresponds to the slip plane, in which the dislocation lies. Scripts to
create the PAD models in Nb can be downloaded at https://github.com/shuozhixu/PhysScr_2023.

Each simulation cell begins as a cuboid and transforms into a triclinic shape as the shear strain €, increases
until the maximum strain of 0.12 is attained. The strain increment s set to | Ae,, | = 2 x 10~ > [59]. Energy
minimization using the conjugate gradient algorithm and the fast inertial relaxation engine method [60] are
conducted following each strain increment. Once the dislocation line moves by at least 1 nm, we record the
resolved shear stress and take it as the Peierls stress o7,. Note that all points on the dislocation line move together
and the line remains straight during glide. In other words, there is no kink or jog. To visualize the atomic
structure and dislocation movement, we used OVITO [61].

3. Results and discussion

3.1. Lattice parameter

Figure 1 shows values of the lattice parameter a, predicted by four IAPs. In Mo-W alloys, gy increases as the
percentage of W increases. The three ML-IAPs used in this study predicted a value of aq within 0.4% variation,
which is negligible. However, the average difference between the EAM potential and the ML-IAPs is 1.4%. From
table 2 with respect to the DFT-based a, of the Mo, s W, 5 alloy, the EAM potential, SNAP, tabGAP, and MTP
yield error percentages of 0.51%, 0.1%, 0.17%, and 0.06%, respectively. In other words, the MTP produces the
smallest error while the EAM potential is the largest [62]. Similarly, for Nb-W alloys, the value of a, varies within
0.33% among all ML-IAPs. The difference between the EAM potential and ML-IAPs is 2%. The same trend is
also observed for the Ta-W alloys, where the average difference between the EAM potential and ML-IAPs is
1.6%, with a difference of 0.1% among the latter three potentials. We note that in Nb-W and Ta-W alloys, a,
decreases as the percentage of W increases, in contrary to the trend in Mo-W alloys.
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Figure 2. Formation energies based on different IAPs in three alloys are plotted with respect to the percentage of W in the alloy.

Table 2. Basic structural parameters of the Mo, s Wy, 5 alloy, predicted by the four IAPs, as compared with experimental
and DFT data. Error percentage relative to DFT values are shown in parentheses.

Exp [62] DFT[62] EAM SNAP tabGAP MTP
ao (R) 3.16 3.18 3.16 (-0.6%) 3.18(0%) 3.17(0%) 3.18(0%)
Cy, (GPa) — 480 493(2.7%) 513(6.8%) 479(0%) 433(—9.8%)
C, (GPa) — 194 192(-1%) 197(1.5%) 174(-10.3%) 159(—18%)
C14(GPa) — 117 133(13.7%) 134(14.5%) 95(-18.8%) 99(—15.4%)
Binod (GPa) — 289 292(1%) 302(4.5%) 276(-4.5%) 250(—13.5%)

3.2. Formation energy

As discussed in section 2.2, the formation energy Eg,,, is a by-product of the lattice parameter calculation.
Figure 2 summarizes values of Eg,,, based on four IAPs. For Nb-W and Ta-W alloys, all the methods predict the
same trend in Eg,.,,. As the amount of W in the alloy increases, E, ., increases till the W percentage reaches 60%.
However, the absolute values of the Eg,,,, anticipated by the different IAPs vary to some extent. For example,
Eform predicted by EAM is lower than that predicted by the other methods, while MTP predicts the highest Egyp,.
For Mo-W alloys, the slope of the decrease is steeper for MTP and tabGAP compared to EAM and SNAP.
Additionally, values of Eg,,,, based on MTP and tabGAP are more negative compared to EAM and SNAP for all
W percentages. There is a significant difference between the Eg,,,,, values predicted by the different IAPs. For
example, at 0.1 W percentage, Eg,.,, predicted by MTP and tabGAP are about three times more negative than the
values predicted by EAM and SNAP. The plots also show that the uncertainties or errors associated with each
method are relatively small. Overall, the plots suggest that the different computational methods agree well with
each other in predicting the formation energy of the alloys.

