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Dislocation interactions with distributed condensed vacancy clusters in fcc metals were
simulated via a concurrent atomistic–continuum method. Due to void strengthening, the
dislocation lines are found to bow as a result of pinning on the original glide plane and
undergo depinning through drawing out screw dipoles and forming prismatic loops on
the secondary slip plane. We discovered an inertia-induced transition between Hirsch
looping and void shearing mechanisms as the void spacing ranges from the scale of nm
to hundreds of nm. Contrary to prior understanding, simulations suggest that large voids
(�5 nm in diameter) can behave as weak barriers to dislocation motions under high
strain-rate dynamic conditions.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Materials subjected to irradiation exhibit elevated yield strength and suffer from intrinsic softening and reduced ductility
by virtue of localization of dislocation plasticity. Irradiation-induced defects act as obstacles to dislocation migration. Typical
radiation-induced defects in fcc lattices include voids (Averback et al., 1977; Kluth et al., 2005; Kondo et al., 2008,
Crocombette and Proville, 2011) and helium bubbles (Donnelly et al., 1983; Henriksson et al., 2005; Demkowicz et al.,
2010; David et al., 2011), particularly for fusion applications (Zinkle, 2005). Transmission electron microscopy (TEM) studies
indicate that these defects act as obstacles to dislocations and, when bypassed, lead to localization of deformation in regions
where defect densities are reduced via dislocation interaction (Shilo and Zolotoabko, 2003, 2007; Shingo et al., 2007; Wu
et al., 2007). Unfortunately, in situ observations of dislocation–obstacle interactions are quite limited owing to elaborate
sample preparation, and restricted spatial and temporal ranges of TEM.

Static analysis of void strengthening suggests that voids with diameter of �2 nm or larger generally act as ‘strong
obstacles’, whereas voids with diameter less than �2 nm act as ‘weak obstacles’, respectively (Hull and Bacon, 2001). It
was concluded that the stress required for dislocation depinning from these voids approaches the theoretical Orowan stress
(Hull and Bacon, 2001; Hirth and Lothe, 1982; Shim et al., 2007). For predicting the in-service performance of metals in
fusion energy facilities, however, understanding of the influence of dynamic deformation on void strengthening mechanisms
is crucial and requires atomistic insight of unit processes of dislocation–void interactions. In the past ten years, molecular
dynamics (MD) has been used extensively to investigate dislocation–obstacle interactions in irradiated metals (Wu et al.,
2007; Shim et al., 2007; Harry and Bacon, 2002; Osetsky and Bacon, 2003; Bacon and Osetsky, 2005; Bacon et al., 2006;
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Terentyev et al., 2007; Cheng et al., 2010). Major limitations arise in using MD to simulate large systems, for example
systems with dislocation line lengths on the order of microns and void spacing on the order of hundreds of nanometers. Con-
tinuum simulation tools such as dislocation dynamics (DD) (Amodeo and Ghoniem, 1990a, 1990b; Kubin and Canova, 1992;
Van der Giessen and Needleman, 1995; Zbib et al., 1998; Bulatov et al., 1998; Cai and Bulatov, 2004) provide approximate
description of dislocations at these larger scales, based on elastic theory of lattice dislocations. However, DD typically suffers
from the approximate nature of prescribed short-range interaction rules between mobile dislocations and obstacles, lacks
the ability to model dislocation dissociation, and requires approximations for dislocation cross slip and other important local
mechanisms.

Pioneering MD simulations of vibrating dislocations were conducted but limited to 2D Frenkel–Kontorowa models
(Weiner et al., 1976). Those models neglected phonon drag effects. Recently, Gumbsch and co-workers (Cheng et al.,
2010, Bitzek and Gumbsch, 2004, 2005 ) investigated dislocation depinning through MD simulations considering
dynamic/inertial effects. Their results suggest that dynamic inertial effects significantly lower the depinning stress. It was
suggested that such inertial effects should not be ignored in computational models at higher scales. However, continuum
models, such as DD, typically assume overdamped dislocation migration via a constitutive force–velocity relationship.

