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We present a novel distributed-memory parallel implementation of the concurrent atomistic-
continuum (CAC) method. Written mostly in Fortran 2008 and wrapped with a Python scripting
interface, the CAC simulator in PyCAC runs in parallel using Message Passing Interface with
a spatial decomposition algorithm. Built upon the underlying Fortran code, the Python interface
provides a robust and versatile way for users to build system configurations, run CAC simulations,
and analyze results. In this paper, following a brief introduction to the theoretical background of the
CAC method, we discuss the serial algorithms of dynamic, quasistatic, and hybrid CAC, along with
some programming techniques used in the code. We then illustrate the parallel algorithm, quantify
the parallel scalability, and discuss some software specifications of PyCAC; more information can
be found in the PyCAC user’s manual that is hosted on www.pycac.org.

I. INTRODUCTION

Despite substantial insights provided by atomistic
simulations over the past few decades into the basic
mechanisms of metal plasticity, there is an important
limitation to these techniques.1,2 Specifically, full atom-
istic models are impractical in simulating actual experi-
ments of plastic deformation of metallic materials owing
to the fact that dislocation pile-ups have long range stress
fields that extend well beyond what can be captured using
classical molecular dynamics (MD) and molecular statics
(MS).3,4 This has motivated researchers to develop
partitioned-domain (or domain decomposition) multiscale
modeling approaches that retain atomistic resolution in
regions where explicit descriptions of nanoscale structure

and phenomena are essential, while employing contin-
uum treatment elsewhere.5,6

One framework for such mixed continuum/atomistic
modeling is the concurrent atomistic-continuum (CAC)
method.7 In a prototypical CAC simulation, a simulation
cell is partitioned into a coarse-grained domain at
continuum level and an atomistic domain,8 employing
a unified atomistic-continuum integral formulation of the
governing equations with the underlying interatomic
potential as the only constitutive relation in the system.
The atomistic domain is updated in the same way as in an
atomistic simulation while the coarse-grained domain
contains elements that have discontinuities between
them.9 As such, CAC admits propagation of displace-
ment discontinuities (dislocations and associated intrinsic
stacking faults) through the lattice in both coarse-grained
and atomistic domains.10 Distinct from most partitioned-
domain multiscale methods in the literature, the CAC
method (i) describes certain lattice defects and their
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interactions using fully resolved atomistics; (ii) preserves
the net Burgers vector and associated long range stress
fields of curved, mixed character dislocations in a suffi-
ciently large continuum domain in a fully 3D model11;
(iii) employs the same governing equations and interatomic
potentials in both atomistic and coarse-grained domains to
avoid the usage of phenomenological parameters, essential
remeshing operations, and ad hoc procedures for passing
dislocation segments between the two domains.12,13

In recent years, the CAC approach has been used as an
effective tool for coarse-grained modeling of various
nano/microscale thermal and mechanical problems in
a wide range of monatomic and polyatomic crystalline
materials. Important static properties of pure edge, pure
screw, and mixed-type dislocations in metals, including
the generalized stacking fault energy surface, dislocation
core structure/energy/stress fields, and Peierls stress, have
been benchmarked in the coarse-grained domain in CAC
against atomistic simulations, and the trade-off between
accuracy and efficiency in the coarse-graining procedure
has been quantified.8,14 The success of these calculations
suggests the viability of using the CAC method to tackle
more complex dislocation-mediated metal plasticity prob-
lems. Particularly for pure metals, CAC has been adopted
to simulate surface indentation, quasistatic,8 subsonic,15

and transonic16 dislocation migration in a lattice, dis-
locations passing through the coarse-grained/atomistic
domain interface,8 screw dislocation cross-slip,17 dislo-
cation/void interactions,18 dislocation/stacking fault inter-
actions,19 dislocations bowing out from obstacles,20

dislocation multiplication from Frank–Read sources,14

sequential slip transfer of dislocations across grain
boundaries (GBs),21,22 and brittle-to-ductile transition in
dynamic fracture.15 It is shown that CAC provides largely
satisfactory predictive results at a fraction of the compu-
tational cost of the fully atomistic version of the same
models. While the net Burgers vector of dislocations is
preserved in the coarse-grained domain, we remark that
there exist coarse-graining errors in the dislocation de-
scription.8 However, (i) these errors are not essential if
the lattice defects are rendered in atomistic resolution
because the dislocation will have a correct core structure
once it migrates into the atomistic domain in which
critical dislocation/defect interactions take place21,22 and
(ii) even with fully coarse-grained models, CAC is useful
for problems that do not require highly accurate full-field
reproduction of atomistic simulations (e.g., large models).

In this article, we introduce PyCAC, a novel numerical
implementation of the CAC approach. Written mostly in
Fortran 2008, PyCAC is equipped with a Python scripting
interface to create a more efficient, user-friendly, and
extensible CAC simulation environment, which consists
of a CAC simulator and a data analyzer. In the remainder
of this paper, we start with the theoretical background of
CAC in Sec. II. Next, we discuss the serial algorithms of

dynamic, quasistatic, and hybrid CAC, along with some
programming techniques in the PyCAC code in Sec. III.
Then, we present the parallelization steps in the CAC
simulator in Sec. IV and the PyCAC software in Sec. V. In
the end, a summary and discussions of future research
directions are provided in Sec. VI.

