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This paper presents the development of a spatial decomposition parallel algorithm and its implementa-
tion into a concurrent atomistic-continuum (CAC) method simulator for multiscale modeling of disloca-
tions in metallic materials. The scalability and parallel efficiency of the parallelized CAC are tested using
up to 512 processors. With a modest computational resource, a single crystalline f.c.c. sample containing
10.6 billion atoms is modeled using only 4,809, 108 finite elements in a CAC model at a fraction of the
cost of full molecular dynamics (MD). The simulation demonstrates a nearly ideal scalability of the newly
parallelized CAC simulator. The parallel efficiency of the newly parallelized CAC is shown to be higher
than 90% when using 512 processors in the high performance computing cluster at lowa State
University. This parallel efficiency is comparable to the state-of-the-art atomistic simulator. Moreover,
the newly parallelized CAC simulator employing a uniform coarse mesh is capable of capturing important
atomistic features of dislocations, including dislocation nucleation, migration, stacking faults as well as
the formation of Lomer-Cottrell locks, in a billion-atom system. The spatial decomposition-based paral-
lelization algorithm developed in this work is general and can be transferable to many other existing con-
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1. Introduction

Many material behaviors and engineering processes are multi-
scale in nature. Understanding those behaviors and processes
across a broad range of length scales are important for the develop-
ment of novel engineering structures and materials. For example,
the plastic deformation of metallic materials spans a wide range
of lengths scales ranging from dislocation nucleation at the atomic
scale to the formation of multiple slip bands, planar dislocation
arrays, and dislocation cells at the microscale, and to the observ-
able effect of permanent deformation at the macroscopic level
[1]. It is believed that the multiscale nature of plasticity precludes
direct simulations using a formulation appropriate only for one
single length scale [2]. For instance, a fully atomistic simulation
can provide atomistic details of plastic deformation, such as dislo-
cation interactions, dislocation networks [3,4]. However, it
requires a formidable computational cost if a prediction of the
macroscopic-level plastic deformation is desired. By contrast, the
continuum-level theoretical and computational framework, such
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as crystal plasticity finite element method (CPFEM), are applicable
to simulating the plastic behavior in materials at the macroscopic
level. Nevertheless, these approaches lack a predictive capability
from the bottom up because they ignore the atomistic discrete nat-
ure of materials. In the past decades, taking the advantage of ato-
mistic simulations and continuum-level methods, extensive
efforts have been dedicated to the development of multiscale
methods for modeling plasticity [5]. Existing multiscale methods
generally fall into two categories: sequential and concurrent
approaches. In sequential methods, MD simulations are deployed
to calibrate the constitutive models and parameters for higher
order models. For example, to simulate material plasticity, infor-
mation about dislocation nucleation, the strength of dislocation
junctions, dislocation mobility, and dislocation interactions from
atomistic modelling are used to develop short-range interaction
rules. These rules are then feed into continuum-level models such
as dislocation dynamics [6-8]. One major challenge of such
sequential approach is how to average the fine scale information
and how to input the averaged information into the higher scale
models. In contrast, concurrent methods directly combine a fine-
scale description of materials with a higher order material
description within one computer model [9-14]. Examples of such
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concurrent methods for multiscale plasticity include the coupled
atomistic and discrete dislocation formulation [15-19], coupled
discrete dislocation and continuum crystal plasticity [2], and the
multiresolution molecular mechanics [20]. A comprehensive
review of concurrent multiscale methods can be found in Refs.
[21,22].