Due to the spatio-temporal complexity of dislocation dynamics, various multiscale modeling methods (McDowell, 2010)
including sequential (Amodeo and Ghoniem, 1990a, 1990b; Kubin and Canova, 1992; Van der Giessen and Needleman, 1995;
Zbib et al., 1998; Bulatov et al., 1998; Cai and Bulatov, 2004; Shehadeh et al., 2006; Hu et al., 2007) and concurrent (Tadmor
et al., 1996; Zhou and McDowell, 2002; Fago et al., 2004; Shilkrot et al., 2002a, 2002b; Zamora et al., 2012) approaches have
been developed to describe dislocation physics. In sequential, hierarchical multiscale modeling approaches, it is intended
that the characteristics and understanding of dislocation–obstacle interactions obtained from MD are incorporated in higher
length scale continuum DD or crystal plasticity simulations. These parameters include maximum obstacle force, critical cusp
angle, and Peierls stress. Although particular long range dislocation–obstacle interactions can be represented within
continuum treatments, it is difficult if not impossible to address complex short range interactions and processes (e.g., core
interactions). Concurrent approaches such as the Quaiscontinuum method (QC) (Tadmor et al., 1996; Fago et al., 2004) or
Coupled Atomistics Discrete Dislocation (CADD) (Shilkrot et al., 2002a, 2002bb; Zamora et al., 2012) seek to address the cru-
cial question of how to reconcile a consistent treatment of dislocations that pass between atomic and continuum regions;
heuristic numerical techniques and/or rules are invoked for passing dislocations across interfaces between atomistic and
continuum domains or through coarse-grained continuum domains with adaptive mesh refinement. As a consequence of
these specialized treatments, existing concurrent approaches are only suitable for 2D quasistatic simulations of dislocations.
For 3D dynamic dislocation–obstacle interactions, the recently developed concurrent atomistic–continuum (CAC) method
(Xiong et al., 2011, 2012a, 2012b) is suitable as a formal coarse-graining of MD and is pursued in this work.
2. Methodology

Fundamental to the CAC method is a unified formulation of atomistic and continuum representation of balance laws
(Chen and Lee, 2005; Chen, 2006, 2009). The CAC formulation generalizes Kirkwood’s statistical mechanical theory of trans-
port processes (Kirkwood, 1946; Irving and Kirkwood, 1950) to facilitate a two-level structural description of materials. It
describes the structure of a crystalline material in terms of continuously-distributed lattice cells, but with a group of discrete
atoms situated in each lattice cell at sub-structural level. A complete field representation of balance laws of atomistic sys-
tems is then derived. Under elastic distortion, the new balance equations fully reproduce the phonon dispersion relations
(Xiong et al., 2014b). Consequently, the formulation reflects all possible dynamics on length and time scales from the atomic
to the macroscopic, and admits coarse-graining in the context of a finite element formulation in which large numbers of
atoms are contained within each element, with defects (e.g., dislocations or cracks) propagating along discontinuous element
interfaces. This avoids anomalous effects of atomistic–continuum interfaces that hamper domain decomposition methods
such as CADD (Shilkrot et al., 2002a, 2002b; Zamora et al., 2012), as well as finite temperature extensions of adaptively
remeshed or reconfigured QC methods (Kulkarni et al., 2008). In contrast to most existing multiscale or coarse-grained
methods (Chen et al., 2011), the representation of the complete set of balance laws renders CAC applicable to dynamic
and nonequilibrium processes involving mass, momentum, and/or energy transport (Xiong et al., 2014b), with the inter-
atomic potential or force field being the only empirical input. This work employs the embedded atom method potential
(Daw and Baskes, 1984) for Ni (Mishin et al., 1999, 2001). The numerical implementation code of CAC is parallelized and
is run on N = 72 processors, scaling as O(N). The present work considers balance of mass and momentum, without addressing
the energy equation, in view of the focus on dynamic effects of dislocation–void interactions.
3. Computational set-up and results

3.1. Effects of void spacings on the dislocation pinning–depinning

Fig. 1 shows the computational configuration of CAC models in this study. Single crystal Ni specimens
(�50 � 200 � 100 nm3) contain over 20 million atoms. The V-notch and four spherical voids with diameters of �5 nm are
initially introduced into the models. The distance between the V-notch tip and the centers of the voids is �40 nm. Here



Fig. 1. Computational set-up: (a) V-notched specimens with spherical voids (diameter D � 5 nm) initially introduced to intersect active slip planes; (b)
slices of the FE meshes (atomic resolution around the voids and coarse resolution away from the voids) on the slip planes; (c) frontal view of the CAC model
(�100,000 elements representing �20,500,000 atoms) with tensile loading applied along the ½�1 �12� direction.