II. THEORETICAL BACKGROUND

The theoretical foundation of the CAC method is the
atomistic field theory (AFT),23,24 which is an extension of
the Irving–Kirkwood’s nonequilibrium statistical me-
chanical formulation of “the hydrodynamics equations
for a single component, single phase system”25 to a two-
level structural description of crystalline materials. It
employs the two-level structural description of all crystals
in solid state physics, i.e., the well known equation of
“crystal structure 5 lattice 1 basis”.26 As a result of the
bottom-up atomistic formulation, all the essential atom-
istic information of the material, including the crystal
structure and the interaction between atoms, is built in the
formulation. The result is a CAC representation of
balance laws for both atomistic and continuum coarse-
grained domains in the following form23,24:

dqa

dt
þ qa =x � vþ =ya � Dva

� � ¼ 0 ; ð1Þ

qa
d

dt
vþ Dvað Þ ¼ =x � ta þ =ya � sa þ faext ; ð2Þ

qa
dea

dt
¼ =x � qa þ =ya � ja þ ta : =x vþ Dvað Þ
þ sa : =ya vþ Dvað Þ ; ð3Þ

where x is the physical space coordinate; ya (a 5 1, 2,
. . ., Na with Na being the total number of atoms in a unit
cell) are the internal variables describing the position of
atom a relative to the mass center of the lattice cell
located at x; qa, qa(v 1 Dva), and qaea are the local
densities of mass, linear momentum, and total energy,
respectively, where v 1 Dva is the atomic-level velocity
and v is the velocity field; faext is the external force field;
ta and qa are the stress and heat flux tensors due to the
homogeneous deformation of lattice, respectively; sa and
ja are the stress and heat flux tensors due to the
reorganizations of atoms within the lattice cells, respec-
tively; and the colon : denotes the scalar product of two
second rank tensors A and B, i.e., A:B 5 AijBij.

For conservative systems, i.e., a system in the absence of
an internal source that generates or dissipates energy, the
energy equation [Eq. (3)] is equivalent to the linear
momentum equation [Eq. (2)]. As a result, only the first
two governing equations [Eqs. (1) and (2)] are explicitly
implemented in the CAC simulator. Employing the classical
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definition of kinetic temperature, which is proportional to
the kinetic part of the atomistic stress, the linear momentum
equations can be expressed in a form that involves faext,
internal force density faint, and temperature T,27,28

qa€ua xð Þ þ cakB
DV

=xT ¼ faint xð Þ þ faext xð Þ;
a ¼ 1; 2; . . . ;Na ;

ð4Þ

where ua is the displacement of the ath atom at point x,
the superposed dots denote the material time derivative,
DV is the volume of the finite-sized material particle (the
primitive unit cell for crystalline materials) at x, kB is the

Boltzmann constant, ca ¼ ma=
PNa

a¼1
ma, T is the absolute

temperature (in K), and faint xð Þ ¼ =x � tað Þ is a nonlinear
nonlocal function of relative atomic displacements. For
systems with a constant temperature field or a constant
temperature gradient, the temperature term in Eq. (4),
which can be denoted as faT , has the effect of a surface
traction on the boundary or a body force in the interior of
the material.28 In the CAC simulator, the term faT has not
yet been implemented because, as will be discussed in Sec.
V.A, the current version of PyCAC can only simulate
materials in a constant temperature field, in which case the
effect of faT on mechanical properties is small. We remark
that there is ongoing work in interpreting faT and in
comparing different descriptions of temperature in the
coarse-grained domain29,30; new understanding obtained
will be implemented in future versions of PyCAC.

For monatomic crystals, ya 5 0 and Na 5 1; the
governing equations in the physical space reduce to

dq
dt

þ q=x � v ¼ 0 ; ð5Þ

q
dv

dt
¼ =x � tþ fext ; ð6Þ

q
de

dt
¼ =x � qþ t : =xv ; ð7Þ

and, for conservative systems, in the absence of faT , Eq.
(4) becomes

q€u ¼ f int þ fext : ð8Þ

Discretizing Eq. (8) using the Galerkin finite element
method yields

Z
X xð Þ

Un xð Þ q€u xð Þ � f int xð Þ � fext xð Þð Þdx ¼ 0 ; ð9Þ

where X is the simulation domain and Fn is the finite
element shape function. In the coarse-grained domain, the

integral in Eq. (9) can be evaluated using numerical
integration methods such as Gaussian quadrature. It is,
however, difficult to employ a unified set of integration
points within an element because the internal force
density fint can be a complicated and highly nonlinear
function of x, whose order and distribution are usually
difficult to anticipate a priori.8,11 To circumvent this
problem, we divide each element into a number of
nonoverlapping subregions, whose order is usually lower
than that within the entire element and is thus more easily
approximated. In the CAC simulator, within each sub-
region, the first order Gaussian quadrature with one
integration point at the center of the subregion is adopted;
then the integrals of all subregions within an element are
summed, resulting in the force on node n as8

F n ¼

P
l
xlUlnF

l

P
l
xlUln

þ F
n
ext ; ð10Þ

where xl is the weight of integration point l, Fln is the
shape function of node n at integration point l, Fl is the
interatomic potential-based atomic force on integration
point l, and F

n
ext is the external force applied on node n.

Once the nodal positions are determined, the positions of
atoms within an element are interpolated from those of
the nodes using the shape function F; in other words, all
elements are isoparametric.