3.3. Elastic constants

In figure 3, the elastic constants predicted by the four IAPs exhibit a similar overall trend, but with notable
discrepancies among their absolute values. Specifically, for C;;, tabGAP predicts the most accurate value for the
Mo-W alloys, Mo, Nb, and Ta, when compared with DFT values. For all pure metals, the EAM potentials yield
the second-best values of C,; with respect to DFT, after tabGAP. In the meantime, MTP-based values show the
highest differences with respect to DFT data in all three sets of alloys.

Regarding C;,, EAM shows the least difference when compared with DFT data, followed by SNAP
potentials, while MTPs predict the least accurate values. For Cyy, with respect to DFT, SNAP is shown to be the
best IAP, followed by EAM, while tabGAPs fair the worst. Overall, there is no single IAP that is the best in
predicting all three elastic constants.

Based on Cyj, C}, and Cyy, we then derive the bulk modulus B,,,q in all random binaries and pure metals,
following is the relationship: [63]

Bimod = (Cll + 2C12)/3 (13)

Results in figure 4 show that, for Ta-W, Nb-W alloys, B,,,4 increases gradually with an increasing W
percentage, demonstrating the most uniform behavior among the three alloys, across all the IAP. In contrast, for
Mo-W alloys, the bulk modulus (By,,04) predictions exhibit the most variability across different IAPs. There is an
observable overall trend of the B4 increasing when W increased. From table 1 we can see the difference in the
bulk moduli predicted from all four potentials with respect to DFT values for Mo, s W, 5. Compared with the
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Figure 3. Three independent elastic constants based on different IAPs in three alloys are plotted with respect to the percentage of W in
the alloy. The experimental and DFT data from [62, 67].
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Figure 4. Bulk moduli based on different IAPs in three alloys are plotted with respect to the percentage of W in the alloy. The DFT and
experimental values are taken from [62, 67].

DEFT values, EAM potentials produced the closest, where MTPs produced the values with the biggest difference
when predicting the B, 4.

Table 3 presents the determined elastic constants for pure metals from all four potentials, which are then
compared to values obtained from both DFT and experimental measurements. None of the potentials
consistently produce more accurate results across all materials and elastic constants. As tabGAP was not
specifically calibrated to model elastic constants, it yields results that display greater variance when compared to
the DFT values. However, the EAM method appears to provide a relatively close estimate to the experimental
values for most materials, making it potentially the most accurate overall, while tabGAP and MTP show more
significant discrepancies.

3.4. Peierls stress
The characteristics of a dislocation in a metal are closely related to the Peierls stress, which is the resolved shear
stress required to move a dislocation within its glide plane [64]. Peierls stress and Peierls barrier are the two

7
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Figure 5. Peierls stress based on different IAPs in three alloys are plotted with respect to the percentage of W in the alloy.
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Figure 6. Computational time consumed by different IAPs, when calculating the Peierls stress of an edge dislocation in the Moy sW s,
Nbyg sWo 5, and Tag s Wy 5 alloy.

primary indicators of the lattice’s resistance to dislocation motion. Both have a connection to the mechanism of
the dislocation transferring from a Peierls valley to a nearby valley [65]. Regarding the study’s emphasis on edge
dislocations, the rationale is twofold. Primarily, there is relatively little research focused on edge dislocations
compared to screw dislocations. Additionally, the complexity of calculating the Peierls stress for screw
dislocations, largely due to their tendency to cross slip to different planes, underscore the relevance of focusing
on edge dislocations in this study [59, 66].

Figure 5 illustrates the Peierls stress of an edge dislocation in Mo-W, Nb-W, and Ta-W alloys predicted by
the four I[APs. Among different IAPs, the same alloy is characterized by the same initial structure (except for the
different lattice parameters), which is essential to ensure the comparability of the results. It is found that the
trends of the Peierls stress are largely consistent for different IAPs, albeit with some exceptions. To our best
knowledge, there have not been any previous reports of either ab initio calculations or measured values for the
Peierls stresses of edge dislocations in any of the metals under consideration [47]. So taking the MTP values as
references, some insights can be gained in terms of other IAPs. It’s important to note that the choice of MTP does
not imply its superiority, MTP only serves as a common baseline against which other models can be compared.
Specifically, the EAM potentials have the smallest deviation from MTP in Mo-W alloys, while tabGAP shows the
largest deviation. Conversely, tabGAP shows the least deviation in Nb-W alloys, while EAM potentials exhibit
the largest deviation. For Ta-W alloys, the EAM potentials demonstrate the least variance, while tagGAP is the
largest.