L. Xiong et al. / International Journal of Plasticity 65 (2015) 33–42 35
the V-notch is employed to induce a highly localized stress concentration to drive the dislocations into the specimen to
explore inertial effects of interactions with voids. Two voids are centered on the ð�111Þ slip planes on which notch root dis-
locations are expected to nucleate and the other two are similarly introduced on the ð1 �11Þ planes Fig. 1a. The voids have
center-to-center spacing, L, ranging from 15 nm to 155 nm to facilitate parametric study. The specimens are discretized into
�100,000 finite elements (FE), each with rhombohedral shape corresponding to the primitive cell of fcc crystals (Xiong et al.,
2011). Elements with full atomic resolution (i.e., 1 atom/element) are employed around the periphery of the voids to inves-
tigate the details of atomic scale dynamics during dislocation–obstacle interactions. Coarse scale elements (216 primitive
cells/element) are employed away from the voids to reduce computational cost. Slices of FE meshes cutting through the
voids are shown in Fig. 1b. Displacement-controlled tensile loading with a constant velocity of 5 m/s is applied on the
two ends of the specimen Fig. 1c, corresponding to a strain rate of�107/s. Lateral surfaces are traction free. It should be noted
that the image forces resulting from the interactions between the dislocations and the free surfaces may have an effect on
the pinning–depinning dynamics. The effects of such image forces are minimized in our simulations by arranging for pin-
ning–depinning to occur near the center of the computational cell with the sample thickness being around 300 nm. Such
a computational set-up for such a thick specimen assures that the image forces nearly cancel (Zhou et al., 1998). The central
difference method (Dt = 5 fs) is employed for time integration and standard Gauss quadrature is used for spatial integration.
In this work we focus on the mechanical aspect of dislocation–void interactions and hence a homogeneous low temperature
field as low as T = 0.2 K is assumed. The deformation of the FE mesh and arrangements of atoms are simultaneously output
from CAC simulations. Atomic positions are mapped from the FE nodal positions through interpolation (Xiong et al., 2011,
2012a, 2012b). For a Ni specimen (L � 15 nm), Fig. 2a presents the time sequences of dislocations (blue atoms) and stacking
faults (red atoms) displayed through rendering the atoms using the centrosymmetry parameter in AtomEye (Li, 2003).
Fig. 2b shows the FE mesh and the local shear stress (r23) distributions on the ð�111Þ slip planes. With continued tensile load-
ing, dislocations initiate from the notch-tip, migrate on the slip planes and eventually interact with the voids.