In the atomistic domain, an atom can be viewed as
a special finite element for which the shape function reduces
to 1 at the atomic site, and the force on atom a is simply

Fa ¼ �=aE þ Fa
ext ; ð11Þ

where E is the interatomic potential-based internal energy
and Fa

ext is the external force applied on atom a. The
CAC method, as a coarse-grained atomistic methodology,
reduces to standard MD or MS if only fully resolved
atomistic domains are considered in the simulation, in
which case Eq. (10) is no longer relevant and only
Eq. (11) takes effect. In other words, the PyCAC code is
capable of performing fully-resolved MD/MS simulations
if only atoms are involved. In the remainder of this paper,
both F and F are referred to in combination as F.

III. SERIAL ALGORITHMS

While the CAC simulator runs in parallel, we focus on
the serial algorithms of the CAC simulator and the data
analyzer in this section to elucidate their differences from
atomistic methods. The parallelization steps in the CAC
simulator will be detailed in Sec. IV.

Similar to the MD and MS methods in atomistic
simulations, users of PyCAC can choose among dynamic
CAC, quasistatic CAC, and hybrid CAC, as illustrated in
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the serial CAC simulation scheme (Fig. 1). In all CAC
simulations, the nodes in the coarse-grained domain and
the atoms in the atomistic domain interact with each other
at each simulation step and are updated concurrently.

A. Dynamic CAC

In dynamic CAC, the forces F are used in the equation
of motion

m€R ¼ F ; ð12Þ

or its modified version, where m is the normalized
lumped or consistent mass in the coarse-grained domain
or the atomic mass in the atomistic domain and R is the
nodal/atomic position. Three options are provided: ve-
locity Verlet (vv), quenched dynamics (qd), and Lange-
vin dynamics (ld), as illustrated in Fig. S1
(Supplementary Material).

For both vv and qd options, Eq. (12) is solved with the
velocity Verlet algorithm31; with qd, the nodal/atomic
velocities _R are also adjusted by nodal/atomic forces F
following the “quick-min” MD approach32 to force the
system energy toward a minimum at 0 K,21,22 i.e.,

_R ¼
0; if _R � F, 0

_R�Fð ÞF
Fj j2 ; otherwise

8<
: : ð13Þ

With the ld option, which is used to keep a constant
finite system temperature,15,17 Eq. (12) is extended by
two terms, i.e.,

m€R ¼ F� cm _R þH tð Þ ; ð14Þ

where c is the damping coefficient with a unit of frequency
and H(t) is the time-dependent Gaussian random variable
with zero mean and variance of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mckBT=Dt

p
, where kB is

the Boltzmann constant and Dt is the time step. Numeri-
cally, both Eqs. (12) and (14) are solved using the velocity
Verlet formulation of the Brünger–Brooks–Karplus

integrator.33 In particular, when T5 0 K, Eq. (14) becomes
damped MD, which is used for dynamic relaxation at near
0 K temperature.

In the early version of the AFT formulation,23 the local
densities were defined as ensemble averages following
the Irving–Kirkwood formulations,25 and hence, the
governing equations were written in terms of ensemble-
averaged local densities. In the later version of the AFT
formulation,24 the local densities are instantaneous quan-
tities.34 Consequently, the ensembles in AFT (and CAC)
differ from other statistical mechanical formulations that
follow the Gibbs’ equilibrium statistical theory of ensem-
bles. Popular equilibrium ensembles include (i) the
microcanonical ensemble, which describes a system iso-
lated from its surroundings and governed by Hamilton’s
equations of motion (NVE), (ii) the canonical ensemble,
which describes a system in constant contact with a heat
bath of constant temperature (NVT), and (iii) the iso-
thermal–isobaric ensembles, which describe systems in
contact with a thermostat at temperature T and a barostat
at pressure P (NPT).35 These ensembles, known as
equilibrium ensembles and allowing a wide variety of
thermodynamic and structural properties of systems to be
computed, can be realized in dynamic CAC, in which
a finite temperature can be achieved via lattice dynamic-
based shape functions.36 Alternatively, in the current
code, a Langevin thermostat is realized using the ld
option while a constant pressure/stress is maintained via
a Berendsen barostat37; other thermostat and barostat may
also be implemented.

Prior dynamic CAC applications using the vv option
include phase transitions,28 crack propagation and
branching,38,39 nucleation and propagation of disloca-
tions,7,16,40–42 formation of dislocation loops,43 defect/
interface interactions,44,45 phonon/dislocation interac-
tions,46,47 and phonon/GB interactions48,49; prior dy-
namic CAC simulations using the ld option include
dislocation/void interactions18 (T � 0 K), dislocation
migration15 (T � 0 K), and screw dislocation cross-slip17

(T 5 10 K). These simulations have revealed the un-
derlying mechanisms for a variety of experimentally

FIG. 1. Serial CAC simulation scheme.
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observed phenomena, including, but not limited to,
phonon focusing, phonon-induced dislocation drag, pho-
non scattering by interfaces and by other phonons, co-
existence of the coherent and incoherent propagation of
ultrafast heat pulses in polycrystalline materials, and
Kapitza thermal boundary resistance.