A direct combination of a fine-scale model, e.g.,, MD, with a
higher order model, such as finite element (FE), within one compu-
tational framework introduces an unrealistic numerical interface
into the computational model. Due to the mismatch of material
descriptions between MD and FE, an atomistic/continuum inter-
face needs to be constructed through a careful numerical imple-
mentation. Most of the efforts are then devoted to construct such
numerical interface by matching or bridging the atomistic and con-
tinuum descriptions such that defects can pass from MD to FE. Dif-
ferent from other concurrent multiscale methods which directly
combines MD and FE, the recently developed concurrent
atomistic-continuum (CAC) method is based on a new atomistic
field formalism that unifies the atomistic and continuum descrip-
tion of materials within one theoretical framework [23]. The
coarse-grained (CG) domain in CAC admits dislocation nucleation
and migration on the boundaries within the gaps between ele-
ments without the need of adaptive mesh refinement [23]. CAC
has been successfully applied to simulate a variety of material
behaviors, such as slip transfer of dislocations across grain bound-
aries [24,25], dislocations bowing out from Frank-Read sources
[26], dislocation-void interaction [27], dislocations and fracture
in strontium titanate [28,29], dynamic crack propagation [30], fast
moving dislocations [31], and phonon dynamics in a 1-D poly-
atomic chain [32]. It is noted that, because the original version of
the CAC simulator was not massively parallelized, those applica-
tions were mainly limited to material behavior from the atomistic
to the nanoscale.

In order to perform large-scale CAC simulation of material
behaviors using hundreds of processors, this work aims to develop
a massively parallelized CAC simulator that can be applied to pre-
dict dislocation activities in a submicron-sized specimen without
smearing out its atomistic nature. A spatial decomposition (SD)
algorithm is developed and implemented. This algorithm takes full
advantage of the local nature of the SD procedure and shows a
good parallel efficiency without any limitation on the number of
processors. The remainder of this paper is organized as follows.
In Section 2, the formulation and the algorithm of the CAC method
are briefly reviewed. In Section 3, the SD algorithm as well as its
efficiency and scalability are presented in details. In Section 4, sim-
ulations of dislocation activities in a single-crystalline face-
centered cubic (f.c.c.) sample with the same computational set-
up as that in Ref. [23] is presented to benchmark the newly paral-
lelized CAC. In Section 5, the scalability of the algorithm is demon-
strated and compared against the fully atomistic simulator, the
Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [33]. In Section 6, CAC simulations of the activities of
submicron-long dislocation lines in a sample containing billions
of atoms are presented. This paper ends with a brief summary
and discussion.

2. A brief review of the CAC method

The theoretical foundation of CAC is an atomistic field formal-
ism proposed by Chen [34,35], in which a crystalline material is
viewed as a continuous collection of lattice points, while embed-
ded within each point is a unit cell containing a group of discrete
atoms [36]. Chen [34,35] defined the continuum-level physical
quantities from the atomic scale and formulated the microscopic

balance equations of the physical quantities including mass den-
sity, linear momentum density, and the internal energy density.

It is noted that, the continuum description of those physical
quantities is by means of continuous functions in terms of x and
t in the physical space. Microscopic dynamic quantities in classical
N-body dynamics, on the other hand, are functions of (r,p), i.e., the
positions and momenta of atoms, in phase space:

r={R“k=1,2,3,...,n},

p={mVv k=1,23,.. . n} (1)

where R¥ is the position vector and V¥ is the velocity of the k th
atom, m* is the atomic mass, and n is the total number of atoms
in the system. In the atomistic field formalism, the quantities in
the phase space and the physical space descriptions can be linked
through utilizing the localization function ¢ [34-36], i.e.,

pix) = S mEs (R~ ), @
k=1
PR = S MV R~ ), 3
k=1

where p is the microscopic local mass density and pw is the
momentum density in physical coordinate. Taking the time deriva-
tives of Egs. (2) and (3), Chen [34,35] formulated the microscopic
balance equations of the mass and linear momentum. In particular,
for a monoatomic crystal under no external forces, the balance
equation of linear momentum can be re-written as [23]

px :fint(x) (4)

where

Sine = XH:Z(S(R" — X)Fit (5)
k=1 i

is the internal force density, Fj, is the atomic force acting on atom k
by atom i and ¢ is a Dirac ¢ -function.