It is seen from Fig. 2 that the dislocation–void interaction process can be divided into three stages: (1) the dislocation line
encounters the voids at t = 0.110 ns; (2) the dislocation line bypasses the void surfaces from t = 0.114 ns to t = 0.116 ns; (3)
the dislocation line breaks away at t = 0.117 ns under a critical (peak) resolved shear stress. The dislocation line bows when it
enters the voids at t = 0.110 ns. At t = 0.114 ns, the dislocation line is clearly bowing out between voids. The segments on
either side of the voids begin to move into parallel alignment. At t = 0.115 ns, due to dynamic effects, the dislocation segment
around void-1 has enough kinetic energy to compensate the attraction from this void, and depinning occurs via ‘overshoot-
ing’. The inertial overshooting of dislocations leads to a cusp angle (uc � 120�) larger than that typical of a static bow-out
(Bitzek and Gumbsch, 2004, 2005; Granato, 1971; Fusenig and Nembach, 1993). Here the depinning cusp angle is measured
at the instant in time at which the dislocation line detaches from the void. Thereafter, the depinning of dislocation line from
void-1 immediately slows down the rate of dislocation migration and results in a Hirsch depinning process (Hirsch et al.,
1958) at void-2. At t = 0.116 ns, the initially straight dislocation line is pulled into screw orientation by self-interaction. A
screw dislocation dipole is formed with the assistance of the mutual attraction of the two dislocation branches emerging
from the void surfaces. Before the formation of the full dipole, a partial dislocation nucleates on the surface of void-2 at
t = 0.117 ns. Thereafter an intrinsic prismatic loop is produced on the ð1 �11Þ plane. The diameter of the prismatic loop is
nearly equivalent to the radius of void-2. The nucleation and the formation of the intrinsic dislocation loop enhances pinning
of the next dislocation and generally inhibits depinning of dislocations on the primary system encountering the void. It is
noted that the formation of intrinsic prismatic Hirsch loops has been observed in high strain rate experiments (Hirsch
et al., 1958; Kiritani et al., 1999; Brown and Stobbs, 1971; Wusatowska-Sarnek et al., 1999). After t = 0.117 ns, the dislocation
begins to detach from void-2 with a small cusp angle (uc � 45�). Eventually, the induced curvature of the dislocation line via
interaction with void-2 becomes negligible when the dislocation line is about 10 lattice units away from the voids at
t = 0.120 ns. Moreover, the prismatic loop on the ð1 �11Þ plane remains in plane as a sessile remnant of the interaction.
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Fig. 2. Time sequence of snapshots of (a) dislocation and stacking fault structures projected on the (111) plane; (b) the shear stress distribution on the
(111) plane; (c) the shear stress (r23) on the ð1 �1 0Þ plane; (d) dislocation and stacking fault structures on the ð�111Þ and ð1 �11Þ planes.
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Two dislocations with Burgers vectors 1
2 ½1 �10� and 1

2 ½011� are emitted from the notch on the two respective inclined ð�111Þ
and ð1 �11Þ glide planes. These dislocations have leading and trailing partial dislocations separated by a stacking fault. Due to
the symmetry of the geometry and the boundary conditions applied on the computational models, we present only the
results of the dislocation pinning–depinning from the voids in the upper part of the material body in Fig. 2, focusing on
the initial encounter. With increase of tensile loading, more dislocations will be emitted from the V-notch tip, migrating
toward the voids and eventually interacting. The atomic-scale mechanisms associated with the dislocation depinning from
the deformed voids with successive encounters will be much more complex than what we have observed in Fig. 2 and is not
to be investigated in the present work.

To clarify the underlying physics of the formation of prismatic dislocation loops on the secondary slip plane, the time
sequence of ½1 �10� projections of mesh deformation and stress distribution around void-2 are shown in Fig. 2c, and the
½�111�/½1 �11� projections of the dislocation and stacking fault structures are presented in Fig. 2d. Stress concentration at
the void leads to the nucleation of secondary dislocations with a different Burgers vector from the void surface (note the
partial dislocations emerging from the primary stacking fault at t = 0.115 ns). The asymmetry of the resolved shear stress
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on sides of void-2 is clearly evident in Fig. 2c leads to nucleation and formation of the secondary loop on one side of the void.
This differs, of course, from loops formed on the original glide plane during the bypass process, commonly termed as Orowan
loops (Hull and Bacon, 2001; Hatano, 2006).

Fig. 3a–c compares the time sequences of dislocations, stacking faults, and the local resolved shear stress distributions for
Ni for void spacings of L � 20 nm, L � 30 nm and L � 60 nm, respectively. It is seen that the dislocation lines in Fig. 3a–c are
similar in shape. The critical cusp angles around all of the obstacles are uc � 45�. Comparing Figs. 2 and 3, we see that inertial
effects are only observed in Ni for narrower obstacle spacing such as L � 15 nm, as shown in Fig. 2. As the void spacing is
increased to L � 20 nm, 30 nm, and 60 nm, it is observed in Fig. 3 that the Hirsch looping mechanism activates. Obviously,
enhanced depinning via dislocation inertia is no longer evident for 20 nm 6 L 6 60 nm. Therefore, we conclude that the
phenomenon of the inertial overshooting is sensitive to the void spacing.

