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The fundamental mechanism of dynamic plasticity in metallic materials subjected to shock loading re-
mains unclear because it is difficult to obtain the precise information of individual fast moving dislo-
cations in metals from the state-of-the-art experiments. In this work, the dynamics of sonic dislocations
in anisotropic crystalline materials is explored through a concurrent atomistic-continuum modeling
method. We make a first attempt to characterize the complexity of nonuniformly moving dislocations in
anisotropic crystals from atomistic to microscale, including the energy intensities as well as the wave-
lengths of acoustic phonons emitted from sonic dislocations, and the velocity-dependent stress fluctu-
ations around the core of nonuniformly moving dislocations. Instantaneous dislocation velocities and
phonon drag effects on the dislocation motions are quantified and analyzed. Mach cones in a V-shaped
pattern of the phonon wave-fronts are observed in the wake of the sonic dislocations. Analysis of
simulation results based on a wavelet transform show that the faster a dislocation is moving, the longer
the emitted phonon wavelength. The dislocation velocity drops dramatically with the occurrence of the
interactions between dislocations and phonon waves reflected from the boundaries of specimens. The
concurrent atomistic-continuum modeling framework is demonstrated to be the first multiscale method
that explicitly treats the strong coupling between the long-range elastic fields away from the dislocation
core, the highly nonlinear time-dependent stress field within the core, and the evolutions of the atomic-
scale dislocation core structures. As such, it is shown that this method is capable in predicting elasto-
dynamics of dislocations in the presence of inertia effects associated with sonic dislocations in micron-
sized anisotropic crystalline materials from the atomic level, which is not directly accessible to the recent
elastodynamic discrete dislocation model.

© 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic failure studies of materials under high strain rate
loading conditions generally fall into two major categories [1,2]:
dynamic fracture and dynamic plasticity. Dynamic fracture deals
with the creation of new surfaces resulting from the creation of
displacement discontinuities at a fraction of speed of sound in
materials [2e5]. Dynamic plasticity studies relate the dynamic
dislocation and/or twinning-mediated response of solids to the
imposed loading at high strain rates [1,6]. Issues considered in
dynamic plasticity typically include the mobility of dislocations in
lsevier Ltd. All rights reserved.
crystals, evolutions of dislocation density and structures, rate-
controlling mechanisms of plastic flow, and so on. In particular,
the plastic shearing rate for each slip system in a crystal is usually
determined via the Orowan equation as the product of dislocation
density, mean velocity [7], and Burgers vector. Although the dy-
namics of dislocations [8e14] has been the subject of intense
studies for decades, the complexity of dislocations moving near and
above the sonic velocity in crystals remains relatively lightly
explored. The associated physical phenomena are not yet
completely understood.

Extensive experiments [15e17] have successfully captured the
motion of dislocations in materials under external loading, how-
ever, current experimental investigation of dynamic behavior of an
individual dislocation in metallic solids is a daunting challenge due
to the angstrom-scale core structure and the characteristic THz-
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level frequencies of the localized lattice vibrations associated with
the fast moving dislocations. Direct experimental observation of
sonic dislocations in solids was not possible until an alternative
material, a plasma crystal, was recently developed [18e20]. Given
that the inter-particle distance in plasma crystals is on the order of
100 mm or above, characteristic frequencies are on the order of
100 Hz or below, and the speed of sound in a plasma crystal is on
the order of 10 mm/s [19], experiments on plasma crystals can
provide qualitative understanding of dynamic behavior of sonic
dislocations in certain solids [20]. However, such experiments
cannot provide precise information regarding the velocity, acoustic
phonon emission, or core stress fields of fast moving dislocations in
crystalline metals.

In addition to experimental measurements, various theoretical
models describing dislocation motion in materials have also been
developed in the past 80 years. Theoretically, the physics of fast
moving dislocations is complicated due to the strong coupling be-
tween the highly nonlinear short-range atomic-scale core stress
fields and the long-range linear elastic stress field in the medium
away from dislocation cores. Pioneering linear elastic models such
as the well-known Peierls model [21], the PeierlseNabarro model
[10] or the Eshelby-Frank-Nabarro model [22] have contributed
basic understanding but have ignored the nonlinearity, nonlocality,
and the lattice discreteness in dislocations [7,23]. Under such
simplifications, the classical Peierls model is believed to lack a drag
mechanism which provides the resistance to be overcome by the
applied stress to maintain dislocation motion [24]. Consequently,
this model fails to predict a reasonable kinetic relation between the
applied stress and dislocation velocity in materials. Such a draw-
back in the original Peierls model has served to motivate extensive
development of increasingly sophisticated extended Peierls models
[13,24e28], such as the one enhanced with a kinetic relation to
include some notion of discreteness of the core structures [24].
These extended Peierls models are widely used and playing crucial
roles in modeling dislocation plasticity in materials. Despite the
popularity, they still account for viscous drag and the dislocation
core structure in a phenomenological way, and have very limited
predictive capability.

Fortunately, modern computing resources have enabled fully
atomistic simulations to be employed to capture many features of
dislocations, including core structures [29], migration barriers
[30e34], and junction structures [35]. For fast moving dislocations,
Gumbsch and Gao [36] performed the first MD simulation of stable
subsonic, transonic and supersonic dislocation motion in bcc
tungsten. Since then, MD simulations have been widely used to
investigate the atomic-scale physical nature of sonic dislocations
[37e43]. Nonetheless, existing MD simulation results are found to
have significant uncertainty due to the inherent length and time
scale limitations. For example, the dislocation velocity from a
simulation with a smaller MD cell size was found to be slower than
that from a simulation with a larger MD cell size [44]. It was also
shown that a steady-state dislocation velocity in MD can be ach-
ieved only after dislocations have interacted with several reflected
stress waves from the MD sample borders [45]. Although atomic-
scale simulations have been very useful in elucidating the quali-
tative behavior and mechanisms of mobile dislocations, it is still
perhaps too early to expect the establishment of the direct quan-
titative connections between atomistic simulations and experi-
ments. Given the characteristic nm length scale of a dislocation core
and much longer range elastic interactions with the other dislo-
cations, the dynamic behavior of dislocations is patently multiscale.
Concurrent methods that link atomistic and continuum plasticity
within one model are therefore necessary to capture the in-
teractions among the different scales in dislocation dynamics. Over
the last 20 years, numerous concurrent methods have been
developed to seek atomic [46e49] and even quantum level reso-
lution [50] at a significantly lower computational cost than that
offered by just MD or ab initio calculations. For example, a finite-
temperature quasicontinuum approach within the framework of
maximum-entropy non-equilibrium statistical mechanics has been
developed [51e53]. Although the finite temperature quasicontin-
uum approach has been recently applied to predict dislocation
velocities in materials under dynamic loadings [52], a set of
phenomenological kinetic equations of the Onsager type [54e56]
for heat dissipation associated with moving dislocations has been
employed.

Overall, existing theoretical and computational models do not
have sufficient generality to predict all three key physical aspects of
moving dislocations: 1) evolution of atomic-scale core structures;
2) coupling between the highly nonlinear short-range core stress
field and the long-range linear elastic stress field away from the
core; 3) material inertia associated with sonic dislocations. The
current study employs a concurrent atomistic-continuum (CAC)
methodology [57e67] for multiresolution modeling, based on an
atomistic field formalism [68e70] in which the microscopic bal-
ance equations are formulated as an extension of IrvingeKirkwood
formalism [71]. In CAC, the finite element (FE) method is used to
solve for the atomic displacement field in crystalline materials. The
CAC method [57e67] has naturally resulted from the employment
of the uniform coarse FE mesh. By embedding the local atomic
structure within each material point, CAC simulations are able to
reproduce dislocation nucleation and migration in materials
[61e64,72]. In addition to dislocations, CAC models are also
demonstrated to be capable of reproducing the full sets of phonon
dispersion relations in anharmonic polyatomic crystals [66,67].
Therefore, in principle, the CAC model admits the essential dy-
namics of moving dislocations on length and time scales ranging
from the atomic to the mesoscopic levels of microstructure and
initial-boundary value problems of interest. These features distin-
guish the CAC method from the microcontinuum theories [73] or
the other existing multiscale methods [74] and motivates applica-
tion of this method to analyze sonic dislocation behavior.
Comparing to our previous CAC-based studies [57e67], the novel
aspects of CAC employed in this work include: 1) Quadrilateral-
shaped elements are employed to discretize the 2D fcc solid,
while constant strain triangular elements and hexagonal
rhombohedral-shaped elements are used in the previous CAC
models of fcc crystals; 2) An algorithm based on the phonon
wavelet transform is developed and implemented into CAC to
quantify the instantaneous wavelength, frequency and energetics
of phononwaves emitted from themoving dislocations. In addition,
the local kinetic temperature rise due to the fast moving disloca-
tions is quantified in anisotropic crystalline materials.

