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a b s t r a c t 

Most concurrent multiscale methods that employ domain decomposition divide the simulation domain 

into atomistic and continuum subdomains such that nanoscale defects are described at atomistic res- 

olution while a continuum treatment is employed elsewhere. An example is the concurrent atomistic- 

continuum (CAC) method. While dislocations can nucleate and migrate in the continuum domain in CAC, 

they are restricted to prescribed slip planes along interelement boundaries. In this paper, we extend the 

original CAC method by implementing mesh refinement schemes in a straightforward manner to accom- 

modate a 3-D dislocation network and curved dislocation migration. CAC simulation results are validated 

by comparing to their equivalent fully atomistic simulations. Augmented with an adaptive mesh refine- 

ment scheme, a brittle-to-ductile transition in dynamic fracture response of single crystalline FCC Cu is 

accurately predicted using CAC simulations. Differing from most multiscale methods, the complexity of 

the geometric topologies during mesh refinement is avoided in this approach because CAC does not re- 

quire interelement compatibility. The extended CAC method is expected to apply in multiscale modeling 

of more complex dislocation activities in crystalline materials up to μm scale. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Most modelling and simulation in mechanics of materi-

als involve numerical discretization, either temporal or spatial

( Belytschko et al., 2014 ). For example, the derivative of a single

variable function can be approximated by a difference quotient; an

integral can be thought as an infinite sum of rectangles of infinites-

imal width ( Chapra and Canale, 2009 ). In continuum mechanics,

the most commonly employed approach for spatial discretization

is the finite element method (FEM), which converts partial differ-

ential equations into variational integral equations to find approx-

imate solutions to boundary value problems ( Zienkiewicz et al.,

2013 ). In so doing, the continuum domain is partitioned into a

number of smaller subdomains, over each of which the govern-

ing equations can be solved more easily. The discretization error

of FEM is thus determined by whether the domain is well parti-

tioned and whether each subdomain, i.e., an element, is correctly

solved. This is analogous to approximating a curve by connect-
∗ Corresponding author. Tel.: +14043767572. 
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ng many tiny straight segments: shorter segments should be em-

loyed where the target curve has a high curvature. 

The employment of continuous subdomains with varying sizes

n spatial discretization becomes problematic in the presence of

anoscale defects; in such cases, the continuum approximation be-

ins to break down. Atomistic simulations such as molecular dy-

amics (MD) and molecular statics (MS) are more suitable for

odeling defects such as nanoscale cracks or dislocations. In these

on-local particle methods, spatial discretization is not necessary

nd defects are naturally allowed. However, the high computa-

ional cost of atomistic simulations makes their application to

arger domains impractical. Thus, numerous concurrent multiscale

ethods have been developed to connect the continuum domain

ith the atomistic one when both are updated concurrently in

ime ( Rudd and Broughton, 20 0 0 ). 

In most multiscale methods, atomistic resolution is usually

etained where a large deformation gradient exists and/or explicit

escription of nanoscale phenomena is essential; otherwise, the

ontinuum treatment is employed. While the atomistic domain is

onsidered to render the “exact” solution within the uncertainty of

he interatomic potential, it should be applied only in the neigh-

orhood of area of interest, e.g., defects, to reduce the number of

http://dx.doi.org/10.1016/j.ijsolstr.2016.03.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2016.03.030&domain=pdf
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egrees of freedom in the system ( Tadmor and Miller, 2012 ). Such

 pre-partitioned domain works well when the spatial distribution

f defects is invariant or when defects migrate along prescribed

aths. In a more realistic case, however, the locations and migra-

ion paths of defects are difficult to predict a priori . Unlike in FEM

here all subdomains are of continuum character, a concurrent

ultiscale simulation concerns subdomains of both continuum

ature and discrete atoms. This suggests that a larger numerical

rror could occur as the system evolves if the continuum domain,

hich cannot explicitly model nanoscale defects, is not converted

o discrete atoms, as necessary. Therefore, it is crucial and nat-

ral for most concurrent multiscale methods, especially in time

ependent dynamic problems, to re-partition the domain down to

he atomic scale on-the-fly, a process called adaptive remeshing

n FEM. Concurrent multiscale methods augmented with mesh

efinement, either adaptive or non-adaptive, are referred to as

esh refining multiscale methods in this paper. 

In FEM, there are three remeshing techniques: (1) reducing

r increasing the mesh size ( h -refinement), (2) varying the poly-

omial degree of the interpolation basis ( p -refinement), and (3)

elocating or moving a mesh ( r -refinement), where the refinement

riterion is often expressed in form of the relative error in total

train energy ( Zienkiewicz et al., 2013 ). A combination of these

rocedures, e.g., hp -refinement, is also widely employed. In adap-

ive multiscale methods, similar procedures can be adopted to

ecide whether a larger atomistic domain and/or a higher order

ontinuum domain become necessary. To our knowledge, most

daptive multiscale methods employ h -refinement. The key is

o maintain the atomic-scale resolution around the defects, e.g.,

islocations, in a subdomain such that it encompasses the highly

onlinear and nonlocal behavior through mesh refinement. 