B. Quasistatic CAC

In quasistatic CAC, which is analogous in character to
MS, F is used to systematically adjust the nodal/atomic
positions at each increment of system loading during the
energy minimization.8 Four energy minimization algo-
rithms are introduced: conjugate gradient (cg), steepest
descent (sd), quick-min (qm), and fast inertial relaxation
engine (fire), as illustrated in Fig. S2 (Supplementary
Material). The energy minimization procedure stops
when either the number of iterations reaches a maximum
value or the energy variation between successive iter-
ations divided by the current energy is less than a toler-
ance. Here, the “energy” consists of the interatomic
potential-based internal energy E and the traction bound-
ary conditions-induced external energy.

Both cg and sd algorithms follow the standard procedure
in MS, which contains an outer iteration to find the search
direction and the inner iteration to determine the step size.50

For the qm and fire algorithms, there is no inner iteration.
Instead, dynamic-like runs are iteratively performed at each
loading increment until the energy converges. The qm
algorithm32 is based on quenched dynamics, which is also
used in dynamic CAC, except that in the latter case, only
one quenched dynamics iteration is carried out at each
simulation step. The fire algorithm is based on a local
atomic structure optimization algorithm.51,52

A comparison of these four algorithms was presented
by Sheppard et al.32 In general, the cg algorithm is the
most commonly used in atomistic simulations53 and has
been used in several quasistatic CAC simulations,8,14,19,20

while the fire algorithm is considered the fastest in certain
cases.51

C. Hybrid CAC

Besides the dynamic CAC and quasistatic CAC, the
CAC simulator provides a third option: “hybrid CAC”,
which allows users to perform periodic energy minimi-
zation during a dynamic CAC simulation, as illustrated in
Fig. 2. Users can choose among all three dynamic options
and four energy minimization algorithms. Hybrid CAC
has been used in Refs. 21 and 22 to simulate dislocation
pile-ups across GBs: a series of dislocations migrate and
interact with GBs during the quenched dynamic run,
while the fully relaxed GB structures, important in
predicting accurate dislocation/GB interaction mecha-
nisms, are obtained via periodic energy minimization
using the conjugate gradient algorithm. In practice, this

enables the multiscale optimization for a sequence of
constrained nonequilibrium states (defect configurations)
in materials.11 Accordingly, hybrid CAC yields results
similar to quasistatic CAC at lower computational cost
because the quenched dynamic run, which pertains to 0 K
(or very nearly so), is more efficient than the conjugate
gradient algorithm.21

D. Programming techniques

A framework for mixed atomistic/continuum model-
ing, the CAC algorithm adopts common finite element
and atomistic modeling techniques. In the coarse-grained
domain, the Garlekin method and Gaussian quadrature
are used to solve Eq. (9).8 To admit dislocation nucle-
ation and migration, 3D rhombohedral elements with
faces on {111} planes in a face-centered cubic (FCC)
lattice or {110} planes in a body-centered cubic (BCC)
lattice are used, as shown in Fig. 3. Within each element,
lattice defects are not allowed and the displacement field
has C1 continuity.8 Between elements, however, neither
displacement continuity nor strain compatibility is re-
quired. In this way, lattice defects are accommodated by
discontinuous displacements between elements, poten-
tially including both sliding and separation.11

In the atomistic domain, Newton’s third law is used to
promote efficiency in calculating the force, pair potential,
local electron density, and stress. In addition, due to the
similarity between CAC and atomistic methods regarding
the crystal structure and force/energy/stress calculations,
the short-range neighbor search employs a combined cell
list54 and Verlet list55 method. The neighbor lists, of the
integration points in the coarse-grained domain and of the
atoms in the atomistic domain, are updated on-the-fly
when any node/atom is displaced by a distance that is
larger than half a user-defined bin size. Displacement,
traction, or mixed boundary conditions can be realized by
assigning a displacement and/or force to the nodes/atoms
within a short distance from the simulation cell bound-
aries. However, CAC with the present coarse-graining
strategy differs from standard atomistic methods in five
main aspects as follows:

(i) The rhombohedral element shape and the fact that
the finite elements may take any crystallographic orien-
tations with respect to a fixed coordinate system prevent
one from constructing a parallelepipedonal coarse-
grained domain. To facilitate application of the periodic
boundary conditions (PBCs), one can fill in the otherwise
jagged interstices at simulation cell boundaries with
atoms, e.g., the dark red and dark green circles in
Fig. 4 since in this example, PBCs are applied along
the y direction.

(ii) The other issue in implementing PBCs is that an
object crossing through one face of the simulation cell
should enter the cell through the opposite face. In

S. Xu et al.: PyCAC: The concurrent atomistic-continuum simulation environment
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atomistic simulations, this is realized via displacement of
certain atoms to bring them back inside the cell,6 i.e.,

Rv ¼ Rv þ Lv; if Rv ,R
v
lb

Rv � Lv; if Rv > R
v
ub

�
; ð15Þ

where Rv is the position of an atom along the v
direction, Lv, Rv

lb, and Rv
ub are the length, lower

boundary, and upper boundary of the simulation cell

along the v direction, respectively. In the coarse-grained
domain, however, care must be taken when not all nodes
of one element are displaced, i.e., an element is cut
through by a periodic boundary.11 In this case, the
nodal positions should be reinstated to interpolate
the positions of atoms within the element. Subse-
quently, the reinstated nodes and some of the interpo-
lated atoms are displaced following Eq. (15). More
details of this procedure can be found in Appendix C
of Ref. 8.