2. Methodology and computational specimen configuration

Here we explore the complex dynamics of fast moving dislo-
cations by considering an idealized two-dimensional (2D) lattice
which resembles the atomic configuration of a fcc single crystal
(Fig. 1a). Plane strain conditions are considered; atoms are not
allowed to move along the z-direction and are free to move in the x
and y directions. The 2D models, instead of quasi-2D or 3D models,
are constructed and investigated for two reasons: 1) the only
existing direct experimental observation of sonic dislocation mo-
tions in solids is in 2D plasma crystals; 2) the dislocation lines in
three dimensions are curved and therefore of mixed character,
having both edge and screw components. The dynamics of mixed
mode dislocations in an anisotropic crystal will be rather compli-
cated because the contributions to core radiation from the edge and
the screw components are strongly coupled. Thus, the 2D



Fig. 1. Computational configuration of a notched 2D L-J solid: (a) MD; (b) 4-node FE; (c) CAC.
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computational configuration eases the computational effort and
aids in the visualization of dislocation motion and interaction with
phonon waves at substantial length scales compared to dislocation
core structure. A V-notch with a depth of d is initially introduced
into the model as shown in Fig. 1a. The dimensions of the specimen
are L ¼ 0.54 mm and D ¼ 0.34 mm. For both MD and CAC, three sets
of models are constructed with different notch depths, d/D z 1/10
for Model-1, d/D z 1/20 for Model-2 and d/D z 1/40 for Model-3.
The notch configurations with different depths, d, facilitate differ-
ences in dislocation interactions with boundaries, which in turn
affects the time history of nucleated dislocations. The notched
single crystal is subjected to displacement-controlled tensile
loading along the x (horizontal) direction by assigning rigid dis-
placements to sets of atoms/elements on the ends. The two rigid
ends along the x-direction are clamped and moved at a constant
velocity of 10 m/s. During the simulation, the two rigid layers stay
perfectly flat while the atoms/nodes on the top and bottom edges
along the y-direction are net traction-free. The applied displace-
ment is held fixed as soon as a dislocation nucleates from the notch
tip; attainment of steady-state dislocation velocity is then possible
since energy is still continuously being provided by the constant
long-range applied stress.

When the 2D fcc solid in CAC undergoes plastic deformation via
slip, only two slip directions conform to the geometry of primitive
cells in 2D fcc solids. Here the finite element (FE) is a quadrilateral
shape (Fig.1b), employed to discretize the lattice. The quadrilateral-
shaped element ensures that the nucleated dislocations can glide
between FEs on either of two slip systems along element bound-
aries. In this work, each element contains 100 atoms. The atomic
displacement field within each element is constrained by the FE
nodal degrees-of-freedom. The resulting CAC model contains
40,000 elements (Fig. 1c) to represent 4,000,000 atoms. In order to
account for the nonlinearity and nonlocality of the atomic in-
teractions, which actually determine dislocation core structures
and consequently the dislocation mobility, we use an interatomic
force field as the constitutive rule in the CAC models. For simplicity,
the Lennard-Jones (L-J) force field [75] is chosen. The L-J potential is
used with parameters ε ¼ 0.167 eV and s ¼ 2.3151 Å, yielding the
lattice constant a0 ¼ 3.616 Å in the case Cu [75]. The L-J potential
has a smooth cutoff between the fourth- and fifth-nearest neigh-
bors at 1.49a0. The resulting defect configurations from L-J potential
for fcc solids are found to be rather similar to those of the fully
atomistic models with EAM [76e78]. Different from the traditional
constitutive rules applied in linear elasticity theory or DD models,
the characteristic nonlinear form of the L-J interatomic force fields
not only brings atomic information into the framework of dislo-
cation dynamics but also will naturally allow full sets of dispersive
phonon frequency spectra. Thus, it admits study of the acoustic
phonon emission and propagation from fast moving dislocations.
The shear wave velocity in the present model with L-J interatomic
interactions takes on a value of ~2700 m/s. In order to calculate the
internal force density, a Gauss quadrature method [61] is used in
this work although other sophisticated quadrature rules have been
recently developed and implemented into CAC [79]. Here we want
to emphasize that, no matter which quadrature scheme is followed,
special care must be taken due to the presence of nonlinearity and
nonlocality in the form of the interatomic force field.

At finite temperature, phonon waves emitted from the moving
dislocations will be scattered by thermal phonons in crystalline
materials. In this situation, the dynamics of fast moving disloca-
tions in materials at non-zero temperature becomes very compli-
cated. It is difficult to decouple and quantify the dislocation-
emitted phonon waves from thermal phonons. Therefore, in this
work, the initial temperature of the system is set to be 0 K but the
further kinetic fluctuations of FE nodes during the simulations are
not controlled; in other words, no thermostat is employed. A cen-
tral difference scheme is employed for time integration. For pur-
poses of validation, three sets of identical MD simulations for three
different models are also conducted using the LAMMPS package
[80]. The initial temperature of the MD system is also set to 0 K; as
for CAC, there is no initial kinetic energy in these MD models. The
further thermal motions of the atoms are not controlled or ther-
mostated in the MD simulations to facilitate direct comparison. The
motion of dislocations and the emission of the phonon waves are
then traced by integrating the balance equation of linear mo-
mentum in CAC and the equation of motion in MD with the same
time step of 5 fs. Such a small time step is sufficient to ensure
numerical stability and to capture elementary high-frequency
phonon emission from fast moving dislocations.

3. Simulation results

3.1. Dislocation elastodynamics

Fig. 2 compares images of time sequences of dislocation nucle-
ation and motion from MD and CAC simulations of Model-1 (d/
D ¼ 1/10, Fig. 2a) and Model-2 (d/D ¼ 1/20, Fig. 2b). Due to the
symmetry of the specimen configuration about the y axis, only the
left part of the specimen in MD and the right part of the specimen
in CAC are displayed and compared. Here, the atoms in MD and the
elements in CAC are color coded in displaying the normal stress
component (syy). The color, red or blue, respectively, indicates the
tensile or compressive stress along the y direction. At t ¼ 5 ps, with
the onset of the dislocation nucleation, strong stress concentrations
around the notch tip are observed in both CAC and MD. Since the
complex dynamics of dislocations does not come into play at this
stage, the stress field from CAC is found to be almost exactly the
same as that from MD. This again provides the evidence that the
quasistatic CAC will accurately reproduce the static stress field
around defects [79].We also notice that maximumsyy in the region
of high stress concentration in Model-2 is ~1.2 times that in Model-
1. From t ¼ 10 ps to t ¼ 15 ps, the dislocations are accelerated, and



Fig. 2. Snapshots of time sequences of dislocation nucleation and motion by MD and CAC simulations in a 2D L-J solid (0.54 mm � 0.34 mm) with different notch depths: (a) Model-1
with d/D ¼ 1/10; (b) Model-2 with d/D ¼ 1/20.
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acoustic phonon waves are emitted from the accelerating disloca-
tions in both CAC and MD simulations. However, the wavelengths
of acoustic emissions from dislocations in CAC models are always
larger than those from MD simulations, that is, l1-CAC > l1-MD

(Fig. 2a) and l2-CAC > l2-MD (Fig. 2b), because the coarse element
(100 atoms/element) cuts off short wavelength phonons. When the
dislocation is further accelerated to a higher velocity at t ¼ 25 ps,
the motion of the fast moving dislocations generates wave fronts
that pile up around the stress discontinuity region associated with
dislocations. Two types of waves, shear and compressive, emit
together but are found to decouple as they radiate from the dislo-
cations. The phonon wave radiations form a V-shaped pattern of
strong lattice vibrations in the wake of the dislocations in both CAC
andMDModel-1 (Fig. 2a, t¼ 25 ps) andModel-2 (Fig. 2b, t¼ 25 ps).
In Fig. 2a, at t ¼ 25 ps, such radiation is seen to form a pair of shock
fronts of shear wave character, comparable to a so-called Mach
cone. AMach cone is typically formedwhen the object in a medium
is moving faster than the speed of sound in that medium. Partic-
ularly, it is seen that the emitted waves from the fast moving dis-
locations eventually form a cloud and created a highly disorganized
stress field in the wake of the dislocations. Contrasting with the
wave patterns observed in Model-1 (Fig. 2a, t ¼ 25 ps), two pairs of
shock wave fronts are observed in Model-2 (Fig. 2b, t ¼ 25 ps). In
addition, the wings of the observed Mach cones created by the
moving dislocation in Model-1 are slightly shorter than those in
Model-2, and even much shorter than those in Model-3 with d/
D¼ 1/20 as shown in Fig. 3. In addition, theMach cone angles in the
CAC and MD simulations of these three models are also found to
differ slightly: theMach cone angle inModel-3 is the smallest while
that the angle in Model-1 is the largest. It is well known that longer
Mach cone wings and smaller Mach cone angles signify that the
object is moving faster. Hence, our CAC and MD simulation results
imply that the dislocation in Model-3 with the smallest notch
depth achieves the highest velocity.