Itis daunting to directly compute F;, for all the atomic pairs. Thus,
one critical step in numerical implementation of the atomistic field
formalismiis to efficiently and accurately calculate the internal force
density fi,; in Eq. (5). Xiong et al. [23] performed a FE implementa-
tion of the atomistic field formalism and the numerical procedure
was coined as CAC, which discretizes the computational domain into
piecewise elements. Gaussian quadrature was deployed to perform
the spatial integration to calculate the internal force density [23].
Later, Yangetal. [28] and Xu et al. [24] modified the quadrature rules
and demonstrated that the generalized stacking fault energy, core
structure and the stress field around a mixed dislocation in CAC
models are comparable with that from MD. In this paper, the inte-
gration scheme in Ref. [24] is employed. A computational domain
is discretized into piecewise elements (Fig. 1). Each element is in a
rhombohedral shape and contains a collection of lattice cells. The
displacement within the element is approximated by

u= .0, (6)

where U; are finite element nodal displacements, ®;:(x) is the stan-
dard tri-linear shape function. In the numerical integration scheme,
the internal force on node ¢ is calculated as follows [23,24]:

L

f: _ Z;Lw#q)iHF‘
e

LA SO
where F* is the force on the integration point y, w,, is the weight,

and ®;,is the value of the shape function @, at the integration point
u. The weight w,, is determined by the number of atoms that the

(7)
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Element 1

Fig. 1. The schematic sketch for building the neighbor list of an integration point p
in an element centered at point O. The domain bounded by the solid red lines is
referred as a “local box” handled by a local processor. The domain bounded by the
dotted red line is referred as a “ghost box”. The information associated with the
elements (elements in blue) falling into the “ghost box” but out of the “local box” is
sent to the local processor. Here I, is the element size which is the largest length of
the diagonals and r. is the cutoff of the interatomic potential. The domain in yellow
covers the atomic interaction range associated with an integration point p. In
particular, within this interaction range, the instantaneous position of each atom
falling into the domain in green is interpolated from the FE nodal positions. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

integration point represents. In details, for those integration points
located on nodal sites, w, = 1; for those on the element edges,

w, = Ny — 2; for those on the surface, w, = (N; - 2)%; and for those

within the interior of the elements, w, = (N; — 2)%. Here, N, is the
number of atoms along the edge of each coarse element. It is clear
that the CAC model will degenerate into full MD simulations when
N; =2 and p = 8. Such an atomic-scale mesh is referred as the fin-
est mesh in CAC method and will function as a fully atomistic
domain. In this paper, uniform coarse elements are used to dis-
cretize the material sample and the number of integration points
within each element is set as p =27, which corresponds to the
“INN’ case in Ref. [24]. For N, < 3, a collocation integration proce-
dure is used and u = 8.

3. Parallelization algorithm

The CAC simulator is parallelized through the Message Passing
Interface (MPI) using the spatial decomposition algorithm. The
main idea of this algorithm is to evenly divide the total volume of
the system into small boxes with equal volume, e.g., the red solid
box in Fig. 1. Each small box is assigned to a processor. Specifically,
we use a regular 3-dimensional meshing topology [33] in which the
simulation box is divided into D, parts along o(x = x,y,z) direction.
The total number of processors is p = DyDyD, and each processor is
indexed as d = d;D,D, + d,D, + d,. The sub-box owned by the d-th
processor is indexed as d, along the odirection. Element i with
the center position ric = (rix, 'y, i) = %Zr,»,, is mapped to processor
d(r;) in an array. The computational domain along each direction is
subdivided into Dy, D, and D, in an equal size

d(ric) = d(rix)DyD; + dy(riy)D, + d;(r3,),
{da(rm =[] @=xy2),

o

8)

in which L, is the simulation box size along the o direction. The box
belonging to each processor is called the “local box” of that proces-
sor in comparison with the enlarged “ghost box” introduced later.