Fig. 4a and b presents a time sequence of dislocations, stacking fault structures, and the local shear stress distributions for
Ni with void spacing L � 155 nm. At t = 0.113 ns, the dislocation line encounters the voids. In contrast to Fig. 3a–c, Fig. 4a
shows that the depinning from void-1 excites internal vibrations of dislocation lines. The induced waves travel along the
dislocation lines and then assist the dislocation depinning from void-2 (e.g., ‘‘whip’’ effect), where a large cusp angle
(uc � 110�) is observed (see Fig. 4g).

According to the classification of Hull and Bacon (2001) or Hirth and Lothe (1982), voids act as strong obstacles when
uc < 100� (Fig. 4c) and as weak obstacles for uc > 100� (Fig. 4d). In the present dynamic simulation, for voids with diameter
of approximately 5 nm, comparing the cusp angles in Fig. 4e (L � 15 nm), Fig. 4f (L � 30 nm), and Fig. 4g (L � 155 nm), voids
act as weak barriers in some cases (uc � 110� around void-1 in Fig. 4e, L � 15 nm), and as strong barriers in other cases in
connection with the Hirsch looping mechanism (uc � 45� around both void-1 and void-2 in Fig. 4f, L � 30 nm).

To identify the origin of the transition of deformation mechanism, we have conducted an additional CAC simulation
(L � 155 nm) with large viscous damping to reduce the dynamic response. As shown in Fig. 4h, as a result of the viscous
damping, the dislocation depinning does not occur until t = 0.180 ns and the cusp angle around void-2 dramatically
decreases from 110� (Fig. 4g) to 70� (Fig. 4h) at L � 155 nm. That is, when the dynamic effect has been alleviated, void-2 acts
as a strong barrier, in contrast to the weak barriers observed in the earlier dynamic simulation (Hull and Bacon, 2001; Bacon
et al., 2009). It is believed that the depinning angles will approach values predicted by the static line tension models with
further increase of the viscous damping coefficient in the CAC simulations. However, according to our recent predictions
Fig. 3. Time sequences of snapshots of dislocations, stacking fault structures, and shear stress (r23) distributions on the (111) plane: (a) L � 20 nm; (b)
L � 30 nm; (c) L � 60 nm.
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Fig. 4. Ni (L � 155 nm) under tension by CAC simulations: (a) time sequences of snapshots of dislocation and stacking fault structures on the (111) plane;
(b) shear stress (r23) distributions during the dislocation–void interactions on the (111) plane; (c) voids acting as ‘strong obstacles’ via the Hirsch looping
mechanism; (d) voids acting as ‘weak obstacles’ via shearing mechanisms; (e) void-1 (uc � 120�) acting as a ‘weak obstacle’, L � 15 nm; (f) voids-1,2
(uc � 45�) acting as ‘strong obstacles’, L � 30 nm; (g) void-2 (uc � 110�) acting as ‘weak obstacles’, L � 155 nm; (h) void-2 (uc � 70�) acting as a ‘strong
obstacle’ in CAC simulations with a viscous damping, L � 155 nm.
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(Xiong et al., 2014a), the viscous damping coefficient in our CAC simulation should not be an artificial parameter per se, but
rather should be on the same order of phonon drag coefficients on dislocation motions in fcc crystals under high strain rate
loading conditions.

3.2. Effects of notch tip stress field and strain-rates on the dislocation pinning–depinning

The stress state in the CAC models of nano-sized specimens is rendered complex by virtue of the presence of the V-notch.
To assess the effects of the complex stress field associated with the V-notch tip on the dislocation pinning–depinning from
the voids, we present initial stress distributions from the CAC computational models for distances between the V-notch tip
and the center of the voids of 30 nm (Fig. 5a), 40 nm (Fig. 5b) and 50 nm (Fig. 5c), respectively. The dislocations (blue) and
stacking faults (red) structures with the onset of the dislocation depinning from the voids in three different CAC models are
also presented. It is seen that the largest depinning angles have been reproduced when the distance between the initially
introduced voids and the V-notch tip is as close as d = 30 nm (Fig. 5a) comparing with those depinning angles from the com-
putational models with d = 40 nm (Fig. 5b) and d = 50 nm (Fig. 5c). Therefore, it is believed that stronger inertial effects will
be induced to drive dislocation depinning from voids when the center of the voids is closer to the V-notch tip. When the
distance between the V-notch tip and the voids is larger than d = 30 nm, we do not observe obvious effects of the presence
of the complex V-notch tip stress field on the dislocation depinning angles (d = 40 nm in Fig. 5b and d = 50 nm in Fig. 5c).