Fig. 3. Formation of Mach cones around the fast moving dislocation motions in Model-
3 with d/D ¼ 1/40 by MD and CAC simulations.
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In this work, we also compute the local kinetic energies of in-
dividual atoms in MD as well as the kinetic energies of atoms
embedded within each element in CAC, and then map the kinetic
energies to a local kinetic temperature according to the Boltzmann
relation for two degrees of freedom. Fig. 4 shows the local tem-
perature distributions from MD and CAC simulations of dislocation
motions in Model-1 and Model-2, respectively. The images are
shaded according to local temperature, with the “hot” atoms (MD)
or nodes (CAC) shaded red and the “cool” ones blue. A feature made
visible by shading the samples according to temperature is the
appearance of shock waves in the material, indicating that the
dislocations travel through thematerial at or above sonic velocity. It
is seen that the local temperature of the atoms (MD) and the nodes
(CAC) participating in the dislocation glide is relatively high. High
values of the local temperature at the moving dislocation core can
be explained by the local transient shear processes in the slip
Fig. 4. Snapshots of time sequences of local temperature distributions by MD and CAC simu
with d/D ¼ 1/10; (b) Model-2 with d/D ¼ 1/20.
systems. Such shear process on the slip plane gives the appreciable
rise in local temperature since the shear processing time is so short
that the heat may not have enough time to be dissipated
throughout the specimen or radiated into the environment. Fig. 4
shows that the local temperature at the dislocation core exceeds
400 K in Model-1 and reaches more than 500 K in Model-2.
However, the local temperature in the region a few atomic dis-
tances away from the dislocation is of the order of only a fraction of
1 K degree. As a consequence, the average temperature in the entire
sample in Model-1 and Model-2 corresponds to ~30 and ~40 K,
respectively. Visualization of the local temperature distribution in
MD and CAC simulations enables us not only to quantify howmuch
the kinetic energy of a moving dislocation is dissipated as heat, but
also to recognize the patterns and energy intensities of the phonon
emissions from the fast moving dislocation in anisotropic crystals
subjected to high strain rate loadings. Such a heating effect of a
gliding dislocation is of importance in many aspects of plastic
deformation. In the past, some estimates of the maximum tem-
perature rise due to plastic flow have been made in the literature,
but it has not been calculated exactly. Here we demonstrate that
CAC can incorporate explicitly the kinetic temperature field
resulting from themovement of individual dislocations without the
need to make assumptions on dislocation mobility laws, core
structures and core stress field.

To quantify the instantaneous dislocation velocity, we first track
the position of a dislocation in each set of CAC and MD simulations.
The instantaneous dislocation position relative to the notch tip is
recorded by computing the spatially-averaged positions of those
dislocated atoms at each time step in MD as well as in CAC simu-
lations. In CAC simulations, the atomic positions are actually
mapped from the FE mesh deformation [61]. The dislocation posi-
tions are plotted as a function of time in Fig. 5 (in the web version).
Fig. 5a shows the predictions from CAC simulations while Fig. 5b
presents the results fromMD simulations, respectively. In Model-1,
the dislocation in CAC migrates ~125 nm in 50 ps while it only
lations in a 2D LJ solid (0.54 mm � 0.34 mm) with different notch depths: (a) Model-1



Fig. 5. Averaged dislocation positions as a function of time in three different models (Red: d/D ¼ 1/10; Black: d/D ¼ 1/20; and Blue: d/D ¼ 1/40) by (a) CAC and (b) MD simulations
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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migrates 80 nm in 50 ps in MD. Similarly, in Model-2, the dislo-
cation in CAC Model-2 migrates ~115 nm in 40 ps while it only
migrates ~90 nm in 40 ps in MD. Dislocations in the CAC model
move ~1.2 times faster than in full MD simulations. The over-
estimation of the dislocation velocity by CAC models is believed to
be caused by the employment of a linear element shape function.

We then take the first derivative of the dislocation position-time
curves to quantify the instantaneous velocities of dislocations. The
obtained dislocation velocity-time history curves from CAC simu-
lations of three different models are presented in Fig. 6. In the
dislocation velocity-time history from all of the three models, three
distinct velocity regimes can be clearly identified: 1) a transient
acceleration of dislocation due to the strong stress concentration
around the notch tip from t ¼ 0 ps to t¼ 10 ps; 2) a plateau velocity
of dislocation towards a steady-state dislocation motion from
t ¼ 10 ps to t ¼ 35 ps in Model-1 and from t ¼ 10 ps to t ¼ 25 ps in
Model-2, respectively; and 3) a dramatic decrease of the velocity
when the dislocation approaches the sample boundaries. The
transient acceleration is obviously relevant to localized stress
concentrations around the notch tip. The maximum dislocation
velocities in CAC Model-1, Model-2 and Model-3 are ~2900 m/s,
Fig. 6. Dislocation velocity-time history in three models by CAC simulations.
~3400 m/s and ~3700 m/s, respectively. These plateau velocity
values range from near towell above the speed of sound (2700m/s)
in these 2D L-J solids. It is therefore concluded that nonlocality and
nonlinearity in the CAC models enables description of supersonic
dislocationmotionwhich is largely inaccessible to other continuum
theories. It is also confirmed that the dislocation can achieve
different plateau velocities for different initial notch depths,
reflecting the fact that intensity and spatial character of elastic
energy release differs for each notch as the dislocation is nucleated.
The sharp decrease of the dislocation velocity after the steady-state
dislocation velocity is reached corresponds to the onset of inter-
action of reflected phononwaves from the sample boundaries with
the dislocations (Fig. 2). The effective driving force for the dislo-
cation motion is consequently decreased due to such dislocation-
wave interactions. We expect that the dislocation velocity may be
able to achieve an even higher value if the CAC simulation is con-
ducted with a millimeter-sized specimen which will provide
enough space for the dislocation to accelerate and run continuously
within a longer observation time prior to interaction with reflected
phonons.
3.2. Acoustic phonon emission from fast moving dislocations

In addition to measuring the instantaneous dislocation velocity,
another important aspect in characterizing the complex dynamics
of fast moving dislocation is to quantify the instantaneous energy
intensity and wavelength of the phonons emitted from moving
dislocations. Although phonon radiations from dynamic crack
propagation, extension of twins and fast moving dislocations have
been investigated, the existing analyses are usually conducted
within the framework of an isotropic elastic continuum. For an
anisotropic elastic 2D fcc solids, the nonlinearity and nonlocality of
the dislocation cores will introduce more complexity into the
emitted transverse and longitudinal waves that propagate along
different directions. Therefore, it becomes necessary to understand
more about the physical nature of wavelength and frequency,
propagation direction and amplitude, as well as the energy in-
tensity of the emitted phonon waves. Here, the wavelet transform
[81] is employed to analyze the dynamics and time-dependent
energy intensity distribution of phonons emitted from fast mov-
ing dislocations. The wavelet transform is considered as a
compromise between the spatial and Fourier domain representa-
tions of a signal. The difference is that a Fourier transform utilizes a
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complex exponential basis while the wavelet basis function is
employed in a wavelet transform. The wavelet transform not only
provides vibrational information but also retain information on
where and when those vibrations occur in a system. The first
attempt of using wavelet transform to resolve the phonon motion
and the energy from a vibrating ensemble of atoms in an MD
simulation was recently made by Baker and co-workers [81]. It was
demonstrated that the wavelet transform can provide the physical
mechanisms of an ensemble of phonons within a certain spatial
and wave-number range. Most importantly, the wavelet transform
only involves three quantities: location, displacement, and veloc-
ities of atoms. These quantities are directly available from MD as
well as the CAC simulations.