FIG. 2. Serial hybrid CAC simulation scheme. The quasistatic CAC procedures are highlighted in yellow, while the remaining procedures belong
to the dynamic CAC simulation scheme. At the diamond box with “Quasistatic?”, the code decides, based on some user-defined input parameters,
whether it switches from dynamic run to quasistatic run.

FIG. 3. (a, b) A 2D CAC simulation domain consisting of an atomistic domain (right) and a continuum domain (left).8 In (a), an edge dislocation
(red t) is located in the atomistic domain. Upon applying a shear stress on the simulation cell, the dislocation migrates into the continuum domain
in (b), where the Burgers vector spreads out between discontinuous finite elements. (c, d) In 3D, elements have faces on {111} planes and on {110}
planes in an FCC and a BCC lattice, respectively. The positions of atoms (open circles) within each element are interpolated from the nodal
positions (filled circles).
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(iii) Compared with the two-body Lennard-Jones (LJ)
pair potential,56 the many-body embedded-atom method
(EAM) potential57 adopts a more complicated formula-
tion for the force F, i.e.,57

Fk ¼
X

j
j 6¼ k

@f Rkj
� �
@Rkj

þ @w �qk
� �
@�qk

þ @w �qjð Þ
@�qj

� �
@q Rkj

� �
@Rkj

Rkj

Rkj
;

��

ð16Þ

where f is the pair potential, w is the embedding
potential, �q is the host electron density, and Rkj is the
vector from atom k to atom j with norm Rkj, i.e.,

Rkj ¼ Rj � Rk ; ð17Þ

�qk ¼
X

j
j 6¼ k

qkj Rkj
� �

; ð18Þ

where q is the local electron density contributed by atom
j at site k.

In the atomistic domain, with the neighbor lists
established for all atoms, the host electron densities �q
of all atoms are first calculated using Eq. (18), followed
by the calculation of the atomic forces F of all atoms
using Eq. (16), with the aid of Newton’s third law in
both calculations. In the coarse-grained domain, how-
ever, only the integration points have a neighbor list. On
the other hand, in calculating the force on one in-
tegration point k using Eq. (16), one needs to know the
host electron density �q j of its neighbors j, any of which,
according to Eq. (18), requires a neighbor list for atom j,
which may not be an integration point and does not
naively have a neighbor list. Thus, the direct calculation
of all �q j would require the establishment of neighbor

lists for a lot of nonintegration-point atoms and would
include a significant number of repeated computations
because the atoms involved are located in close prox-
imity. We found that this is computationally expensive,
especially so in a large element with sparse integration
points.11 Therefore, an approximation is introduced that
within one element, �q of all interpolated atoms in one
subregion is assumed equal to that of the integration
point in the same subregion.8 In this way, one needs
only to calculate �q of the integration points, increasing
the efficiency substantially. It was found that this
approximation only slightly affects the dislocation
configuration while retaining the overall Burgers vec-
tor.8 Note that this approximation does not apply to the
simple LJ pair potential since it does not involve the
electron density.

(iv) As mentioned in Sec. I, a CAC simulation cell
generally consists of a coarse-grained domain and an
atomistic domain, with the elements and atoms con-
structed following different crystallographic orienta-
tions in different grains. Elements of different sizes
may exist in the coarse-grained domain. Within one grain,
to distinguish between atoms and elements as well as
between elements of different sizes, the term “subdomain”
is introduced to refer to a region in a CAC simulation cell
with only atoms or only elements of the same size, as
illustrated in Fig. 4. Users can build single crystal,
bicrystal, or polycrystal models with any number of
subdomains and/or grains that are stacked along any
Cartesian axis, e.g., the y axis in Fig. 4. The planar
interface between grains and subdomains is not necessarily
normal to the Cartesian axes but can have a user-defined
orientation exhibited by the tilt angle h in Fig. 4.

(v) The last issue lies in the visualization of the CAC
results, which is supported by the data analyzer.
Naturally, both the real atoms in the atomistic domain
and the interpolated atoms in the coarse-grained domain
can be visualized in the same way as in the atomistic

FIG. 4. A 2D schematic of the grains and subdomains in a CAC simulation cell. Squares are finite elements and circles are atoms. In grain I, there
are two subdomains; subdomain i contains elements of the same size while subdomain ii is fully atomistically resolved. In grain II, there are three
subdomains; subdomains i and iii have full atomistic resolution, while subdomain ii contains elements of the same size. In grain III, there is only
one subdomain containing elements of the same size. The elements are rotated differently in three grains following their respective crystallographic
orientations. Note that the dark red and dark green atoms at the leftmost and rightmost boundaries are added after all grains/subdomains are defined,
to fill in the otherwise jagged interstices at the periodic boundaries because PBCs are applied along the y direction but not the x direction. Also note
that the planar interface between grains and subdomains are not necessarily normal to the Cartesian axes but can have a user-defined orientation
angle h.
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simulations using common atomistic configuration viewers
such as OVITO,58 AtomEye,59 VMD,60 and Atom-
Viewer.61,62 Unfortunately, these atomistic viewers do
not naively support finite elements. Thus, we are in need
of software that can concurrently render both elements and
atoms as well as some nodal/atomic quantities such as
energy, force, velocity (not for quasistatic CAC), and
stress. For this purpose, the CAC simulator outputs vtk
files for both elements and atoms, which can be visualized
in the freely available software package ParaView,63 such
that CAC results are accessible to a larger community.