We also investigated the effects of the different strain rates (107/s in Fig. 6a and 108/s in Fig. 6b, respectively) on the dis-
location pinning–depinning from the voids with the spacing being L � 155 nm. From the two sets of simulations of the same
specimen under the same tensile strain, it is found that the higher strain rate (Fig. 6b) leads to the stronger inertial effects
and a larger dislocation depinning angle (Fig. 6b) from the void-2.

4. Summary and discussion

In summary, dynamic processes of dislocation bypass of voids with diameters of �5 nm and spacing up to �155 nm in Ni
subjected to high strain rate loading have been simulated using the CAC method. Such large length scales are accessible only
to massive MD simulations. Critical depinning cusp angles and dislocation line configurations have been determined. Atomic



Fig. 5. Initial stress (r23) distributions, dislocation and stacking fault structures with the onset of the dislocation depinning from voids in Ni (L � 155 nm)
under tension by CAC simulations: (a) d � 30 nm; (b) d�40 nm; (c) d � 50 nm.

Fig. 6. Dislocation and stacking fault structures with the onset of the dislocation depinning from voids in Ni (L � 155 nm) for the same tensile strain at rates
of: (a) _e � 107=s; (b) _e � 108=s.
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scale mechanisms are identified, including drawing out of screw dipoles and nucleation and formation of Hirsch loops. This
work has revealed a transition of a dislocation bypass/depinning mechanism induced by inertial effects under nonequilib-
rium high strain rate loading the obstacle spacing increases from several nm to hundreds of nm. Several sets of CAC simu-
lations of dislocation pinning–depinning from the voids also show that: (1) closer proximity of voids to the notch tip
increases inertial effects and leads to larger dislocation depinning angles; (2) higher strain rate also increases inertial effects.

In previous MD simulations, it has been found that atomic-scale details of dislocation–void interactions depend strongly
on dislocation core structures. They also have demonstrated that the simple continuum line tension model widely used in
estimations of critical resolved shear stress (CRSS) provides an incorrect relationship between applied stress and line shape.
In addition, their dynamic simulations demonstrate that a dislocation moving at a high velocity can cut and breakaway from
a void obstacle at stress significantly lower than the CRSS predicted by static line tension models. Results by Osetsky and
Bacon show that the atomistic models can be employed to successfully investigate the characteristic mechanisms at the
atomic level for dislocation–void interactions under both static (T = 0 K) and dynamic (T > 0 K) conditions. However, due
to the inherent length scale limitations in full MD simulation, the largest voids spacing in their MD models is L = 80 nm.
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As a consequence, the kinetic effects associated with the waves traveling along the long dislocation lines during dislocation–
obstacle interactions cannot be fully captured although such kinetic effects seem to be very important for dynamic disloca-
tion depinning from voids (Biztek and Gumbsch, 2005). In the present CAC models, the number of degree of freedom has
been significantly reduced in the far field and thus the void spacing can be scaled up to L = 155 nm with the modest
computational cost. With the void spacing scaled up to 155 nm, discovered a new physical mechanism through our CAC sim-
ulations: depinning of long dislocations from one void induces a wave traveling along the dislocation lines and this wave
leads to larger depinning angles from the adjacent void with the same size.