Due to the change from using continuous to discrete equations
in the wavelet transform, the spatial coordinate x becomes a vector
size of N ranging from x1 to xN. Here x1, x2, …, xi, …, xN are the
indices of bins constructed as shown in Fig. 7. Through this method,
the analytical integration that spans all of space in a wavelet
transform is approximated as a summation over these finite in-
tervals. Then the representation of the phonon energy intensity
signal is calculated and displayed in x-k coordinate to visualize the
localized vibrational processes (Fig. 8), where k is the wave vector.
Phonon emissions from the moving dislocations in Model-2 at
t ¼ 5 ps and t ¼ 15 ps are presented in Fig. 8a and b, respectively.
Both CAC andMD simulation results show that a Gaussian envelope
of phononwave packets is emitted from themoving dislocation at a
velocity of ~2900 m/s when t ¼ 5 ps(Fig. 8a). The allowed wave
vector of the emitted phonons from CAC simulations is mainly
k ¼ 0.2 (2p/a) or below while that from MD simulations is seen to
be mainly k ¼ 0.2 (2p/a) but can be above (Fig. 8a). This means that
the present CAC simulations can only capture the emission of
phonons with the wavelength being equal to or larger than 5a (a
being the lattice constant of the lattice), while full MD models al-
lows the emission of phonons with the wavelength being smaller
than 5a. This result thus explains why the wavelength, l1-CAC, of the
stress waves from CAC simulation is larger than that, l1-MD, from
MD (Fig. 2a). Although there exists a difference between CAC and
MD simulation results in terms of the allowed phononwavelength,
further examination of phonon energy intensity in Fig. 8a shows
that themajority of the energy is being carried by the phonons with
wavelengths larger than 5a. This gives us the confidence of using
the present CAC models to approximately characterize the phonon
dynamics of fast moving dislocations. As the simulation time con-
tinues, the dislocation begins to accelerate, the emitted phonon
wave packet starts to propagate. Eventually some of the phonon
waves scatter into the higher modes as shown in Fig. 8b. The
phonon energy release from the moving dislocations obtained in
CAC simulations is slightly different from that in full MD simula-
tions. Such differences are believed to result in the higher
Fig. 7. Constructions of bins for wavelet transform analysis of results fromMD and CAC
models.
dislocation velocity predicted by CAC than that by MD.
As the dislocation accelerates to ~3400 m/s at t ¼ 15 ps, Fig. 8b

presents the instantaneous phonon energy intensity distribution in
the x-k coordinate system. The comparison between Fig. 8b and a
shows that the phononwave packet tends to undergo a “flattening”
and “shearing” process when the dislocation velocity achieves the
steady-state velocity of ~3400 m/s at t ¼ 15 ps Interestingly, both
MD and CAC simulation results show that most of the phonons
emitted from the dislocation at a velocity of ~3400 m/s have awave
vector of k ¼ 0.2 (2p/a) and below, which corresponds to a wave-
length of 5a and above. The propagation of those short wavelength
phonons (k > 0.2 (2p/a)) observed in MD at t ¼ 5 ps (Fig. 8a)
eventually become diffusive at t ¼ 15 ps, as shown in Fig. 8b.
Meanwhile, the phonon energy density distribution undergoes a
transition from an orderly arrangement of mutually interfering
modes (Gaussian envelope in Fig. 8a) to a less coherent structure
(Fig. 8b), and is accompanied by a slight decrease in the maximum
wave vector from kmax ¼ 0.4 (2p/a) at t¼ 5 ps (Fig. 8a) to kmax ¼ 0.2
(2p/a) at t ¼ 15 ps (Fig. 8b).

The analysis based on the wavelet transform of CAC and MD
results in Fig. 8 shows that the dominant wavelength of the emitted
phonons from an accelerating dislocation is different from that
induced by steady-state dislocationmotion. It also explains why the
wavelength (l2-CAC or l2-MD) of the emitted waves from the faster
dislocation (vz 3400 m/s in Fig. 2b) is slightly larger than that (l1-
CAC or l1-MD) of the emitted waves from a slower dislocation
(v z 2900 m/s, Fig. 2a), that is, l2-CAC > l1-CAC and also l2-MD > l1-
MD. Such a dislocation velocity-dependent wavelength of the
emitted phonons (the faster the dislocation, the longer the wave-
length of emitted phonons) cannot be reproduced by classical
continuum theories in which dispersive effects are not incorpo-
rated. In addition, the phononwavelength analysis opens awindow
for us to use the present CAC models in predicting large-scale
phonon dynamics associated with sonic, transonic and supersonic
dislocations.

3.3. Velocity-dependent stress field near the core of fast moving
dislocations

For dislocations moving at or near sonic velocity, the effects of
core-inertia arising from phonon interactions are actually much
larger than due to the viscous drag arising from the longer range
field interactions outside the core because the displacement and
the velocity gradient within the core are significantly larger.
Therefore, the time-dependent nature of the local stress fields of
fast moving dislocation cores need to be quantified before we apply
coarse-grained atomistic models to simulate elastodynamic dislo-
cation response in crystals under high strain rate deformation.

Fig. 9a and b from left to right show the results of time se-
quences of the shear stress field in the region of [�200 Å, 200 Å]
near the core of a dislocation moving at a constant, steady-state
velocity ~2900 m/s in Model-1 by CAC and MD simulations. Both
CAC and MD simulation results show that the stress distribution
around the fast moving dislocation cores exhibits a rich dynamic
character. First of all, the stress distribution in the domain of [0,
200 Å] is obviously different from that in the domain of [�200 Å,0].
The stress in the region [�200 Å, 0] fluctuates in spacewhile that in
the [0,200 Å] domain is relatively smooth. Such ‘asymmetry’ is not
observed in the stress distributions around static or slow moving
dislocation cores. We speculate that this asymmetry in the stress
distribution arises from that the emitted waves propagating for-
wards ([0,200 Å] domain) significantly different nature of the
waves propagating backwards ([�200 Å,0] domain). The stress
oscillations in [�200 Å,0] are typically induced by the phonon
waves which are rippling backwards. Due to a coarse-grained



Fig. 8. Phonon energy intensity distributions associated with the acoustic waves emitted from the fast moving dislocations with velocities of: (a) v ¼ 2900 m/s at t ¼ 5 ps; and (b)
v ¼ 3400 m/s at t ¼ 15 ps in Model-2 by MD and CAC simulations.
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description of the atomic displacement field within the element
using the linear element shape functions, the wavelength and
magnitude of the stress oscillation in [�200 Å,0] from CAC simu-
lation is slightly larger than that observed in the corresponding full
MD simulation. At t ¼ 35 ps in CAC (Fig. 9a) and t ¼ 40 ps in MD
(Fig. 9b) simulations, a ‘hump’ has been generated in the stress
distributions in the region [0, 200Å] because the dislocation begins
to interact with the waves reflected from the boundaries of the
specimen. However, the magnitude of the ‘hump’ from CAC simu-
lation (t¼ 35 ps in Fig. 9a) again is slightly larger than that obtained
fromMD simulation (t ¼ 40 ps in Fig. 9b). Such a ‘hump’ in the core
stress field will give rise to an additional drag force on the dislo-
cation motion and significantly decrease the dislocation velocity, as
observed in Fig. 6.

To confirm that the generation of such a ‘hump’ in the core stress
field will sharply decrease the dislocation velocity, we also plot the
core stress field in Model-2 at t ¼ 30 ps when the dislocation in-
teracts with the reflected waves from CAC (Fig. 10a) and MD
(Fig. 10b) simulations. Since the dislocation is moving at a higher
supersonic velocity (~3400 m/s) in Model-2 than that (~2900 m/s)
in Model-1, the wavelength of the emitted phonons in Model-2 is
larger than that observed in Model-1. Hence the dislocation in
Model-2 will be interacting with the reflected waves with a longer
wavelength as it approaches the specimen boundaries. Conse-
quently, the magnitude of the ‘hump’ generated in the core stress
field (t ¼ 30 ps for CAC in Fig. 10a and t ¼ 25 ps for MD in Fig. 10b,
Model-2) is larger than that observed in Fig. 9aeb (t¼ 35 ps for CAC
and t ¼ 30 ps for MD, Model-1). Obviously, the core stress field is
significantly influenced by the reflections of the acoustic waves
Fig. 9. Time-dependent stress component sxy near the core of a dislocation moving at a
reflected from the boundaries. The successful CAC description of
core stress field distortion induced by the reflected waves enables
us to potentially apply the CAC model to capture the mechanical
instability of dislocation cores induced by the interactions with
long-wavelength waves. Such material behaviors are not directly
accessible to classical MD (due to size limitations) nor to traditional
DD simulations.

In Fig. 11, we demonstrate more details of the complex features
of the shear stress distributions around supersonic dislocation
cores. In particular, the dynamic local stress fields are reproduced
from CAC and full MD simulations. Fig. 11aec show the instanta-
neous stress waves (shear stress component) of steady-state
dislocation motions at velocities of ~2900 m/s in Model-1 (d/
D ¼ 1/10), ~3400 m/s in Model-2 (d/D ¼ 1/20) and ~3700 m/s in
Model-3 (d/D ¼ 1/40), respectively. Obviously, the dislocation
generates more and more disturbance around the core area with
increasing velocity (from Fig. 11a to c). The local shear stress field
exhibits an extremely complex character due to the high dislocation
velocity, as shown in Fig. 11c. Shear stress Mach cones are always
seen to form behind the dislocation cores in both CAC and MD
simulations. Although the wavelength of the stress waves propa-
gating backwards in CAC simulation is found to be larger than that
observed in the corresponding MD simulation, it is still encour-
aging to see that the complex features of the velocity-dependent
core stress fields around sonic dislocations are reproduced by the
present CAC method without any special treatment. Such a feature
makes it possible to use the continuum CAC framework to predict
plastic deformation of micron-scale specimens under shock loading
where the inertial and retardation effects on the dislocation cores
steady-state velocity of ~2900 m/s in Model-1 by (a) CAC and (b) MD simulations.