Each processor computes and updates the forces, positions and
velocities of FE nodes within its own domain at each time step. Ele-
ments moving outside of the box will be assigned to the new box
during the simulations. The information of elements in the neigh-
boring boxes is sent to the local box through MPI_Send and
MPI _Irecv command, i.e., the information of some elements in the
red dotted box inside the nearby processors is sent to the local pro-
cessor for computing the force on the nodes of the local elements.
Here an enlarged box is defined and referred as a “ghost box” [33]
which has all dimensions larger than the local box of [, (Fig. 1). It
should be pointed out that the data structure and the communica-
tion in the spatial decomposition is local in nature. This will in
principle lead to a high parallel efficiency if each processor con-
tains a similar number of elements. In contrast, in other parallel
algorithms, such as the force decomposition method [33,37,38],
globalized vectors are used and the communication of the global-
ized vectors (all-to-all) is required. As a consequence, the simula-
tion employing such force decomposition becomes significantly
slow when the number of degree of freedom increases. This leads
to a decrease of the parallel efficiency in large-scale simulations
[33].

In each processor, three dimensional arrays are constructed for
storing the positions, velocities and forces of FE nodes. The first
dimension of each array is the number of elements, the second is
the number of nodes per element (8 for 3D and 4 for 2D), and
the third is 3 for 3D or 2 for 2D, respectively. Nodal positions of ele-
ments with their center positions falling into the ghost box are sent
from the neighboring processors and updated at each time step.
Those nodal positions received from neighboring boxes are directly
inserted at the end of the local vectors without sorting. The lists of
elements received from the nearby processors are recorded in the
following several time steps. The neighbor lists will be only
updated when any of the FE nodal displacement is larger than a
skin parameter. Such a technique has been employed in the MD
simulator LAMMPS [33]. The positions of the atoms within each
element are interpolated using the shape functions in Eq. (6)
[23-24].

The parallelization starts with reading the input data file. Fig. 2
shows that the FE nodal coordinates are read by the master proces-
sor, noted as CPUy, step by step to avoid creating global data struc-
tures in all of processors. At each step, CPU, reads a fixed number
of element coordinates: I,. In this work, we choose I, as 1024 in
order to balance the input reading and the information communi-
cation between processors. Thereafter, CPU, will broadcast the
data to all the other processors, noted as CPUs, in the communica-
tion world using the MPI_Bcast command. In each processor, a vec-
tor of the same size of I, is allocated in order to receive data
broadcasted by CPU,. With this information, each processor will
determine whether the position of the element center, 1, falls into
its own local box. Those elements falling into the local box will be
assigned to the processor and the information associated with
them is stored at the end of the existing position vectors. In this
way, only local data structures will be needed. The same strategy
is applied to the output of results during the simulation.

Fig. 3 shows the communication scheme between processors
[33]. This strategy is the same as what has been implemented in
LAMMPS because each element can be considered as a “coarse
atom” [39]. Here the elements received from nearby processors
are noted as ghost elements. The cutoff for ghost elements is set
as ry = r. + max(l.). Firstly, the positions of FE nodes falling within
the cutoff length r; of CPU; 's box is sent to CPU, as shown in Fig. 3a
followed by the reverse communication. The same procedure is
repeated along the north/south direction in Fig. 3b. The only differ-
ence is that messages sent to the adjacent CPU now contain not
only local elements but also ghost elements received from previous
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MPI_Bcast() Check inside each CPU

Element Global list

|cru,

Fig. 2. The process of reading input file and the information broadcasting to all the processors.

a east/west exchanges

-

CPUs

CPU CPU,

A4

T:S'
b north/south exchange:

Lt

up/down exchanges

Fig. 3. A scheme of the communications between processors in the parallelized CAC
simulator.

communications. This process is then repeated along the up/down
dimension. When r; > L,/D,, here L, and D, have the same mean-

ing as that in Eq. (8), those elements in [%] + 1 neighboring boxes
are needed. Thus the communication procedure will be performed
for {%} + 1 times. The advantage of this scheme is to minimize

the communication data [33] although the coding process becomes
tedious. That is, each processor acquires only the elements that are
within a distance r; of its “local box”. All the received elements are
placed as contiguous data into the local data structure without
rearranging. During the communication, a full scan of the data
structure is only conducted when there is a need to decide the
information of which element should be sent. Such a scan creates
a list of elements that compose of each message. During all the
other timesteps, the lists can be used to directly sort the referenced
elements and buffer up the messages in an efficient manner.
Then the neighbor list of integration points is constructed for
the evaluation of the internal force density. Once the neighbor list
is constructed, the internal force density associated with each inte-
gration point can be calculated. The neighbor list construction in
CAC is mainly divided into two steps. The first step is to build
the element neighbor list using a link-cell scheme. The cutoff for
the element neighbor list is the same as that used for communica-
tion: r;. The bin size used here is r;/2 which maximizes the effi-