In the quasicontinuum (QC) method ( Tadmor et al., 1996 ), for

xample, a dislocation nucleated in the atomistic domain cannot

igrate into the continuum domain, unless it is locally refined to

tomic scale to render the dislocation. Several adaptive QC meth-

ds have been proposed, where elements are refined to distribu-

ions of atoms according to eigenvalues of the right stretch tensor

 Shenoy et al., 1998 ), Green’s strain ( Park and Im, 2008 ), or a goal-

riented a posteriori error estimator ( Arndt and Luskin, 2008 ). The

ame error estimator can also be used to remove unnecessary rep-

esentative atoms (repatoms) from the mesh ( Miller and Tadmor,

002 ), similar to the h -refinement through which a collection of

toms is coarsened into a continuum. Moreover, the QC mesh can

lso be adaptively refined with p -refinement, e.g., using variable-

ode elements ( Kwon et al., 2009 ). 

In the coupled atomistic discrete dislocation (CADD) method

 Shilkrot et al., 2004 ), dislocations can move from an atomistic

o continuum domain where dislocations interact with each other

hrough an elastic stress field dictated by continuum theory. In

ADD, deformation near the atom/continuum interface can reach

 value at which a larger size atomistic domain is needed, neces-

itating mesh refinement ( Pavia and Curtin, 2015 ). Motivated by

he key idea in CADD that the discontinuities due to dislocation-

ediated slip in the continuum domain do not have to be retained

t full atomistic resolution, Gracie and Belytschko (2009 , 2011) de-

eloped an adaptive method combining the extended finite ele-

ent method (XFEM) and the bridging domain method (BDM) to

odel moving dislocations. A crucial component of the adaptive

FEM-BDM framework is that the displacement discontinuities are

pecified through a step function across the active slip planes in

ontinuum region by means of XFEM enrichments ( Belytschko and

lack, 1999; Belytschko et al., 2001; Moës et al., 1999 ). In adaptive

FEM-BDM, the mesh is refined and coarsened based on either of

hese two criteria: (1) the broken inter-atomic bonds and (2) the

rrors in atomic displacements associated with introducing a con-

inuum field ( Moseley et al., 2012 ). 
In summary, most mesh refining multiscale methods for pass-

ng dislocations between atomistic and continuum domains can be

lassified into two types based on whether the dislocations are

ermitted in the continuum. The first type includes the QC-like

ethods, in which all elements in the continuum domain need to

e refined locally to atomic scale fidelity to address dislocations.

onsequently, the number of degrees of freedom scales with the

efect volume, even with the aid of mesh coarsening. The second

ype includes the CADD-like methods, where the continuum do-

ain describes lattice defects by either constitutive relations or

attice elasticity with dislocation field interactions, in the same

ay as in dislocation dynamics (DD), the cohesive zone method

CZM), or XFEM. Compared with methods of the first type, mesh

efinement in the second type of method is less demanding. For

xample, dislocations exist in both DD and XFEM while cracks can

e handled in both CZM and XFEM. Other types of discontinuities,

uch as point defects and complex dislocation junctions, may only

e described accurately in the atomistic domain, and so mesh re-

nement is still necessary. For both types of mesh refining mul-

iscale methods, one common issue is the geometric complexity

uring the mesh adaptation, due to either the interelement com-

atibility requirement in the first type of method or the heuristic

islocation passing/enrichment strategies between two domains in

he second type of method. 

In this paper, we extend the recently developed concurrent

tomistic-continuum (CAC) method by implementing two mesh re-

nement schemes. In CAC, the same governing equations are em-

loyed in both atomistic and coarse-grained domains ( Chen, 2006;

009 ). In the atomistic domain, atoms are updated in the same

ay as in MD (for dynamic CAC) or MS (for quasistatic CAC); in

he coarse-grained domain, possible separation or sliding between

iscontinuous elements accommodates brittle fracture ( Deng et al.,

010 ) or dislocation glide ( Xiong et al., 2011 ). As a result, unlike

he first type of method, the elements in the coarse-grained do-

ain in the vicinity of a dislocation do not have to be refined

o the atomic scale. Additionally, there is no ghost force at the

tomistic/coarse-grained domain interface, through which disloca- 

ions can pass smoothly, because (1) all atoms and nodes are non-

ocal and (2) the same interatomic potential is employed in both

omains as the only constitutive relation ( Xu et al., 2015 ). This fea-

ure distinguishes CAC from the second type of method. 

The governing equations for dynamic CAC come from the atom-

stic field theory (AFT), in which a crystalline material is viewed

s a continuous collection of lattice points, each of which embeds

 unit cell with a group of discrete atoms ( Chen and Lee, 2005;

hen et al., 2011 ). For monoatomic crystalline materials, the gov-

rning equations reduce to the balance laws in classical contin-

um mechanics ( Xiong et al., 2011 ). In the coarse-grained domain,

 modified FEM method is employed to solve the mass and linear

omentum balance equations by Gaussian quadrature ( Xu et al.,

015 ). The similarity of the CAC method to FEM ensures its conver-

ence and stability, and facilitates the mesh refinement procedure;

or example, an a posteriori error estimator as in FEM can be intro-

uced to assess the accuracy of the CAC method with mesh refine-

ent themes. We refer the readers to some of our previous papers

 Chen and Lee, 20 03a, 20 03b, 20 03c; Xiong and Chen, 20 09, 2012;

iong et al., 2012b, 2014b, 2016; Xu et al., 2015, 2016 ) where de-

ails of the theoretical foundation, mathematical formulation, nu-

erical implementation, and full capabilities of CAC are described.