Fig. 10. Shear stress field near the cores of supersonic dislocations with a velocity of
3400 m/s in Model-2 by (a) CAC and (b) MD simulations at t ¼ 30 ps.
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are important, and the full elastodynamic field solutions (including
elastic anisotropy) need to be addressed.

4. Summary and discussions

In order to predict mesoscale plasticity based on the collective
behavior of a population of discrete dislocations in materials,
computational Dislocation Dynamics (DD) has enjoyed the most
popularity over the past few decades, constituting a major step
forward in modeling mesoscale dislocation multiplication, migra-
tion and interaction [82e88]. The underlying theoretical frame-
work of DD is the linearized theory of elasticity, used to account for
long-range interactions between dislocations. Short-range dislo-
cation interactions (e.g., junctions) are incorporated into DD by
introducing empirical rules. Another common ingredient of DD is
the so-called quasi-static approximation of the instantaneous stress
field by considering summing the quasistatic elastic field in-
teractions with all other dislocations in the field. Given this
approximation, the term ‘dynamics’ in DD is a bit of misnomer since
it really indicates the time evolution of dislocation structures, with
kinetics limited by source multiplication, barrier bypass, and
viscous drag, rather than elastodynamics [89,90]. The quasistatic
approximation is believed to only be reasonable when dislocation
velocities are comfortably subsonic. Such an approximation can
lead to a physical dislocation behavior in materials under strong
shock loading [89], since in the quasi-static approximation the
dislocations are subjected to elastic interactions of dislocations
ahead of the shock front. To account for drag of fast moving dislo-
cations, a number of extended DD models have been developed in
the past ten years. One of the pioneering developments is to
consider the energy radiation from an accelerating dislocation
through introducing an effective mass [91] or a relativistic mass
[92e94] into DD methods. For shock plasticity, it may not be suf-
ficient to correct dislocation mobility laws by such added-mass
effects while still utilizing the static stress fields of dislocations
for the long-range interactions. To address this issue, Balint and co-
workers [89,90] have framed dynamic discrete dislocation plas-
ticity (D3P) on the formulation of a fully time-dependent elasto-
dynamic description of stress fields around dislocations, building
upon the earlier works by Markenscoff and Clifton [11,12]. D3P
considers the prior history of dislocation interactions up to a certain
past instant in time based on a so-called retardation principle. For
materials under shock loading, D3P eliminates spurious dislocation
activity ahead of the shock front observed in traditional DD [89].
However, elastic nonlinearities and related dislocation core effects
are still ignored in D3P models. The dislocation mobility laws in
D3P need to be informed by atomistic simulations, and accordingly
adjusted for dislocation migration at high velocities. The Field
Dislocation Mechanics (FDM) [95e99] is a recently developed
continuous field method for modeling dislocation evolution at the
mesoscale which serves as an alternative to DD, although limited in
capturing long range interactions of dislocations by comparison to
DD. FDM can employ the full dynamic Green's function for the
time-dependent core stress field of dislocations. In FDM, the small
time delay of stress wave propagations associated with fast moving
dislocations can be captured and the spurious dislocation nucle-
ation ahead of the shock front (i.e., causality violation) can be
avoided. However, the implementation of a fully dynamic Green's
function significantly slows down the solver with the increasing
number of dislocation segments during the simulations. Moreover,
FDM also needs the mobility laws and short-range interaction rules
as the input to describe the evolution of dislocation structures over
time.

In comparisons with DD models, without the need of mobility
laws or dislocation interaction rules, the CAC model presented in
this work quantifies the elastodynamic complexity of dislocations
at a sonic velocity in crystals from the atomic level. The CACmethod
is a FE implementation of the atomistic field formalism in which
atomic motions are governed by the field descriptions of the linear
momentum balance. Most importantly, CAC models can predict the
dynamic behavior of sonic dislocations and admit full coupling
between the time-dependent long-range linear elastic field away
from the cores and the instantaneous highly nonlinear short-range
stress field within the core. To examine the applicability of the CAC
method in producing the correct dynamics of fast moving dislo-
cation, we have quantified the time-dependent dislocation velocity,
wavelength and energy intensity of emitted phonons, and the time-
dependent core stress field of the moving dislocation from CAC
simulations. The results are directly compared with those from the
identical full MD simulations. It is shown that CAC models can be
used to predict dislocation velocity and also quantify the acoustic
phonon emission from moving dislocations, albeit with higher
steady-state velocities owing to the coarse-grained formulation



Fig. 11. Shear stress field around the cores of supersonic dislocations by CAC and MD simulations: (a) v ¼ 2900 m/s; (b) v ¼ 3400 m/s; and (c) v ¼ 3700 m/s.
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Table 1
Comparisons of MD and CAC simulations of dislocation dynamics in Model-1 and Model-2.

Dislocation velocity MD/CAC Phonon wavelength MD/CAC Local temperature rise MD/CAC

Model-1 2400/2900 (m/s) 3a/5a ~350 K/400 K
Model-2 2800/3400 (m/s) 5a/8a ~400 K/500 K
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and cutoff of higher frequency spectrum of phonons; this cutoff is
the price to be paid for coarse-graining. The formation of Mach
cones is observed for sonic dislocations. Although it seems that CAC
does not retain the complete thermal vibrations from the dynamics
of fast moving dislocations, it was demonstrated that CAC can
capture the local kinetic temperature rise induced by the disloca-
tion motions. The reason is that the dominant wavelengths of the
emitted phonon waves from a steady-state dislocation in two-
dimensional 2D L-J solid are equal to or larger than 5a (a being
the lattice constant). Most importantly, we found that the faster the
dislocation is moving, the longer the wavelength of the emitted
phonons will be. Such a dislocation velocity-dependent wavelength
of the emitted phonons necessitates the further development of the
CAC model which can easily scale up in length to assure the
occurrence of the stable supersonic dislocation motion in an
observable time window. In addition, without the need of any
additional rules beyond the interatomic force field, the CAC models
are shown to be able to capture the stress wave radiation back-
wards from a moving dislocation core. Such radiation leads to an
asymmetric localized time-dependent core stress field that
strongly affects the effective drag on the dislocation.

All of these complex features of the dynamics of fast moving
dislocations derived from application of the CAC method are ob-
tained through the FE implementation of an atomistic field
formalismwithout sophisticated constitutive modifications such as
Fig. 12. Snapshots of time sequences of dislocation nucleation and motion by CAC sim

Fig. 13. Snapshots of time sequences of local temperature distributions by CAC simulations
elements for 0.552 billion atoms.
velocity-weakening or rate-and-state dependent friction. There is
therefore practical difficulty within the framework of CAC [61e71]
in tackling complex dislocation dynamics. Such simulations can
expand upon the classical explanation by the well-established
theoretical models [8e12], and to compare with and perhaps
inform recently developed continuum approaches including D3P
developed by Balint and co-workers [89,90] for elastodynamic
dislocations.

In comparisons with MD, although the number of degrees of
freedom in CAC has been significantly reduced to 1% of that of full
MD simulations, both CAC and MD simulations show more distur-
bance around the core area as the dislocation velocity increases in
the sonic range. Most importantly, the CAC results for dislocation
velocities, phonon wavelength and local temperature rise sum-
marized in Table 1 are qualitatively comparable with those from the
fully atomistic simulations. In order to demonstrate the applica-
bility of CAC to model the dislocation dynamics in more realistic
metallic materials, we also implemented an EAM interatomic force
field [77,78] into CAC. With the electron densities of the atoms
embedded within elements being interpolated from the electron
densities of the atoms embedded within the FE nodes, the effi-
ciency of the CAC model with EAM remains the same as that of the
CAC model with L-J. Fig. 12 shows that the pattern of the phonon
waves emitting from the moving dislocations in 2D EAM solids are
qualitatively the same with that in 2D L-J fcc solids (Fig. 3a). In
ulations of a 2D EAM L-J solid (0.54 mm � 0.34 mm): Model-1 with d/D ¼ 1/10.

of a micron-sized 2D L-J solid (6.5 mm � 4.5 mm) with different notch depths: 153,527
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addition, in order to demonstrate the efficacy of coarse-graining in
CAC to explore the dislocation dynamics in larger systems which
are beyond the reach of fully atomistic simulations, one set of CAC
simulation (153,527 elements) of dislocation motions in a micron-
sized 2D LJ solid (6.5 mm � 4.5 mm, 552,697,200 atoms) is also
performed in this work. The local temperature rise induced by the
sonic dislocation motions in such as micron-sized anisotropic
crystal is presented in Fig. 13. Since the EAM potential not only
describes well the elastic constants and basic energetics but also
the phonon frequency spectra in metallic materials, it provides a
more accurate propagation of the phonon waves. Figs. 12 and 13
show that there will be no conceptual challenges to extend the
present CAC models to simulate the complexity of moving dislo-
cations in more realistic materials at the microscopic level.