ciency of the neighbor list construction [33]. The second step is
to build the neighbor list of integration points through searching
the atoms interpolated from the neighboring elements. Since each
element contains several thousands of atoms, interpolation of all
atoms inside all elements will be demanding. Here, instead of per-
forming a full-domain interpolation, the second step is further
divided into two sub steps. Before going into details, we introduce
one parameter: [ = r. + I /2, referred as the influence radius of an
element (Fig. 1). The distance between the atoms outside this
radius and the atoms interpolated from this element is larger than
r. and thus there will be no interaction between them. The process
for finding the integration point i in Fig. 1 is described as following.
Firstly, the distance between i and the center position of each
neighboring element will be calculated. If the distance is larger
than I, the atoms inside this element will not be interpolated. For
example, the distance between the centroid of element 1 and the
integration point p in Fig. 1 is larger than I. This means that the dis-
tance between any of atoms within element 1 and the integration
point p will be larger than r.. In this situation, all the atoms within
element 1 will not be in the neighbor list of point p and will not be
interpolated. Under this treatment, only the positions of the atoms
falling into the elements in yellow (Fig. 1) will be interpolated for
constructing the neighbor list of the integration point. The next
sub-step is to further subdivide each yellow element in Fig. 1 into
n equal-sized segments along each direction and n? (n® for 3D
problems) smaller sub-elements in total. Each sub-element has
an influential radius: Iy, =71, +1/(2n). When the distance
between the sub-elements and the integration points is smaller
than Iy, the positions of the atoms will be interpolated for neigh-
bor list construction. As such, the interpolation in the neighbor ele-
ments will be only performed in those sub-elements in green. Fig. 4
shows that the neighbor list construction time, t,, changes with the
splitting number n along each direction. The testing computer
model used to produce the data in Fig. 4 contains 10.6 billion
atoms and is discretized into 31,45,963 coarse elements [23]. Each
element contains 3,375 atoms. Using 512 processors, the mini-
mum neighbor building time is 2.1 seconds for this model. It is
found that t, first decreases at an order of 3, which is the same
as the number of elements to be interpolated, and then increases
slightly with the increase of the splitting number n. The increase
of the neighbor list construction time is due to the time spent for
checking the distances between integration points and sub-
elements when the splitting number n become larger. With this
information, an optimized value for element splitting can be deter-
mined for the neighbor list construction.
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Fig. 4. The relation between the splitting number n and the time for the neighbor
list construction.

4. Scalability of the massively parallelized CAC simulator

To investigate the scalability of the newly developed parallel
algorithm, CAC models for cubic f.c.c. samples with a dimension
of 0.1pum x 0.1pm x0.1pum and 0.5pumx 0.5pmx 0.5pum are
tested. The CAC model for a cuboid sample ensures that each pro-
cessor contains similar number of coarse elements and avoids
unequal  workload among different  processors. The
0.5um x 0.5pum x 0.5 pum sample as shown in Fig. 5 is the largest
computer model explored in this work. This model contains
10.566 billion atoms and is discretized into 4,809, 108 coarse ele-
ments. Each element contains 2197 atoms. The timestep is set as 5
fs. Fig. 6 shows the relationship between the number of processors
and the averaged time cost for each timestep in different models
containing different number of elements. The time cost is averaged
over the total simulation time which includes the reading, initial-
ization, the neighbor list construction and also the FE nodal force
calculation. The computing timing of CAC using a single processor
is taken as a reference point for calculating the parallel efficiency
when memory for single processor is large enough to store all glo-
bal vectors. It should be noted that, for problems when nel (number
of elements) = 4,809, 108, the memory associated with one single
processor is not enough and simulations should start with a certain