In applying CAC to cubic crystals, dislocations in the coarse-

rained domain migrate between discontinuous rhombohedral ele-

ents, all surfaces of which correspond to slip planes of the lattice,

s shown in Fig. 1 of Xiong et al. (2011) . CAC admits displacement

iscontinuity between elements because (1) non-local force/energy

s used everywhere and (2) the governing equations can be written

s an integral form without the spatial derivative. For crystalline
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Fig. 1. (a) Without mesh refinement, the crack tip intersects the atomistic/coarse-grained domain interface at a location away from the interelement boundary, where a 

stress concentration occurs; the crack can neither propagate any further nor nucleate any dislocations. (b) With mesh refinement, the crack tip is again within the atomistic 

domain, and the stress concentration due to incompatibility of crack path is alleviated by restoring full atomistic degrees of freedom. Nodes and atoms are colored by tensile 

stress along the z -direction σ zz . The lattice orientations are x [111], y [11 ̄2 ] , and z[1 ̄1 0] . (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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metals in plastic deformation, dislocations can glide on 12 equiva-

lent {111} 〈 110 〉 slip systems in face-centered cubic (FCC) lattice; in

a body-centered cubic (BCC) system, possible slip systems include

12 sets of {110} 〈 111 〉 -type, 12 sets of {112} 〈 111 〉 -type, and 24 sets

of {123} 〈 111 〉 -type. The rhombohedral elements in CAC, however,

only permit dislocations in nine sets of {111} 〈 110 〉 and six sets

of {110} 〈 111 〉 slip systems in FCC and BCC, respectively, thus

confining other potential slip systems. Recently, a hybrid element

was developed to exhibit all 12 slip systems in FCC system ( Deng

and Chen, 2013 ). However, the hybrid element is not employed in

this paper due to its higher computational cost compared with a

rhombohedral element of the same size: the former contains 122

integration points while the latter contains 64 integration points

in the same first nearest neighbor element, solved by second-

order Gaussian quadrature. Therefore, geometrically, only certain

line/planar defects that are important for metal plasticity can be

represented in the coarse-grained domain in the present CAC im-

plementation, e.g., 1 
2 a 0 〈 110 〉 { 111 } full dislocations, 1 

6 a 0 〈 112 〉 { 111 }
Shockley partial dislocations, intrinsic stacking faults, and disloca-

tion intersection-induced jogs and kinks, where a 0 is the lattice

parameter. Even for migration of these defects, it is required that

their paths should be aligned with interelement boundaries. De-

fects that are not allowed directly in the coarse-grained domain in-

clude, but are not limited to, extended dislocation core structures,

stacking fault tetrahedra, extrinsic stacking faults, superjogs, gen-

eral grain boundaries, arbitrary cracks, and sessile dislocation locks

such as Lomer, Hirth, and Lomer–Cottrell locks. Point defects and

climb of a Frank partial dislocation, which is usually assisted by

formation and migration of point defects, may be admitted in the

coarse-grained domain but are not expected to be well described. 

It is desirable to extend the CAC method by using mesh re-

finement schemes. For example, our previous CAC simulations of

brittle fracture show that the coarse-grained domain with hybrid

elements satisfactorily predicts local fracture behavior and aver-

age stress–strain relation comparable with fully resolved atom-

istic simulations with only 1.4% degrees of freedom of the latter

( Deng and Chen, 2013 ). However, a ductile fracture process involv-

ing dislocations moving on multiple slip planes from the crack

tip is restricted geometrically by element shape. For brittle frac-

ture which mainly involves the rupture of atomic bonds ( Bitzek

et al., 2015 ), the coarse-grained domain works reasonably well be-

cause two neighboring elements are related by interatomic poten-

tials; for ductile fracture, however, it is unlikely that the 3-D, time-

varying, complex dislocation network, which is relevant to plastic

response near a crack tip, can be captured using a limited num-

ber of slip planes. Also, note that in brittle fracture, the element

shape and lattice orientation are carefully designed such that the
lement surfaces are also the cleavage planes; for arbitrary lattice

rientations, brittle fracture may not be as well described using

AC without mesh refinement. 

In the remainder of this paper, we first present the dynamic

AC framework furnished with two mesh refinement schemes in

ection 2 . Then, 3-D CAC simulations of brittle-to-ductile (BTD)

ransition in dynamic fracture and curved dislocation migration in

CC Cu are performed in Section 3 with the mesh refinement pro-

edure. The extended CAC method is validated by comparing with

quivalent fully atomistic simulations. The paper ends with a sum-

ary and discussion in Section 4 . 