The results presented in this work will provide us a basis for
future detailed studies of the role of our multiscale simulations of
defect dynamics in materials from atomic to microscopic level.
However, one source of overhead of the CAC method is its cost of
algorithm development and numerical implementations, like most
“home-grown” multiscale modeling methods which “mainly exist
as research-level codes within individual research teams” [100].
From the theory and methodology development standpoint [101],
one of the ultimate objectives of the further development of CAC or
other sophisticatedmultiscale simulation tools such as CADD [47] is
to predict the dynamic properties of dislocations from the under-
lying atomistic processes, preferably with no adjustable parame-
ters, not only in a simple sample material as presented in this work
but also the realistic materials with complex microstructures.
Although various multiscale methods have been developed in the
past decades, it should be noted that the feasibility of the deploy-
ment of these multiscale methods in computational material
design still depends on a successful resolution of several challenges.
The foremost challenge is our ability to significantly improve the
accuracy and efficiency of the multiscale models. A second chal-
lenge is to bridge the gap between multiscale models and experi-
ments. There still exists a significant difference between the time
and length scales accessible to present multiscale simulations
which can reach down to atomic scales and those pertinent to the
state art of microscopic experiments including in situ and atomic-
scale resolution techniques. The third and the final challenge is to
incorporate the microstructure effects into multiscale models to
understand the activities of defects in heterogeneousmaterials. The
development of more efficient concurrent atomistic-continuum
methods for larger length-scale (e.g., >1 mm) modeling of mate-
rials with complex microstructures is therefore of high priority, as
well as consideration of longer time scales.

Acknowledgments

This material is based upon the work supported by US National
Science Foundation as a collaborative effort under Award Numbers
CMMI-1232878 (SX, DLM) & CMMI-1233113 (YC), and the work
supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering under
Award Number DE-SC0006539(XC and LX). The CAC computer code
in its present form is a culmination of developments supported in
part by National Science Foundation under Award Number CMMI-
1129976 and by Defense Advanced Research Projects Agency under
Award Number N66001-10-1-4018. JR also acknowledges the
support from National Science Foundation under Award Number
CMMI-1536925 and the CyEnce-ISU supercomputing resources
provided by Prof. Arun Somani from the Department of Electrical
and Computer Engineering at Iowa State University. This work also
used the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation grant
number ACI-1053575.

References

[1] R.J. Clifton, Dynamic plasticity, ASME J. Appl. Mech. 50 (1983) 941e952.
[2] A.J. Rosakis, G. Ravichandran, Dynamic failure mechanics, Int. J. Solids Struct.

(2000) 331e348.
[3] G. Ravichandran, R.J. Clifton, Dynamic fracture under plane wave loading, Int.

J. Fract. 40 (1989) 157e201.
[4] L. Lambros, A.J. Rosakis, Shear dominated transonic interfacial crack growth

in a biomaterial-I. Experimental observations, J. Mech. Phys. Solids 43 (1995)
169e188.

[5] H. Gao, Y. Huang, P. Gumbsch, A.J. Rosakis, On radiation-free transonic mo-
tion of cracks and dislocations, J. Mech. Phys. Solids 47 (1999) 1941e1961.

[6] K.T. Ramesh, Effects of high rates of loading on the deformation behavior and
failure mechanisms of hexagonal close-packed metals and alloys, Metall.
Mater. Trans. A 33 (3) (2002) 927e935.

[7] J.P. Hirth, J. Lothe, Theory of Dislocations, Wiley, New York, 1982.
[8] F.C. Frank, Sessile dislocations, Proc. Phys. Soc. 62 (1949) 202e203. London,

Sect. A.
[9] J.D. Eshelby, Uniformly moving dislocations, Proc. Phys. Soc. 62 (1949)

307e314. London, Sect. A.
[10] F.R.N. Nabarro, Dislocation in a simple cubic lattice, Proc. Phys. Soc. 59 (1947)

256e272.
[11] X. Markenscoff, The transient motion of a nonuniformly moving dislocation,

J. Elast. 10 (1980) 193e201.
[12] X. Markenscoff, R.J. Clifton, The nonuniformly moving edge dislocation,

J. Mech. Phys. Solids 29 (1981) 253e262.
[13] Y.P. Pellegrini, Dynamic PeierlseNabarro equations for elastically isotropic

crystals, Phys. Rev. B 81 (2010) 024101.
[14] Y.P. Pellegrini, Equation of motion and subsonic-transonic transitions of

rectilinear edge dislocations: a collective-variable approach, Phys. Rev. B 90
(2014) 054120.

[15] K.M. Jassby, T. Vreeland, Dislocation mobility in copper and zinc at 44K,
Scripta Metall. 5 (1971) 1007.

[16] P. Kumar, R.J. Clifton, Dislocation motion and generation in LiF single crystals
subjected to plate impact, J. Appl. Physics 50 (7) (1979) 4747e4762.

[17] S.K. Kim, R.J. Clifton, Dislocation motion in MgO crystals under plate impact,
J. Mater. Science 19 (5) (1984) 1428e1438.

[18] C.H. Chiang, I. Lin, Cooperative particle motions and dynamical behaviors of
free dislocations in strongly coupled quasi-2D dusty plasmas, Phys. Rev. Lett.
77 (1996) 647.

[19] V. Nosenko, S. Zhdanov, G. Morfill, Supersonic dislocations observed in a
plasma crystal, Phys. Rev. Lett. 99 (2007) 025002.

[20] V. Nosenko, G.E. Morfill, P. Rosakis, Direct experimental measurement of the
speed-stress relation for dislocations in a plasma crystal, Phys. Rev. Lett. 106
(2011) 155002.

[21] E.R. Peierls, The size of a dislocation, Proc. Phys. Soc. Lond. 52 (1940) 34.
[22] J.D. Eshelby, F.C. Frank, F.R.N. Nabarro, The equilibrium of linear arrays of

dislocations, Philos. Mag. 42 (327) (1951) 351e364.
[23] J. Weertman, J.R. Weertman, Moving dislocations, in: F.R.N. Nabarro (Ed.),

Dislocations in Solids, 3, 1980 ch. 8, pp. 3e59. The Netherlands: North-
Holland, Amsterdam.

[24] P. Rosakis, Supersonic dislocation kinetics from an augmented Peierls model,
Phys. Rev. Lett. 86 (2001) 95e98.

[25] J. Lothe, J.P. Hirth, Dislocation dynamics at low temperatures, Phys. Rev. 115
(3) (1959) 543.

[26] R. Miller, R. Phillips, G. Beltz, M. Ortiz, A non-local formulation of the Peierls
dislocation model, J. Mech. Phys. Solids 46 (10) (1998) 1845e1867.

[27] G. Schoeck, Peierls energy of dislocations: a critical assessment, Phys. Rev.
Lett. 82 (11) (1999) 2310.

[28] R.C. Picu, The Peierls stress in non-local elasticity, J. Mech. Phys. Solids 50 (4)
(2002) 717e735.

[29] H.B. Huntington, J.E. Dickey, R. Thomson, Dislocation energies in NaCl, Phys.
Rev. 100 (1955) 1117.

[30] V.B. Shenoy, R. Phillips, Finite-sized atomistic simulations of screw disloca-
tions, Philos. Mag. A 76 (1997) 367e385.

[31] S. Rao, C. Hernandez, J.P. Simmons, T.A. Parthasarathy, C. Woodward, Green's
function boundary conditions in two-dimensional and three-dimensional
atomistic simulations of dislocations, Philos. Mag. A 77 (1998) 231e256.

[32] V.V. Bulatov, O. Richmond, M.V. Glazov, An atomistic dislocation mechanism
of pressure-dependent plastic flow in aluminum, Acta Mater. 47 (1999)
3507e3514.

[33] D.L. Olmsted, K.Y. Hardikar, R. Phillips, Lattice resistance and Peierls stress in
finite size atomistic dislocation simulations, Model. Simul. Mater. Sci. Eng. 9
(2001) 215.

[34] K.W. Jacobson, J. Schiotz, Computational materials science: nanoscale plas-
ticity, Nat. Mater. 1 (2002) 15e16.

[35] D. Rodney, R. Phillips, Structure and strength of dislocation junctions: an
atomic level analysis, Phys. Rev. Lett. 82 (1999) 1704.