100l anel=1038596 ¥
T, T
= [ s A [
2 nel=310428 g, . nel=4809108
2 e
(0] § ™~
_g . . ~a
S 10t
£ T_nel=380 .
IS e -
= ™~
2 T
i 8
© 10 "
\\
\\
n
16 &4 | 128 256 512

P (# of processors)

Fig. 6. CPU timing (seconds/timestep) versus the number of processors used for
different CAC computer models containing different number of elements.

number of processors (for example, 16 for nel = 310,425). The ref-
erence points are then the timings of the starting number of pro-
cessors. While the number of processors p increases, the size of
the domain covered by the “local box” decreases. This leads to a
higher volume ratio between the ghost box and the local box. That
is, the ratio between the number of the elements containing in the
ghost box and that in local box: R, increases. For example, for
nel =38,064 in Fig. 6, R=1 when P=32 and R=10 when
P = 512. This will induce a small decrease of the parallel efficiency.
However, the spatial domain decomposition algorithm still retains
a parallel efficiency of 85% when P = 512. When nel > 310,425 in
Fig. 6, a parallel efficiency of 92% can be achieved when 512 pro-
cessors are used. This is the maximum number of processors we
can access using our computing resource. Nevertheless, since all
data sets and communications are localized in the SD algorithm,
the parallel efficiency remains high when P > 512 and will be com-
parable to that in MD simulations using LAMMPS [33].

Fig. 7 presents the linear relationship between nel and the total
CPU time, p * ty,. Here t, is the time spent by each processor. This
linear relationship means that the total computational time is
determined by the total number of elements. For all the cases in
Fig. 7, the communication time doesn’t exceed 8% of the total sim-
ulation time and more than 90% of the simulation time is spent in
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Fig. 5. CAC model of a 0.5um cubic sample used to test the scalability.
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Fig. 7. Arelationship between the CPU timing and the number of elements assigned
to each processor.

the interpolation of the integration points, calculation of nodal
force and updating nodal positions. This implies that there will
be no limit of the size of models as long as we can have access to
a large number of processors [33]. The high parallel efficiencies
ensures that the SD algorithm presented in this work can be at
the same level as that in many existing massively parallelized
MD simulator [33].

5. Comparison with LAMMPS

In addition to the CAC computer model, the algorithm can also
be applied to perform MD simulations when the coarse mesh in the
CAC model is reduced to the atomic scale [23]. In this situation, a
comparison between the CAC simulation time and LAMMPS [33]
using exactly the same hardware [40] is carried out. In a 1000-
timestep simulation of a (0.1um)® cubic sample containing
83,626,608 atoms using 16 nodes in the Condo cluster at lowa
State University [41], LAMMPS took 454.8 s and the CAC took
480.2 s. For a uniform coarse mesh in CAC, the computational
workload ratio between the coarse-grained model and MD simula-
tions can be defined as below

__ total number of integration points
w total number of atoms

9)

Here the theoretical speed-up is defined as Syeory = 1/Ryp. The actual
speed-up of the parallelized CAC with respect to various Ry, closely
follows the theoretical speed-ups in general, as shown in Fig. 8. The
largest speed-up we obtain is 33.3 when the uniform coarse ele-
ment (2197 atoms per element) is used in CAC.

6. A simple validation

CAC computer models of notched single-crystal copper speci-
mens in a previous work [23] are used to validate the correctness
of the newly implemented parallel algorithm in CAC. A Lennard-
Jones (L-]) potential is used, with parameters €, = 0.167ev and
0o = 2.3151A. This model contains 1,423,107 atoms and is dis-
cretized into 4,149 elements with each element containing 343
atoms. Fig. 9 presents the atomic rearrangements, dislocation
structures, and stacking faults from the newly parallelized CAC
and also from MD. Two dislocations are emitted from the notch
tips and propagate into the specimen interior along {111} planes.
The same non-symmetric dislocation nucleation behavior is cap-