. Methodology 

.1. Dynamic CAC 

In dynamic CAC, the Velocity Verlet form ( Verlet, 1967 ) of the

rünger–Brooks–Karplus (BBK) integrator ( Brünger et al., 1984 ) is

mployed in both atomistic and coarse-grained domains to update

toms and nodes, respectively. With all information at time t , the

elocity is first advanced by half time step, i.e., 

 

(
t + 

�t 

2 

)
= 

(
1 − γ

�t 

2 

)
v (t) + 

�t 

2 m 

F (t) (1)

here �t is the time step and γ is the damping coefficient. In

he atomistic domain, m is the atomic mass and F is the atomic

orce; in the coarse-grained domain, m is the normalized lumped

ass and F is the equivalent nodal force calculated by Gaussian

uadrature ( Xiong et al., 2011; Xu et al., 2015 ). The position is then

ropagated by 

 (t + �t) = r (�t) + v 

(
t + 

�t 

2 

)
�t. (2)

In the end, the velocity at time (t + �t) is obtained by 

 (t + �t) = 

1 

1 + γ �t 
2 

[
v 

(
t + 

�t 

2 

)
+ 

�t 

2 m 

F (t + �t) 

]
. (3)

.2. Adaptive mesh refinement scheme for dynamic fracture 

In dynamic fracture, a crack can either propagate in a brittle

anner or respond plastically by nucleating dislocations on mul-

iple slip planes. A notched specimen of FCC Cu is employed for

AC simulations with atomistic resolution in the vicinity of crack

nd coarse elements employed elsewhere. As increasing remote

ensile stress is applied to the system along the direction normal

o the crack plane, atomic bonds at the crack tip are broken and
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Fig. 2. 2-D illustration of adaptive mesh refinement procedure. (a) In the reference configuration, node ξ has three neighboring nodes ν; (b) periodically, the displacement 

of all four nodes are calculated by Eq. (4) ; (c) when d ξ > d tol , the element containing ξ is refined. The atoms in (c) are linearly interpolated from the nodes using their 

shape functions in undeformed configuration. 
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he crack extends. With lattice orientations of x [111], y [11 ̄2 ] , and

[1 ̄1 0] , we found that without mesh refinement, as the crack tip

ntersects the atomistic/coarse-grained domain interface away from

n interelement boundary, a stress concentration occurs; the crack

annot propagate any further owing to the kinematic incompatibil-

ty with the original crack path, as shown in Fig. 1 (a). If we refine

he elements in front of the crack tip, the stress concentration is

lleviated immediately as the crack tip is again within the atom-

stic domain, as shown in Fig. 1 (b). These observations motivated

evelopment of an adaptive mesh refinement scheme to address

ynamic fracture. 

Unlike in FEM and most multiscale methods with a continu-

us mesh, neither displacement continuity nor strain compatibility

etween the discontinuous elements is required in CAC. Thus, the

eformation gradient associated with the interior of a single ele-

ent in CAC is generally too small to be used as an indicator in

 remeshing criterion. Instead, we consider the magnitude of the

iscontinuity between elements and assign each node ξ a value d ξ

efined by 

 

ξ = 

√ ∑ 

ν

|| u 

ξ − u 

ν || 2 (4) 

here u is the nodal displacement vector and node ν is the neigh-

or of node ξ defined in the initial undeformed configuration. In

-D and 3-D, each node has three and seven neighboring nodes

ocated in different elements, respectively; a 2-D illustration is

hown in Fig. 2 . In undeformed or homogeneously deformed con-

gurations, d ξ = 0 ; in the presence of defects between elements,

 

ξ becomes non zero. When any node ξ has a d ξ exceeding a spec-

fied tolerance, d tol , which is a function of a 0 , an element is refined

o full atomistic resolution by 

 

k = φkξ x 

ξ (5) 

˙ 
 

k = φkξ ˙ x 

ξ (6) 

here φk ξ is the trilinear interpolation function, x ξ ( ̇ x ξ ) and R 

k 

 ̇

 R 

k ) are the positions (velocities) of node ξ and atom k , respec-

ively. A flowchart of the CAC simulation algorithm with mesh re-

nement theme is illustrated in Fig. 3 . 

We note this is analogous to the use of deformation gradient in

he QC approach to signal the need for adaptive remeshing. Com-

ared with continuous FEM, the employment of discontinuous el-

ments in CAC makes it more convenient to perform local mesh

efinement without updating the global matrix thereafter or con-

erning the compatibility with its neighbors. The nature of the lo-

al formulation also promotes the parallelism of the algorithm as

ell as the workload rebalancing between processors during mesh

efinement. Unlike in QC where the elements are constructed in-

ependently of the underlying lattice, the element boundaries in

AC are assumed to correspond to actual atomic sites, simplifying
he procedure of locating the new atoms from refined elements.

ote that the criterion defined in Eq. (4) can only be used to trig-

er remeshing of elements into full atomic resolution, but not vice

ersa, nor can it split a large element into multiple smaller ones. 

We emphasize that for various mesh refinement criteria there

lways exists a tradeoff between accuracy, ease of implementation,

nd efficiency in selection. No matter which criterion is adopted,

he goal of an adaptive mesh refinement approach is to detect and

pdate subdomains which otherwise do not give accurate descrip-

ions, so as to achieve a solution having a specified accuracy in

n optimal fashion. By re-evaluating d ξ periodically, an adaptive

esh refinement scheme will be employed to model BTD fracture

n Section 3.1 . 