IV. PARALLELIZATION

A. Parallel algorithm

CAC simulations employ a distributed-memory paral-
lel algorithm using the Message Passing Interface
(MPI).64 Among the three parallel algorithms commonly
used in atomistic simulations—atom decomposition
(AD), force decomposition (FD), and spatial decomposi-
tion (SD), SD yields the best scalability and the smallest
communication overhead between processors and is
therefore used in the CAC simulator.11 At each simula-
tion step, all atoms in the coarse-grained domain are
interpolated from the nodal positions, enabling the
employment of the same parallel atomistic algorithm
used in the state-of-the-art atomistic modeling software
LAMMPS.65 In SD, each processor occupies a domain,
with a certain number of local atoms. However, not all
atoms that are within the interatomic potential cutoff
distance of the local atoms are in the same processor
domain. To address this problem, each processor domain
is expanded outwards along the three Cartesian axes by
a distance that equals the sum of the cutoff distance and
a user-defined bin size; the atoms within the expanded
regions are termed “ghost atoms”. Then, real-time posi-
tions of the ghost atoms are exchanged between neigh-
boring processors at each step, with the Newton’s third
law–induced numerical complication in the atomistic
domain properly handled. The position of each node in
the coarse-grained domain is also updated in this process
because it is the center of mass of all atoms at that node,
which is simply the atomic position at that node for
monatomic crystals. Note that the ghost atoms are deleted
and recreated every time the neighbor lists are updated.
We emphasize that the ghost atoms, widely used in SD-
based parallel atomistic simulations, are not related in any
way to the “ghost force” at the continuum/atomistic
domain interface in some multiscale modeling
approaches, e.g., the local QC method66; there is no
ghost force in both undeformed and affinely deformed
perfect lattices in CAC because all the nodes/atoms are
nonlocal. The parallel CAC simulation scheme is pre-
sented in Fig. 5.

Unlike AD and FD, the workload of each processor in
SD, which is proportional to the number of interparticle
interactions, is not guaranteed to be the same. On the one
hand, in parallel computing, it is important to assign
processors approximately the same workload which, in
CAC simulations, is the calculation of force, energy,
stress, position, velocity (not for quasistatic CAC), and
electron density (only for the EAM potential). On the
other hand, in CAC, the simulation cell has nonuniformly
distributed integration points in the coarse-grained do-
main and atoms in the atomistic domain, such that the
workload is poorly balanced if one assigns each pro-
cessor an equally sized cubic domain as in full atom-
istics.67 Thus, it is desirable to employ an algorithm to
address the workload balance issue, which is not unique
to CAC but is also encountered by other partitioned-
domain multiscale modeling methods with highly hetero-
geneous models.68,69

In parallel CAC simulations involving both coarse-
grained and atomistic domains, only the force/energy/
host electron density (the last quantity pertains only to the
EAM potential) of the integration points and atoms
(referred to in combination as “evaluation points”) are
computed. Since the local density of interactions does not
vary significantly within the simulation cell, the number
of evaluation points is used as an approximation of the
workload and each processor domain is assigned approx-
imately the same number of evaluation points, which is
re-evaluated at regular time intervals.11 It follows that at
periodic boundaries filled in with atoms or in the vicinity
of lattice defects where full atomistics is used, the
processors are assigned smaller domains that contain
more atoms than other processors whose domains contain
more elements.8

Another issue that does not exist in parallel atomistic
simulations but requires special attention in parallel finite
element implementations is that in the latter, some
elements may be shared between neighboring process-
ors.11 In CAC, this issue originates from the difference in
shape between the parallelepipedonal processor domain
and the rhombohedral finite elements with arbitrary
crystallographic orientations, the latter of which also
results in the jagged simulation cell boundaries, as
discussed in Sec. III.D. Instead of having all relevant
processors calculate the same quantities within a shared
element, in the CAC simulator, each relevant processor
only calculates quantities of the integration points its
domain contains; then these quantities are summed and
sent to all relevant processors. This simple summation is
feasible because of the trilinear shape function used in the
finite elements.8 Particular attention must be paid in the
cases of (i) the EAM potential, where the host electron
density approximation (Sec. III.D) should be correctly
implemented because a subregion within an element may
also be shared between processors and (ii) the Langevin
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dynamics, where different processors may have different
H(t) [Eq. (14)] for the nodes of the same shared element
because H(t) is a processor-dependent random variable;
in practice, for a shared element, H(t) for the same node
is averaged among all relevant processors. Distinct from
atomistic simulations, each relevant processor needs to
have the same copy of nodal positions of all its shared
elements in its local memory to correctly interpolate its
integration points’ and atoms’ neighbors. In practice, this
leads to a lower parallel scalability and a poorer memory
usage scaling than full atomistics.

We remark that in the CAC simulator, the input and
output parts are not fully parallelized. Instead, following
LAMMPS,65 the input script is first read by the root
processor, which then builds the simulation cell from
scratch or reads necessary information from a restart file.
The simulation cell information is stored in some global
arrays accessible only to the root processor. It follows
that the root processor distributes all elements/nodes/
atoms to all processors (including the root itself), which
store the relevant data in local arrays and conduct local
computations. For the output, all processors (including
the root processor) send their local results to some global
arrays accessible only to the root processor, which then
writes the information to the file system. All global arrays
are eliminated as soon as they are used to minimize the
memory usage.