40 -
[ ]
35 \
] n
\ \
30 - \\-.
4 \ \
\\
25 4 \\
s | H
- A\
8 20- \. [=—cAc
o 1 \ o Theoretical
15 -1 ;‘\
10 AN
T
5 S
1 10 100

R,, (%)

Fig. 8. The speed-up of the CAC model with respect to computational workload
ratio (Ryp).

a CG model
®I[110]
D >\
v &/ \2
€=0.0092 €=0.020 €=0.0230
b MD model
©Il110]
2 &
VA
€=0.0093 €=0.020 €=0.0230

Fig. 9. Snapshots of atomic arrangements, dislocations and stacking faults. (a)
Results from the newly parallelized CAC simulation. (b) Results from MD simula-
tion. Here only the atoms associated with dislocations and stacking faults are
displayed in blue. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

tured here [23]. Also, the Lomer-Cottrell or stair-rod locks [41]
are formed, which hinders further dislocation glide on the two slip
planes and provides a barrier to other dislocations [23]. This is also
found in MD simulations [23]. We test this model with random
number of processors and results are the same. This demonstrates
that the results are independent of the number of processors and
the communications between processors are reliable in the mas-
sively parallelized CAC code.

7. Numerical Examples

CAC furnished with the newly developed spatial decomposition
algorithm is used to simulate dislocations in a
0.25pm * 0.25um x 0.53pum cubic sample with two notches on
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y = 12004

0.53um

Fig. 10. CAC model for a billion-atom system to benchmark the spatial decompo-
sition algorithm.

both sides as shown in Fig. 10. This model contains 2,307,616, 753
atoms and is discretized into 1,050,349 elements with each ele-
ment containing 2197 atoms. A constant velocity of 1m/s is applied
(corresponding to a strain rate on the order of 10°s~1) on the two
vertical (z direction) ends of the sample with the other surfaces
traction free.

Fig. 11 shows that dislocations nucleate around the notches
[42]. Through the Burgers vector analysis using the geometric
method in OVITO [4], the emitted dislocations are found to be par-
tial dislocations with Burgers vector £[112] in the (111)-plane and
1[121] in the (111)-plane. Dislocations migrate in the sample with
different velocities due to the free surface and elastic interactions
between dislocations [4]. During their migrations, the curvature
of the dislocation lines decreases to reduce the line energy of dis-

0.6 > y=-200A
—4—y=0;1

0.4+ Y=9004

. 0.2¢ +y=1200;1

-02 L
0.4}

Stress (GPa

0.6
-0.8}
-1f

-500 0 500
Position (A)

Fig. 12. Shear stress (o) field around the cores of dislocation in different cutting
planes.

locations [43]. Eventually, the two dislocations lines interact with
each other as shown in Fig. 11e. The interaction angle was mea-
sured as 18.2°, which remains constant until the two dislocations
formed a Lomer-Cottrell lock [41].

It should be noted that dislocation lines along the thickness
direction, i.e., the y-direction, insects two free surfaces in the xz
plane. In order to characterize the effects of free surfaces on the
dislocation core stress field, the shear stress distribution around
the dislocation core at y = —200,0,900and1200A is quantified
and presented in Fig. 12. It is seen that the positive shear stress
component decreased when the dislocation core is approaching
the free surface. That is, the maximum positive shear stress
decreases from ~ 0.8GPa when y = —200A to ~ 0.2GPa when
y = 1200A. Clearly, the stress around a dislocation core gradually
decays when it gets closer to a free surface. This result implies that
dislocation core stress field in a finite-sized material sample is
actually size-dependent and will be only approaching the analyti-
cal solution of a dislocation core embedded within an infinite
media when the core is reasonably far away, e.g. 120nm in this
work, from a free surface.