.3. Mesh refinement scheme for dislocation migration 

One major advantage of CAC is the allowance of dislocation

ucleation and migration between discontinuous elements in the

oarse-grained domain. However, CAC employs more nodes than

ther concurrent multiscale methods for the same number of el-

ments. Therefore, a mesh refinement scheme for dislocation mi-

ration must take full advantage of the discontinuous elements by

nsuring that a minimum number of elements are refined corre-

ponding to dislocations that are not aligned with interelement

oundaries. Possible scenarios in which mesh refinement is nec-

ssary for dislocation migration include, but are not limited to,

1) a dislocation migrating from atomistic to coarse-grained do-

ain, as shown in Fig. 4 (a), (2) from the coarse-grained domain

ith smaller elements to that with larger elements, as shown in

ig. 4 (b), and (3) within the same coarse-grained domain with a

niform element size but for which elements are not aligned per-

ectly, as shown in Fig. 4 (c). 

An adaptive mesh refinement criterion based on Eq. (4) is

seful for cases involving a complex dislocation network,

.g., 3-D dislocation nucleation under an indenter or from a

oid/precipitate/crack surface. However, this method refines all el-

ments along the dislocation pathway, similar to the first type

f mesh refining multiscale methods discussed in Section 1 . Cur-

ently, a mesh refinement scheme is implemented in CAC based on

anual remeshing to pass dislocations, as discussed in Section 3.2 .

.4. Parallel algorithms 

From the perspective of parallelization, mesh refinement results

n an immediate unbalance of workload between processors be-

ause the processors assigned with new atoms now have more

asks than that of the original elements. Parallel algorithms should

e designed such that mesh refinement is accompanied by work-

oad re-balancing. 

Among the three parallel algorithms commonly employed in

ull atomistic simulations—atom decomposition (AD), force decom-
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Fig. 3. CAC simulation algorithm with mesh refinement themes. The mesh refinement procedures are highlighted with light green, while the remaining procedures belong 

to the original CAC simulation theme. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Possible scenarios in which mesh refinement is necessary: (a) dislocation migration from atomistic to coarse-grained domain; (b) dislocation migration from the 

coarse-grained domain with smaller elements to that with larger elements; (c) dislocation migration within the same coarse-grained domain with a uniform element size 

but the elements are not aligned perfectly. Note that the situations encountered in a 3-D model can be much more complicated than those shown in these 2-D illustrations. 

Fig. 5. Illustrations of two decomposition approaches in parallel CAC, where dif- 

ferent processors are assigned domains with different colors: light blue, red, dark 

blue, and green. (a) Spatial decomposition with equally-sized domains for each pro- 

cessor; the processors assigned with light and dark blue domains have a heavier 

workload because they need to calculate the quantities of all atoms in the atom- 

istic domain which has a higher density of interactions. (b) Force decomposition 

with perfectly balanced workload between processors. (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 
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position (FD), and spatial decomposition (SD), SD yields the best

scalability and the smallest communication overhead between pro-

cessors ( Plimpton, 1995 ). Unlike AD and FD, the workload of each

processor in SD, which is proportional to the number of inter-

actions, is not guaranteed to be the same. In CAC, the simula-

tion cell has nonuniformly distributed integration points (in the

coarse-grained domain) and atoms (in the atomistic domain), such

that the workload is poorly balanced if we assign each processor

an equally-sized cubic domain as in full atomistics, as shown in

Fig. 5 (a). This workload balance issue is not unique to CAC, but

also encountered by other concurrent multiscale modeling meth-
ds ( Pavia and Curtin, 2015 ). In CAC, two methods have been pro-

osed to achieve a perfect or near perfect workload balance. The

rst method is the SD with unequally-sized domains, where the

ntegration points and atoms are referred to as evaluation points;

ach processor domain is assigned approximately the same num-

er of evaluation points ( Xu et al., 2015 ). The second method is the

D, where the interactions between atomic pairs—either between

he integration points and their neighbors in the coarse-grained

omain or between the atoms and their neighbors in the atom-

stic domain—are evenly but spatially randomly assigned to each

rocessor, as shown in Fig. 5 (b). In this paper, both methods are

pplied, in which the workload is re-distributed between proces-

ors during mesh refinement. The AD approach is not considered

ue to its high communication overhead. 

. Computational models and simulation results 

We next apply dynamic CAC to two problems: BTD dynamic

racture and curved dislocation migration, with two mesh refine-

ent schemes employed, respectively. In both problems, no ther-

ostat is employed in the atomistic domain, i.e., an NVE ensemble

ith a zero damping coefficient γ defined in Section 2.1 ; in the

oarse-grained domain, γ = 0 . 005 . Our recent predictions ( Xiong

t al., 2014b ) showed that γ is not an artificial parameter per se ,

ut rather a surrogate for the phonon drag on dislocation mo-

ion. The simulation results are visualized using Tecplot ®, ParaView

 Schroeder et al., 2006 ), and OVITO ( Stukowski, 2010 ). The post-

rocessing of the atomic structures in the coarse-grained domain is

reformed after the atomic positions are linearly interpolated from

he nodal positions. Some runs are completed using Blacklight and

omet on the NSF Extreme Science and Engineering Discovery En-

ironment (XSEDE) ( Towns et al., 2014 ). 
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Fig. 6. Simulation cell for dynamic fracture of a FCC Cu specimen. An atomistic do- 

main with 11,312 atoms is applied around the crack; elsewhere, 1414 elements with 