Continuum line tension models have been used to describe the role of dislocation–void interactions (Coulomb, 1959;
Scattergood and Bacon, 1982; Bitzek and Gumbsch, 2005). In static line tension models, the motion of dislocations and their
interaction with void obstacles is described by assuming quasi-static migration of the dislocations. Initially, the strengthen-
ing effect of void obstacles was studied using the line tension approximation for isotropic solids (Coulomb, 1959). In the
isotropic line tension model, according to the line tension approximation, the critical (maximum) stress, sc, is reached when
the drawn-out screw dipole breaks free of a void. Scattergood and Bacon (1982) later developed an anisotropic continuum
model for dislocation void interaction taking into account the non-local dislocation self-interaction, which was missing in
the isotropic line tension approximation. In anisotropic line tension models, the dependence of sc on void diameter, D,
and center-to-center spacing, L + D, for a periodic row of voids in a crystal at 0 K fits the relation
sC ¼
Gb

2pL
½ln ðD�1 þ L�1Þ�1 þ 1:52� ð4:1Þ
The dislocation depinning angle is then predicted as
sC �
Gb
L

cos /c ð4:2Þ
In Eqs. (4.1) and (4.2), G = 76 GPa is the shear modulus, b = 0.25 nm is the magnitude of the Burgers vector of Ni, L is the
void spacing and D is the void diameter. When L = 155 nm and D = 5 nm, according to the static line tension model, the
dislocation depinning angle is predicted as /c = 0�. Compared with our predictions in this work, /c � 70� (Fig. 4h), the
depinning angles are underestimated in the static anisotropic line tension models because the inertial effects associated with
dislocation motions have been completely ignored. Motivated by the possibility for dislocations to dynamically pass obsta-
cles at lower stresses than required in a quasi-static process, Biztek and Gumbsch (2005) developed a dynamic line tension
model (Biztek and Gumbsch, 2005) in which the inertial effects associated with dislocation dynamics have been included.
The inertial effect is caused by the kinetic energy the dislocation has acquired during glide between obstacles, which allows
the dislocation to overshoot its equilibrium position. In order to estimate the magnitude of inertial effects on dislocation
passing void obstacles, in the dynamic line tension model by Biztek and Gumbsch (2005), the equation of motion of
dislocation segments is solved numerically for a long dislocation, i.e.,
@

@t
m
@x
@t

� �
þ B

@x
@t
� C

@2y
@x2 ¼ F ð4:3Þ
where F is the total accelerating force on the dislocation, m is the effective mass which determines the rate of acceleration, B
is the damping coefficient which characterizes the deceleration by viscous drag, B = 0.7 lPa s in this work according to our
recent measurement (Xiong et al., 2014b); C is the dislocation line tension. For a dislocation of length L with the boundary
conditions xð0; tÞ ¼ xðL; tÞ ¼ 0 and initial conditions xðy; t ¼ 0Þ ¼ 0; _xðy; t ¼ 0Þ ¼ 0, when B = 0.7 lPa s and L = 155 nm, accord-
ing to the dynamic line tension model, the dislocation will pass the obstacles at sdyn ¼ 0:3sC , where sC is the static depinning
stress. Then, according to sdyn � Gb

L cos /dyn
c , the dislocation depinning angle can be predicted as /dyn

c � 70:6�. Compared with
our CAC simulation results /c � 70� in Fig. 4h, the dynamic line tension model does provide quite accurate guidance to inves-
tigate dislocation–void interactions in the presence of inertia effects. The dynamic line tension model can be used to estimate
the magnitude of the inertial effects in the interaction of long dislocation lines with localized obstacles provided that C, m, B
and the static obstacle strength sC are known. However, the direct observation of atomic-scale processes in dislocation–
obstacle interaction is not possible in such dynamic line tension models. Therefore, for the interactions between the voids
and long dislocation lines, although both the simple static and dynamic line tension models can provide approximate
descriptions, such continuum line tension models are not predictive since the atomistic nature of dislocations have been
smeared out. The present CAC method provides an alternative approach in predicting dynamic strength of the void obstacles
for the long dislocation lines, including atomistic details such as dislocation disassociation and formation of Hirsch loops
around the voids, while capturing dislocation dynamics in the far field.

Although this work is motivated by the need to obtain better understanding of irradiation hardening at elevated
temperatures, here we only investigate the dislocation pinning–depinning mechanisms at low temperatures, ignoring ther-
momechanical coupling effects on dislocation pinning–depinning processes. At elevated temperature, thermomechanical
coupling becomes important and thus the energy equations together with the balance equation of linear momentum in
the atomistic field theory (Chen, 2009) need to be solved.
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