B. Parallel scalability

The primary motivation for developing the CAC
method, or any partitioned-domain multiscale modeling
method, is to run simulations at a cost lower than that of
the full atomistic method. In our early work, the coarse-
graining efficiency—the serial runtime of a full coarse-
grained CAC simulation divided by that of an equivalent
full atomistic simulation—was found to be about 50
when all elements are of second nearest neighbor (2NN)
type and each contains 9261 atoms.8 It was also found

that the coarse-graining efficiency for a quasistatic run is
higher than that of a dynamic run.8

In this section, we conduct benchmark simulations to
analyze the CAC simulator’s parallel scalability. There
are two basic ways to measure the parallel scalability of
a given application: strong scaling and weak scaling.70

As the number of processors increases, the problem size
(e.g., number of elements/atoms in a simulation cell)
remains the same in strong scaling but increases propor-
tionally in weak scaling to keep a constant problem size per
processor. Consequently, each processor communicates the
same/smaller amount of data with its neighbors in weak/
strong scaling, respectively. In this section, we investigate
both strong (Fig. 6) and weak (Fig. 7) scaling of the CAC
simulator by conducting fully coarse-grained simulations in
Ni single crystals. To further analyze the parallel perfor-
mance, the total runtime of each job is partitioned into four
components: the time for interatomic interactions, the time
for establishing/updating neighbors, the time for interpro-
cessor communication, and the time for input/output. Each
runtime component is calculated by averaging the corre-
sponding component among all processors. The memory
usage and processor workload are also analyzed. All
simulations run on the Bridges cluster, with a peak speed
of 1.35 petaflops per second, at National Science Founda-
tion (NSF) Extreme Science and Engineering Discovery
Environment (XSEDE).71 In each simulation, up to 1024
processors are used on Hewlett Packard Enterprise Apollo
2000 servers using 2.30 GHz Intel Xeon E5-2695 v3 CPUs
with 35 MB cache size and Intel Omni-Path Fabric
interconnection. Each node has 2 CPUs (14 cores per
CPU), 128 GB RAM, and 8 TB storage. We emphasize that
the simulations conducted here are solely for the purpose of
code performance analysis and are not intended to shed
light on any realistic material response.

In strong scaling, four simulation cells, with the
number of 2NN elements being 3430, 29,660, 102,690,
and 246,520, respectively, are used. With a uniform
element size of 2197 atoms and a lattice constant of

FIG. 5. Parallel CAC simulation scheme. Procedures that do not exist in the serial scheme (Fig. 1) are highlighted in yellow. Note that (i) in the
serial scheme, the root processor does everything and (ii) the two procedures in the dashed box are conducted back and forth until the output begins.
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3.52 Å, the largest simulation cell has a size of 182.6 �
182.6 � 182.6 nm. As a result, the smallest and the
largest simulation cells correspond to equivalent full
atomistic models containing about 7.5 million and about
541.6 million atoms, respectively. Traction-free boundary
conditions and {100} crystallographic orientations are
applied along the three directions, with the EAM poten-
tial72 describing the interatomic interactions. Instead of

building the simulation cell from scratch, the CAC
simulator the system configuration from pre-existing re-
start files. It followed that a dynamic run with the velocity
Verlet algorithm was performed under an NVE ensemble.
We remark that the results presented here are representa-
tive of dynamic runs using other options (qd and ld)
because all of them adopt similar equations of motion.
With a time step of 2 fs, each run consists of 200 steps,

FIG. 6. (a–d) Runtime breakdown of all components as well as (e) speed-up and (f) normalized memory usage with respect to the serial CAC
simulation for different simulations cell sizes in strong scaling.

S. Xu et al.: PyCAC: The concurrent atomistic-continuum simulation environment

J. Mater. Res., Vol. 33, No. 7, Apr 13, 2018866

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

CS
B 

Li
br

ar
ie

s,
 o

n 
27

 N
ov

 2
01

8 
at

 2
2:

48
:1

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
15

57
/jm

r.
20

18
.8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1557/jmr.2018.8


with 1 input, 1 neighbor establishment, 2 neighbor
updates, and 2 outputs.

For all simulation cells, when the number of processors
is relatively small (,64 and ,256 for the smallest and
the largest simulation cells, respectively), the interaction
and neighbor steps are shown to be the most CPU-
intensive operations, with no major bottleneck caused by
data input/output, similar to atomistic simulations. In all
cases, when more than 1 processor is used, the inter-
processor communication time is almost invariant with
the number of processors. However, the runtime spent on
input/ouput increases rapidly as the number of processors
grows; it should be noted that the results may change
significantly if different frequencies for output and
neighbor updates are used. In addition, because of the
shared elements, the total memory usage is no longer
invariant but increases as more processors are used
[Fig. 6(f)]. As expected, both parallel scalability and
memory usage improve as the simulation cell size
increases, as shown in Figs. 6(e) and 6(f).