80 0 0 atoms per element are employed. Both top and bottom layers of elements are 

displaced uniformly, as shown to introduce a tensile displacement-controlled con- 

dition. 
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Fig. 7. The crack propagates in a brittle manner at a low strain in adaptive CAC 

simulations. Nodes and atoms are colored by local tensile stress σ zz . At (a) δ = 

0 . 225 nm and (b) 0.375 nm, the crack extends by 18 and 28 nm, respectively. Here, 

the view in Fig. 6 is rotated by about 10 ° around the z -axis to better image the 3-D 

crack. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 8. Snapshots of “flower-of-loop” dislocations emitted from the crack tip during 

ductile fracture in both (a) CAC and (b) MD simulations. Atoms with centrosymme- 

try parameter ( Kelchner et al., 1998 ) smaller than 1.3 are deleted. 
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.1. Brittle-to-ductile dynamic fracture 

The fundamental mechanism of brittle versus ductile response

f stressed crack tips is the competition between cleavage fracture

y atomic decohesion and plastic deformation by dislocation nu-

leation and migration ( Cheung and Yip, 1994; Xu, 2005 ). In par-

icular, a BTD transition of crack behavior is favored by conditions

f high temperature, low strain rate ( Cheung and Yip, 1994 ), small

pecimen/grain size ( Schulson and Barker, 1983 ), a large number

f dislocation sources, high dislocation mobility ( Gumbsch et al.,

998 ), and large stress/strain ( Abraham et al., 1998 ). 

The simulation cell for dynamic fracture is shown in Fig. 6 . The

otched specimen, which consists of FCC Cu atoms, has a size of 20

m × 150 nm × 100 nm along x -, y -, and z -axes, respectively. Peri-

dic boundary conditions (PBCs) are imposed along the x -direction,

hile boundaries normal to the y - and z -directions are traction

ree and fixed, respectively. We choose a model FCC crystal be-

ause it is inherently ductile and thus serves as a paradigm for

lastic fracture ( Abraham et al., 1997 ). The lattice orientations are

 [001], y [1 ̄1 0] , and z [110]. In total, there are 1414 elements with

0 0 0 atoms per element. About 11,312 atoms are employed within

 volume of 20 nm × 20 nm × 10 nm around the crack, which is

reated by deleting five layers of atoms normal to the z -direction.

his corresponds to about 11.3 million atoms in an equivalent full

tomistic model. Bonding for this model crystal is described by a

imple two-body Lennard–Jones (LJ) potential, i.e., 

 (r) = 4 ε

[(
σ

r 

)12 

−
(
σ

r 

)6 
]

(7) 

here r is the distance between atoms, ε = 0 . 167 , and σ = 2 . 315

 Kluge et al., 1990 ). The lattice parameter a 0 and cutoff distance are

.616 and 5.38635 Å, respectively. We note that compared with a

ore realistic embedded-atom method (EAM) potential, the LJ po-

ential overestimates the vacancy formation and migration energies

 Daw and Baskes, 1984 ) and favors the BTD transition ( Abraham,

997 ); however, we emphasize that our intent in this paper is to

stablish the viability of adaptive mesh refinement procedure for

AC, instead of shedding light on improved understanding of dy-

amic fracture. The FD method is employed for parallelization. 

Assigning zero initial velocities to all atoms and nodes, the sim-

lation cell is subject to tension by relative vertical displacement

of the top and bottom layers of elements. Two displacement

ates are employed: ˙ δ = 0 . 141 m/s and 0.176 m/s, with �t = 5 fs

n both domains. As the simulation evolves, we evaluate d ξ of

ll nodes at every time step, and refine an element if any of its

ode has a d ξ > ( 
√ 

6 / 12) a 0 . Note that the top and bottom layers

f elements on which the displacement is directly applied are ex-
luded from the mesh refinement procedure to avoid unnecessary