3.5. Efficiency

In evaluating the efficiency of the IAPs, the same computational resources were employed to execute identical
calculations. The LAMMPS version that was used for all calculations was the one released on January 7th, 2022.
For the simulations, three nodes, each equipped with 32 cores, were used. Here, the Peierls stress simulations in
Moy sWy s, Nbg sWy 5, and Tag s W 5 are chosen for assessing the computational efficiency. From figure 6, it
could be said that SNAP requires the greatest amount of computational time, while the EAM potential
demonstrates the highest level of computational efficiency. Among the ML-IAPs, MTP exhibits an average
around five-fold increase in computational speed compared to SNAP when using identical computational
resources. The analysis can aid in selecting the right IAPs for specific computations.
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Table 3. Comparison of elastic constants (C; , Cy,, and C,4 in GPa) for Mo, Nb, Ta, and W obtained from different methods:
Experiment (Exp) [68—70], DFT [8], SNAP, tabGAP, MTP, and EAM.

Mo Nb Ta w

Cn Ci, Cuy Cn Ciz Cay Cn Ciz (on Cn Ciz Cuq
Exp 479 165 108 249 135 19 266 158 87 533 205 163
DFT 472 158 106 247 135 29 264 161 74 511 200 142
SNAP 434 169 95 266 142 20 256 160 66 560 217 154
tabGAP 476 165 125 257 150 —4 222 189 48 484 207 159
MTP 390 174 85 238 159 24 245 184 67 480 187 122
EAM 456 166 113 262 124 36 262 157 82 522 204 160

4. Conclusion

In this study, MS simulations are performed to calculate basic structural parameters and Peierls stress of an edge
dislocation in Mo-W, Nb-W, and Ta-W alloys and their corresponding pure metals: Mo, Nb, Ta, and W. Nine
combinations of each set of binary alloy are investigated. The simulations utilized four IAPs, including the EAM
potential, which is a non-ML-IAP, and three ML-IAPs: SNAP, tabGAP, and MTP. Results show discrepancies
among the values obtained from the four IAPs. In terms of the lattice parameter, as compared with DFT data,
MTP differs the least while EAM the most. All four IAPs predict that the lattice parameter increases with an
increasing W concentration, with the exception of the Mo-W alloys, which showed the opposite trend. In terms
of the formation energy, all four [APs lead to similar results. The errors introduced by the fitting procedure are
relatively small compared to the magnitude of the formation energy itself.

In addition to lattice parameters and formation energies, the accurate prediction of elastic constants is also
crucial for understanding alloys, and this study provides important insights. It is found that tabGAP is
particularly effective in predicting C;; and Cj, for both pure metals and Mo-W alloys, as its predictions are the
closest to the corresponding DFT values. In contrast, SNAP is found to be the most accurate in predicting the Cy4
values for the pure metals, whereas MTP is the most accurate for the binary alloys. In predicting the Peierls stress
of an edge dislocation, with respect to the MTP-based values, SNAPs are found to provide the closest values,
followed by the EAM potentials and tabGAPs.

This study also compares the efficiency of the four IAPs. Results show that the EAM potential is the most
efficient, requiring the least amount of computational time, followed by MTP, then tabGAP, and SNAP being
the slowest when calculating the Peierls stress. Taken together, our study highlights the trade-off between
computational efficiency and accuracy in developing or choosing IAPs in future computational materials
science research. The specific focus on lattice constants, elastic constants, formation energy, and Peierls stress in
this study was intentional, offering a basic but crucial insight into the materials' behavior. While this paper
represents an initial step, the findings aim to guide more comprehensive research in the future. It is essential to
highlight that the use of different Machine Learning-based potentials in atomistic simulations can yield
significant variations, even in basic parameters.
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