[36] P. Gumbsch, H. Gao, Dislocations faster than the speed of sound, Science 283
(1999) 965.

[37] H. Koizumi, H.O.K. Kirchner, T. Suzuki, Lattice wave emission from a moving
dislocation, Phys. Rev. B 65 (2002) 214104.

http://refhub.elsevier.com/S1359-6454(15)30088-4/sref1
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref1
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref2
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref2
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref2
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref3
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref3
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref3
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref4
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref4
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref4
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref4
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref5
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref5
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref5
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref6
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref6
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref6
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref6
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref7
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref8
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref8
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref8
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref9
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref9
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref9
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref10
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref10
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref10
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref11
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref11
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref11
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref12
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref12
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref12
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref13
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref13
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref13
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref14
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref14
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref14
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref15
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref15
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref16
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref16
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref16
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref17
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref17
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref17
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref18
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref18
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref18
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref19
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref19
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref20
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref20
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref20
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref21
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref22
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref22
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref22
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref23
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref23
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref23
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref23
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref24
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref24
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref24
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref25
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref25
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref26
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref26
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref26
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref27
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref27
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref28
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref28
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref28
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref29
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref29
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref30
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref30
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref30
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref31
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref31
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref31
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref31
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref32
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref32
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref32
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref32
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref33
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref33
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref33
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref34
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref34
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref34
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref35
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref35
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref36
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref36
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref37
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref37


L. Xiong et al. / Acta Materialia 104 (2016) 143e155 155
[38] E. Bringa, A. Caro, Y. Wang, M. Victoria, J. McNaney, B. Remington, R. Smith,
B. Torralva, H. Van Swygenhoven, Ultrahigh strength in nanocrystalline
materials under shock loading, Science 309 (2005) 1838.

[39] E. Bringa, K. Rosolankova, R. Rudd, B. Remington, J. Wark, M. Duchaineau,
D. Kalantar, J. Hawreliak, J. Belak, Shock deformation of face-centered-cubic
metals on subnanosecond timescales, Nat. Mater. 5 (2006) 805e809.

[40] E. Bitzek, P. Gumbsch, Dynamic aspects of dislocation motion: atomistic
simulations, Mater. Science Eng. A 400e401 (2005) 40e44.

[41] Z. Jin, H. Gao, P. Gumbsch, Energy radiation and limiting speeds of fast
moving edge dislocations in tungsten, Phys. Rev. B 77 (2008) 094303.

[42] H. Tsuzuki, P.S. Branicio, J.P. Rino, Molecular dynamics simulation of fast
dislocations in copper, Acta Mater. 57 (2009) 1843e1855.

[43] H.J. Chu, J. Wang, I.J. Beyerlein, Anomalous reactions of a supersonic coplanar
dislocation dipole: Bypass or twinning? Scripta Mater. 67 (2012) 69e72.

[44] D.L. Olmsted, L.G. Hector, W.A. Curtin, R.J. Clifton, Atomistic simulations of
dislocation mobility in Al, Ni and Al/Mg alloys, Model. Simul. Mater. Sci. Eng.
13 (2005) 371e388.

[45] C.R. Weinberger, Dislocation drag at the nanoscale, Acta Mater. 58 (2010)
6535e6541.

[46] E.B. Tadmor, M. Ortiz, R. Phillips, Quasicontinuum analysis of defects in
solids, Philos. Mag. A 73 (6) (1996) 1529e1563.

[47] L.E. Shilkrot, W.A. Curtin, R.E. Miller, A coupled atomistic/continuum model
of defects in solids, J. Mech. Phys. Solids 50 (2002) 2085e2106.

[48] X. Li, W.E, Multiscale modeling of the dynamics of solids at finite tempera-
ture, J. Mech. Physics Solids 53 (7) (2005) 1650e1685.

[49] R. Gracie, T. Belytschko, Concurrently coupled atomistic and XFEM models
for dislocations and cracks, Int. J. Numer. Methods Eng. 78 (3) (2008)
354e378.

[50] F.F. Abraham, J.Q. Broughton, N. Bernstein, E. Kaxiras, Spanning the contin-
uum to quantum length scales in a dynamic simulation of brittle fracture,
Europhys. Lett. 44 (1998) 783.

[51] Y. Kulkarni, J. Knap, M. Ortiz, A variational approach to coarse graining of
equilibrium and non-equilibrium atomistic description at finite temperature,
J. Mech. Phy. Solid 56 (2008) 1417e1449.

[52] G. Venturini, K. Wang, I. Romero, M.P. Ariza, M. Ortiz, Atomistic long-term
simulation of heat and mass transport, J. Mech. Phys. Solids 73 (2014)
242e268.

[53] M. Ponga, M. Ortiz, M.P. Ariza, Finite-temperature nano-equilibrium quasi-
continuum analysis of nanovoid growth in copper at low and high strain
rates, Mech. Mater. 90 (2015) 253e267.

[54] L. Onsager, Reciprocal relations in irreversible processes. I, Phys. Rev. 37 (4)
(1931) 405e426.

[55] L. Onsager, Reciprocal relations in irreversible processes. II, Phys. Rev. 38 (12)
(1931) 2265e2279.

[56] S.R. De Groot, P. Mazur, Non-equilibrium Thermodynamics, 1962. North-
Holland, Amsterdam.

[57] L. Xiong, Y. Chen, J.D. Lee, Simulation of dislocation nucleation and motion in
single crystal magnesium oxide by a field theory, Comput. Mater. Sci. 42
(2008) 168e177.

[58] L. Xiong, Y. Chen, Coarse-grained simulations of single-crystal silicon, Model.
Simul. Mater. Sci. Eng. 17 (035002) (2009) 1e17.

[59] L. Xiong, Y. Chen, Multiscale modeling and simulation of single-crystal MgO
through an atomistic field theory, Int. J. Solids Struct. 46 (2009) 1448e1455.

[60] L. Xiong, Y. Chen, J.D. Lee, A continuum theory for modeling the dynamics of
crystalline materials, J. Nanosci. Nanotech 9 (2009) 1242e1245.

[61] L. Xiong, G. Tucker, D.L. McDowell, Y. Chen, Coarse grained atomistic simu-
lations of dislocations, J. Mech. Phys. Solids 59 (2011) 160e177.

[62] L. Xiong, D.L. McDowell, Y. Chen, Nucleation and growth of dislocation loops
in Cu, Al and Si by a concurrent atomistic-continuum method, Scripta Mater.
67 (2012) 633e636.

[63] L. Xiong, Q. Deng, G. Tucker, D.L. McDowell, Y. Chen, Coarse-grained atom-
istic simulations in Al, Ni and Cu crystals, Int. J. Plast. 38 (2012) 86e101.

[64] L. Xiong, Q. Deng, G. Tucker, D.L. McDowell, Y. Chen, A concurrent scheme for
passing dislocations from atomistic to continuum domains, Acta Mater. 60
(2012) 899e913.

[65] L. Xiong, Y. Chen, Coarse grained atomistic modeling and simulation of in-
elastic material behavior, Acta Mech. Solida Sin. 25 (3) (2012) 244e261.

[66] L. Xiong, Y. Chen, Predicting phonon properties of 1D polyatomic chains
through the concurrent atomistic-continuum simulations, Arch. Appl. Mech.
84 (9e11) (2014) 1665e1675.

[67] L. Xiong, D.L. McDowell, Y. Chen, Phonon drag on dislocations by coarse-
grained atomistic simulations, Int. J. Plast. 55 (2014) 268e278.

[68] Y. Chen, Local stress and heat flux in atomistic systems involving three-body
forces, J. Chem. Physics 124 (2006) 054113.

[69] Y. Chen, Reformulation of microscopic balance equations for multiscale
materials modeling, J. Chem. Physics 130 (2009) 134706.

[70] Y. Chen, J.D. Lee, Y. Lei, L. Xiong, A multiscale field theory: Nano/micro
materials, in: G.C. Shih (Ed.), Molecular and Continuum Mechanics: Inter-
action of Time and Size from Macro to Nano, Springer, 2007, pp. 23e65.

[71] J. Irving, J. Kirkwood, The statistical mechanical theory of transport pro-
cesses. IV., the equations of hydrodynamics, J. Chem. Phys. 8 (1950)
817e829.

[72] Q. Deng, L. Xiong, Y. Chen, Coarse-graining atomistic dynamics of brittle
fracture by finite element method, Int. J. Plast. 26 (9) (2010) 1402e1414.