omputational cost. Dislocation activity at the crack tip is mon-

tored every 10 time steps using the centrosymmetry parameter

 Kelchner et al., 1998 ). Subject to a tensile displacement-controlled

ondition, the originally sharp crack tip in the fully resolved atom-

stic domain is initially blunted before the crack begins to prop-

gate in a brittle manner without emitting any dislocations from

he tip, as shown in Fig. 7 . This marks the beginning of dynamic

nstability. As the crack speed increases, the energy at the crack

ip accumulates. As a result, when the crack passes the middle

egion of the model, it responses plastically, where a “flower-of-

oop” shape of dislocations are nucleated on multiple slip planes,

s shown in Fig. 8 . At both displacement rates, the BTD transition,

hich is marked by dislocations nucleation from crack tip, occurs

t δ = 1 . 5 nm. By δ = 4 . 5 nm, about 110 elements have been re-

ned to full atomic resolution. We remark that this type of uni-

orm displacement-controlled loading has been employed in many

D simulations ( Rafii-Tabar et al., 2006; Rountree et al., 2002; Yu

t al., 2014 ) and is equivalent to applying rigid grips in a tensile

esting machine. The chosen boundary conditions, while not pre-

luding crack re-direction and branching ( Brommer and Buehler,

013; Deng and Chen, 2013; Kikuchi et al., 2005 ), promote stable

rack extension and add a constraint to the crack growth behav-

or such that the crack is inclined to propagate along the hori-

ontal direction even in the presence of small perturbations like

nhomogeneities or numerical errors. The double cantilever beam

ype of loading, which may introduce unstable crack propagation

 Wetherhold and Forand, 1991 ), will be employed in our future

ork for that in this study we are more interested in exploring

hether the mesh refinement theme is able to refine all elements

n front of the crack tip. Because the mesh refinement criterion

oesn’t involve the crack propagation pathway but only considers

he relative displacement between neighboring nodes which indi-

ates the crack tip position, this mesh refinement scheme should

ork for the case of unstable crack extension as well. 

To assess the accuracy of the adaptive mesh refinement ap-

roach, we performed MD simulations of the equivalent full

tomistic models at the same displacement rates using LAMMPS

 Plimpton, 1995 ). The same LJ potential is used. An NVE
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Fig. 9. Load–displacement curves of dynamic fracture at two displacement rates in 

both CAC and MD simulations. It is found that for both rates, the BTD transition 

occurs at δ = 1 . 5 and 1.35 nm in CAC and MD simulations, respectively. 
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ensemble is employed with PBCs applied along the x -axis, which

is consistent with the atomistic domain in CAC. In both CAC and

MD, the load P is calculated by averaging the total load applied

on the top and bottom layers of elements/atoms. It is found that

the adaptive CAC gives similar load–displacement responses as MD

and both methods show that a higher displacement rate leads to

a higher specimen peak load. In MD, the BTD transition occurs

at δ = 1 . 35 nm with a smaller crack length for both displacement

rates than that of CAC, as shown in Fig. 9 . In addition, MD gives a

slightly higher peak load than adaptive CAC, which is attributed to

the reflection of waves of short wavelength at the atomistic/coarse-

grained domain interface ( Xiong et al., 2014a ). Two separate simu-

lations at a much lower displacement rate show that the BTD tran-

sition does not occur in either CAC or MD, i.e., the crack continues

propagating throughout the whole specimen, leaving a very clean

crack surface behind. A comparison of runtime between CAC and

MD is not presented here because simulations are performed us-

ing different software; a detailed analysis of the coarse-graining

efficiency in CAC can be found in work of Xu et al. (2015) . 

3.2. Curved dislocation migration 

As discussed in Section 2.3 , while the discontinuous elements

in CAC accommodate dislocations, mesh refinement is still some-

times necessary to model dislocation migration. Consider scenarios
Fig. 10. (a) Illustration of the scenario where the slip plane of a curved dislocation mig

in the coarse-grained domain. The curved dislocation (red S) has dominant leading screw

dislocation double cross-slips over the domain interface before continuing glide on a para

are refined to full atomistic resolution, the dislocation continues gliding on the same sli

by adaptive common neighbor analysis ( Stukowski, 2012 ): red are of hexagonal close p

deleted. A slightly different view, which is illustrated in the bottom right corner, is taken

references to color in this figure legend, the reader is referred to the web version of this 
n Fig. 4 as an example, Xiong et al. (2012a ) suggest that when the

lip direction of a dislocation moving from an atomistic domain

s not aligned with the interelement boundaries, it can either be

eflected by the atomistic/coarse-grained interface, migrate on the

nterface before moving into the nearest interelement boundary, or

e pinned by the interface followed by nucleation of a new dislo-

ation within the nearest interelement boundary. However, the in-

eraction between a dislocation and domain interface at a location

way from the interelement boundary was not quantified. 

In this work, we performed a CAC simulation to explore the

cenario where the slip plane of a mixed character curved dislo-

ation with dominant leading screw character migrating from the

tomistic domain is not aligned with the interelement boundaries

n the coarse-grained domain, as shown in Fig. 10 (a). The EAM po-

ential ( Daw and Baskes, 1984; Mishin et al., 2001 ) is employed

or FCC Cu. The lattice parameter and cutoff distance are 3.615

nd 5.60679 Å, respectively. The SD method with unequally-sized

omains is used for parallelization. A homogeneous out-of-plane

hear stress of 1 GPa is applied to drive the curved dislocation

igration, with a time step of 2 fs in both domains. It is found

hat if the elements marked by solid green lines in Fig. 10 (a) are

ot refined, the curved dislocation double cross-slips over the do-

ain interface before continuing glide on a parallel slip plane, as

hown in Fig. 10 (b) and (c); an aphysical back stress is introduced

o overcome the minimum energy barrier of Friedel–Escaig ( Püschl,

002 ) type double cross-slip, which is about 4 eV ( Kang et al.,

014 ). In CAC, two mesh refinement approaches are implemented

or dislocation migration: (1) a large element is manually split

nto two smaller ones with their boundaries along the dislocation

ath ( Xiong et al., 2012b ), and (2) the entire element is refined to

tomic scale, within which the dislocation can pass smoothly; the

econd approach is shown in Fig. 10 (d) and (e). 