In order to demonstrate that the applicability of the newly par-
allelized CAC code to different material systems in which use dif-
ferent interatomic potentials, one set of massively parallelized
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Fig. 11. Dislocations nucleation and migration in a billion-atom sample by CAC.
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CAC simulation using an embedded atom method (EAM) force field
[44] is performed. This simulation employs the Mishin-embedded
atom method force field for single crystalline copper. In the CAC
simulator, the electron charge density is calculated only on the
nodes of elements. The electron charge density of those atoms
within the element is interpolated from the electron charge den-
sity on the FE nodes. A single crystalline cubic f.c.c. sample in a
dimension of 70nm x 70 nmx70 nm containing 54,683,330
atoms is discretized into 24,890 coarse elements (the Inset pic-
tures in Fig. 13). A constant velocity of 1m/s is applied on the
two ends of the sample with the other surfaces traction free. The
dislocations activities are analyzed using the dislocation extraction

(a)|e=0.0286

[111]
(b)€=0.0314

AL

AR

~—

(c

€=0.0572

algorithm in OVITO [45]. Fig. 13 shows that dislocations nucleate
from the free surfaces and propagate into the interior of the sam-
ple. Similar with the simulation from the CAC model using the L-
J potential, dislocations also have Burges vector 1[112], which are
consistent with those found in the full MD simulations of Cu under
tension [46]. Those dislocations interact with each other, form
stair-rod lock structure [45] and then a dislocation forest as those
in MD simulations [4]. This preliminary simulation demonstrates
that, despite the approximations introduced by the coarse mesh
in CAC, the atomistic nature associated with dislocation nucleation,
interactions, and the formation of sessile structures have been cap-
tured at a fraction of the cost of full MD simulations.

Fig. 13. CAC (24,890 coarse elements) simulations of dislocations nucleation and migration in a single crystalline EAM-Cu containing 54,683,330 atoms: (a) dislocations
nucleate from the free surface on one side.=; (b) the nucleated dislocations migrate into the interior of the sample; (c) the dislocation forests are formed as more and more
dislocations interact with each other to form stair-rod locks [4,23]. Here the dislocation analysis is conducted using two different approaches. The dislocation structure in the
left column is from the dislocation extraction algorithm in OVITO [45]. This analysis shows that the dislocations (green line) in this simulation are in Burges vector of 1[112]
and the purple lines are the stair-rod locks. The dislocation structure in the right column is from the centrosymmetry analysis [45], in which the atoms with centrosymmetry
parameter smaller than 0.1 are removed. The black lines above are boundaries of the box. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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8. Summary and discussions

In this work, a SD parallel algorithm for a multiscale simulator,
CAC, is developed and implemented. Results obtained using the
newly parallelized CAC simulator are directly compared with those
from MD simulations. It shows that the newly developed CAC sim-
ulator can effectively reproduce dislocation nucleation, migration
and the formation of Lomer-Cotrell lock formation as that in MD
simulations. Furthermore, the parallel algorithm has been tested
in CAC using different number of processors for different models.
Using only 512 processors, CAC furnished with this new algorithm
exhibits an optimal scalability in computer models which contains
up to 4,809,108 elements for 10,565,610,276 atoms. This is
beyond the reach of classical MD simulator using the same compu-
tational resource. The parallel efficiency is shown to be more than
90% and is compared with a well-established atomistic simulator,
LAMMPS. For the CAC models with the atomic-scale finite element
meshes which reproduce the full MD simulation results, the paral-
lel algorithm achieves 97% efficiency of LAMMPS. To demonstrate
the capability of the newly parallelized CAC simulator, dislocation
activities in a large sample containing 2,307,616,753 atoms are
simulated. The maximum positive shear stress around a disloca-
tion core in the finite-sized sample was found to gradually decay
when it get closer the free surface. It approaches the analytical
solution for the stress field around a dislocation core embedded
in an infinite media when the core is at least ~ 120nm away from
the free surfaces.

It should be noted that the majority of existing concurrent mul-
tiscale method is based on domain decomposition [2,17-23], the
present SD parallel algorithm can be applied to those methods
and provide a general framework for parallelizing many other mul-
tiscale materials simulators. In order to use CAC to simulate more
complicated phenomena such as dislocation interaction with
obstacles such as voids or grain boundaries, the atomic-scale finite
element mesh nearby the obstacles needs to be combined with
coarse elements. The computer models with non-uniform meshes
with different element sizes in the newly parallelized CAC code
will be tested in our future work.
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