[73] Y. Chen, J.D. Lee, A. Eskandarian, Atomistic counterpart of micromorphic
theory, Acta Mech. 161 (1e2) (2003) 81e102.

[74] Y. Chen, J. Zimmerman, A. Krivtsov, D.L. McDowell, Assessment of atomistic
coarse-graining methods, Int. J. Eng. Science 49 (2011) 1337e1349.

[75] M.D. Kluge, D. Wolf, J.F. Lutsko, S.R. Phillpot, Formalism for the calculation of
local elastic constants at grain boundaries by means of atomistic simulation,
J. Appl. Phys. 67 (1990) 2370.

[76] H. Kimizuka, H. Kaburaki, F. Shimizu, J. Li, Crack-tip dislocation nano-
structures in dynamical fracture of fcc metals: a molecular dynamics study,
J. Computer-Aided Mater. Des. 10 (2003) 143e154.

[77] M.S. Daw, M.I. Baskes, Embedded-atom method: derivation and application
to impurities, surfaces, and other defects in metals, Phy. Rev. B 29 (1984)
6443.

[78] Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Struc-
tural stability and lattice defects in copper: ab initio, tight-binding and
embedded-atom calculation, Phys. Rev. B 63 (2001) 224106.

[79] S. Xu, R. Che, L. Xiong, Y. Chen, D.L. McDowell, A quasistatic implementation
of the concurrent atomistic-continuum method for fcc crystals, Int. J. Plast.
72 (2015) 91e126.

[80] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics,
J. Comput. Phys. 117 (1) (1995).

[81] C.H. Baker, D.A. Jordan, P.M. Norris, Application of the wavelet transform to
nanoscale thermal transport, Phys. Rev. B 86 (2012) 104306.

[82] R.J. Amodeo, N.M. Ghoniem, Dislocation dynamics. I. A proposed method-
ology for deformation micromechanics, Phys. Rev. B 41 (1990) 6958e6967.

[83] R.J. Amodeo, N.M. Ghoniem, Dislocation dynamics. II. Applications to the
formation of persistent slip bands, planar arrays, and dislocation cells, Phys.
Rev. B 41 (1990) 6968e6976.

[84] E. Van der Giessen, A. Needleman, Discrete dislocation plasticity: a simple
planar model, Model. Simul. Mater. Sci. Eng. 3 (1995) 689e735.

[85] V. Bulatov, F. Abraham, L. Kubin, B. Devincre, S. Yip, Connecting atomistic and
mesoscale simulations of crystal plasticity, Nature 391 (1998) 669e672.

[86] H.M. Zbib, F. Rhee, J.P. Hirth, On plastic deformation and the dynamics of 3D
dislocations, Int. J. Mech. Sci. 40 (1998) 113e127.

[87] W. Cai, V.V. Bulatov, J. Chang, J. Li, S. Yip, Dislocation core effects on mobility,
in: F.R.N. Nabarro (Ed.), Dislocations in Solids, 2004. North-Holland,
Amsterdam.

[88] S. Groh, E.B. Marin, M.F. Horstmeyer, H.M. Zbib, Multiscale modeling of the
plasticity in an aluminum single crystal, Int. J. Plast. 25 (8) (2009)
1456e1473.

[89] B. Gurrutxaga-Lerma, D.S. Balint, D. Dini, D.E. Eakins, A.P. Sutton, A dynamic
discrete dislocation plasticity method for the simulation of plastic relaxation
under shock loading, Proc. R. Soc. A 469 (2013).

[90] B. Gurrutxaga-Lerma, D.S. Balint, D. Dini, D.E. Eakins, A.P. Sutton, Attenuation
of the dynamic yield point of shocked aluminum using elastodynamic sim-
ulations of dislocation dynamics, Phys. Rev. Lett. 114 (2015) 174301.

[91] J.P. Hirth, H.M. Zbib, J. Lothe, Forces on high velocity dislocations, Model.
Simul. Mater. Sci. Eng. 6 (1998) 165e169.

[92] H.M. Zbib, T. Diaz de la Rubia, A multiscale model of plasticity, Int. J. Plast. 18
(2002) 1133e1163.

[93] M.A. Shehadeh, E.M. Bringa, H.M. Zbib, J.M. McNaney, B.A. Remington,
Simulation of shock induced plasticity including homogeneous and heter-
ogenous dislocation nucleations, Appl. Phys. Lett. 89 (2006) 171918.

[94] M.A. Shehadeh, Multiscale dislocation dynamics simulations of shock-
induced plasticity in small volumes, Philos. Mag. 92 (2012) 1173e1197.

[95] A. Acharya, A model of crystal plasticity based on the theory of continuously
distributed dislocations, J. Mech. Phys. Solids 49 (4) (2001) 761e784.

[96] A. Acharya, Driving forces and boundary conditions in continuum dislocation
mechanics, Proc. R. Soc. Lond. Ser. A 459 (2034) (2003) 1343e1363.

[97] A. Acharya, Constitutive analysis of finite deformation field dislocation me-
chanics, J. Mech. Phys. Solids 52 (2) (2004) 301e316.

[98] A. Acharya, New inroads in an old subject: plasticity, from around the atomic
to the macroscopic scale, J. Mech. Phys. Solids 58 (5) (2010) 766e778.

[99] A. Acharya, Micro canonical entropy and mesoscale dislocation mechanics
and plasticity, J. Elast. 104 (1e2) (2011) 23e44.

[100] F. Pavia, W.A. Curtin, Parallel algorithm for multiscale atomistic/continuum
simulations using LAMMPS, Model. Simul. Mater. Sci. Eng. 23 (2015), 055002
(23pp).

[101] D.L. McDowell, Viscoplasticity of heterogeneous metallic materials, Mater.
Sci. Eng. R. Rep. 62 (2008) 67e123.

http://refhub.elsevier.com/S1359-6454(15)30088-4/sref38
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref38
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref38
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref39
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref39
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref39
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref39
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref40
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref40
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref40
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref40
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref41
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref41
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref42
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref42
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref42
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref43
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref43
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref43
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref44
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref44
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref44
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref44
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref45
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref45
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref45
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref46
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref46
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref46
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref47
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref47
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref47
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref48
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref48
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref48
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref49
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref49
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref49
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref49
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref50
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref50
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref50
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref51
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref51
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref51
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref51
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref52
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref52
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref52
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref52
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref53
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref53
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref53
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref53
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref54
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref54
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref54
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref55
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref55
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref55
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref56
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref56
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref57
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref57
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref57
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref57
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref58
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref58
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref58
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref59
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref59
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref59
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref60
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref60
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref60
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref61
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref61
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref61
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref62
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref62
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref62
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref62
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref63
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref63
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref63
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref64
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref64
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref64
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref64
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref65
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref65
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref65
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref66
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref66
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref66
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref66
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref66
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref67
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref67
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref67
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref68
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref68
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref69
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref69
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref70
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref70
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref70
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref70
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref71
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref71
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref71
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref71
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref72
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref72
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref72
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref73
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref73
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref73
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref73
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref74
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref74
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref74
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref75
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref75
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref75
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref76
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref76
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref76
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref76
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref77
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref77
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref77
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref78
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref78
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref78
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref79
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref79
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref79
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref79
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref80
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref80
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref81
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref81
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref82
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref82
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref82
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref83
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref83
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref83
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref83
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref84
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref84
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref84
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref85
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref85
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref85
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref86
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref86
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref86
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref87
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref87
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref87
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref88
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref88
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref88
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref88
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref89
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref89
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref89
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref90
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref90
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref90
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref91
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref91
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref91
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref92
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref92
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref92
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref93
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref93
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref93
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref94
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref94
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref94
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref95
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref95
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref95
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref96
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref96
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref96
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref97
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref97
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref97
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref98
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref98
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref98
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref99
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref99
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref99
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref99
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref100
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref100
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref100
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref101
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref101
http://refhub.elsevier.com/S1359-6454(15)30088-4/sref101

	Coarse-grained elastodynamics of fast moving dislocations
	1. Introduction
	2. Methodology and computational specimen configuration
	3. Simulation results
	3.1. Dislocation elastodynamics
	3.2. Acoustic phonon emission from fast moving dislocations
	3.3. Velocity-dependent stress field near the core of fast moving dislocations

	4. Summary and discussions
	Acknowledgments
	References