In Fig. 11 we compare the strain profiles between two simu-

ations with and without mesh refinement. It is shown that the

AC simulation with mesh refinement gives a von Mises local

train invariant ηMises ( Shimizu et al., 2007 ) profile along the

islocation close to that of full atomistic simulation, while a strain

oncentration at the coarse-grained/atomistic domain interface

ccurs in the CAC simulation without mesh refinement. The strain

nvariant ηMises , which is calculated using OVITO ( Stukowski, 2010 )

o track the dislocation pathway in correspondence with Fig. 10 , is

efined by 

Mises = 

√ 

E 2 
12 

+ E 2 
13 

+ E 2 
23 

+ 

(E 11 −E 33 ) 2 + (E 22 −E 33 ) 2 + (E 11 −E 22 ) 2 

6 

(8)
rating from the atomistic domain is not aligned with the interelement boundaries 

 character. If the elements marked by solid green lines in (a) are not refined, the 

llel slip plane, as shown in (b) and (c). (d) If the elements within solid green lines 

p plane without cross-slip, as shown in (e). Atoms in (b), (c), and (e) are colored 

acked (HCP) local structure, blue are BCC, while FCC and unrecognized atoms are 

 for (b), (c), and (e) to better image the double cross-slip. (For interpretation of the 

article.) 
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Fig. 11. The atoms are colored by von Mises local strain invariant ηMises ( Shimizu 

et al., 2007 ) in (a) full atomistic simulations, (b) CAC simulations with mesh refine- 

ment, and (c) CAC simulations without mesh refinement, respectively. In (d), it is 

found that the CAC simulation with mesh refinement gives a local strain invariant 

profile along the dislocation close to that of full atomistic simulation, while a strain 

concentration at the coarse-grained/atomistic domain interface occurs in the CAC 

simulation without mesh refinement. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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here E ij are components of the Green–Lagrange strain tensor E

 Zimmerman et al., 2009 ). 

Note that the mesh refinement used for dislocation migration is

erformed manually here. We track the position of dislocation by

nalyzing the output data every 100 time steps. If some elements

re to be refined, the simulation is terminated manually, before the

onfigurations (positions and velocities of all nodes and atoms), as

ell as the indices of elements to be refined, are saved to restart

les. Then a new simulation begins by reading the restart files and

efining the marked elements following Eqs. (5) and (6) . Unfortu-

ately, a fully adaptive automated mesh refinement procedure for

islocation migration in a 3-D model remains challenging and is

n ongoing work. The key to such an approach is to identify the

islocations concurrent with the simulations: in the atomistic do-

ain, a dislocation can be detected using a dislocation extraction

lgorithm ( Stukowski et al., 2012 ); in the coarse-grained domain,

 nodal-based dislocation detection method can be employed to

rack dislocations, which will be presented in a future publication. 

. Conclusions 

In this paper, two mesh refinement schemes are proposed for

he CAC method, a concurrent multiscale technique. Unlike in FEM

nd most multiscale methods where a continuous mesh is em-

loyed, CAC accommodates dislocations between discontinuous el-

ments. The advantage of CAC in mesh refinement includes (1)

o interelement compatibility is enforced after refinement, which

implifies the procedure, (2) a minimum number of elements are

efined to pass dislocations, and (3) it is straightforward to deter-

ine the positions of new atoms because the elements in CAC are

ssumed to correspond to actual atomic sites in lattice. These fea-
ures distinguish CAC from most mesh refining multiscale meth-

ds and facilitate an efficient and straightforward implementation

f mesh refinement schemes. Two parallel algorithms for CAC are

iscussed, which are able to re-distribute workload between pro-

essors during mesh refinement. 

We first introduce an adaptive mesh refinement criterion and

pply it on BTD transition in dynamic fracture of a notched speci-

en. Compared with MD, our adaptive CAC approach gives similar

oad–displacement response and local stress at crack tip, as well

s an accurate prediction of the BTD transition, while eliminating

ost of the degrees of freedom. 

We also develop a mesh refinement scheme for dislocations

nd apply it to a scenario where the slip plane of a curved

islocation migrating from the atomistic domain is not aligned

ith the interelement boundaries in the coarse-grained domain.

he CAC simulation performed with mesh refinement gives a local

train invariant profile along a dislocation close to that of full

tomistic simulation, while a strain concentration at the coarse-

rained/atomistic domain interface occurs in the CAC simulation

ithout mesh refinement. 

With both mesh refinement schemes, the extended CAC method

xpands its capability to handle the evolution of more complex

xtended defect structures. However, this work by no means

ompletely addresses the issues of consistency of thermodynamics

etween atomistic and continuum domains during adaptive mesh

efinement. In the future, we will develop a fully adaptive mesh

efinement scheme for dislocation migration in 3-D models. Other

ypes of mesh refinement under consideration include, but are

ot limited to, p -refinement, h -refinement in which a collection

f atoms are coarsened into elements, as well as an adaptive

onversion between a first nearest neighbor element, which is

aster but less accurate and used away from defects, and a second

earest neighbor element, which is slower but more accurate and

sed in the vicinity of defects ( Xu et al., 2015 ). Attention will

lso be paid in constructing an a posteriori error estimator as well

s dealing with multiple time scale issues which are potentially

elevant to mesh refinement. 
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