In weak scaling, the number of processors in one
simulation varies from 1 to 1024, with about 492 elements
per processor. As a result, the largest simulation cell has
a size of 231.9 � 231.9 � 231.9 nm, with 503,808
elements, corresponding to 1,106,866,176 interpolated
atoms, which is more than double the previous largest
EAM-based CAC models that contained about 552.7
million atoms.16 Other simulation settings are the same
as those in strong scaling. It is found that the runtime spent
on data loading can be negligible compared to the very
long runtime of the CAC simulation on small or medium
number of processors. Nonetheless, as the number of
processors increases, the runtime for interprocessor com-
munication and input/output increases much more quickly
than that for interatomic interactions and establishing/
updating neighbors, as shown in Fig. 7(a). In particular,
with 1024 processors, the runtime for input/output, which
is not fully parallelized as discussed in Sec. IV.A,
constitutes more than half the total runtime; in other
words, the input/output procedure may become a new
bottleneck for achieving high parallel scalability according
to Amdahl’s law.73 In this regard, we will conduct further
investigation to improve the parallel scalability of the CAC
simulator as part of our future work. We remark that the
processor workload is well balanced, as shown in Fig. 7
(b).

V. PyCAC SOFTWARE

In this section, we present the features, the Python
scripting interface as well as the compilation and execu-
tion of the PyCAC software. More specific details of
PyCAC, including the input script format and some
example problems, can be found at www.pycac.org.

A. Features

The PyCAC code can simulate monatomic pure FCC
and pure BCC metals using the LJ and EAM interatomic
potentials in conservative systems. In the coarse-grained
domain, 3D trilinear rhombohedral elements are used to
accommodate dislocations in 9 out of 12 sets of
{111}h110i slip systems in an FCC lattice as well as 6
out of 12 sets of {110}h111i slip systems in a BCC
lattice, as shown in Figs. 3(c) and 3(d).

We remark that there is no theoretical challenge in
extending the current PyCAC code to admit more slip
systems, crystal structures, interatomic potentials, ele-
ment types, and materials. In fact, AFT was originally
designed with polyatomic crystalline materials in
mind,74,75 and CAC has been applied to a 1D polyatomic
crystal with trilinear76 and nonlinear shape functions,36

an ideal brittle FCC crystal with 2D triangular elements38

or with 3D tetrahedral and 3D pyramid elements,39

silicon using the SW potential,43 a 2D Cu single crystal
with 2D quadrilateral elements,16 2D FCC Cu single

FIG. 7. (a) Runtime breakdown of all components and parallel
efficiency and (b) normalized average workload with respect to the
serial CAC simulation in weak scaling, with 492 elements per
processor. In (b), the shaded error region represents the standard
deviation of the workload of all processors.
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crystal47 and polycrystal48 with 2D quadrilateral ele-
ments, and 2D superlattices with 2D quadrilateral ele-
ments49 as well as strontium titanate using a rigid-ion
potential with 3D cubic elements.42,44,45 These simula-
tions were conducted using other versions of CAC.

B. Python scripting interface

In PyCAC, the Python scripting interface is a Python
wrapper module for CAC’s underlying Fortran 2008
code, allowing handling of the program’s input and
output as well as links to some external visualization
software. Written in Python 3 and contained in pycac.py,
the Python module provides a robust user interface to
facilitate parametric studies via CAC simulations without
interacting with the Fortran code and to improve handling
of input, output, and visualization options, as illustrated
in Fig. 8. Mainly working on local computers, the Python
module serves as an interface with high performance
computing clusters. In particular, the module consists of
three main components:

(i) input.py() for generation and manipulation of CAC
simulation cells on local computer via a graphical user
interface, as well as submitting jobs via job schedulers on
high performance computing clusters, e.g., those on NSF
XSEDE.71 A CAC simulation requires at least two types
of files as input: an input script and the analytic or
tabulated interatomic potential files. If the users intend to
continue a previous run, a restart file with previously
saved system configuration needs to be provided as well.
Note that some or all elements from a previous run can be
refined into atomic scale upon reading the restart file.
This is useful, for example, to correctly simulate the
migration of a dislocation whose pathway is not aligned
with the interelemental gap.15

(ii) output.py() for downloading the CAC simulation
output data from clusters before processing them locally.
A CAC simulation outputs three main types of files:
(i) vtk files in the legacy ASCII format containing
elemental, nodal, and atomic information (positions,
energies, forces, stresses, etc.); (ii) restart files containing
system configuration information; and (iii) a log file
recording relevant lumped simulation data, e.g., system
force/energy and number of elements/atoms, during
a run. It follows that the output.py() component reads

the vtk files and interpolates all atoms inside the elements
in the coarse-grained domain. These interpolated atoms,
together with the real atoms in the atomistic domain (also
read from the vtk files), are used to generate LAMMPS
dump files that can be visualized by atomistic model
viewers and/or read by LAMMPS directly to carry out
equivalent fully-resolved atomistic simulations. CAC
simulation results may also be processed via the data
analyzer which will be presented in the near future.

(iii) visualization.py() for integrating some visualiza-
tion software. Currently, the dump files and vtk files are
visualized by OVITO58 and ParaView,63 respectively, as
discussed in Sec. III.D.

C. Compilation and Execution

In PyCAC, the CAC algorithm is implemented in
Fortran 2008 and parallelized with MPI-3, wrapped by
a Python scripting interface written in Python 3. Therefore,
the PyCAC code can be compiled with any MPI, Fortran,
and Python compilers that support MPI-3, Fortran 2008,
and Python 3, respectively. For example, the parallel
scalability benchmark simulations in Figs. 6 and 7 were
run using an executable compiled by Intel Fortran com-
piler version 17.0 wrapped by MVAPICH2 version 2.3.

Potential users may explore PyCAC by running
simulations via the MATerials Innovation Network
(MATIN, https://matin.gatech.edu),77 a cloud-based
e-collaboration platform for accelerating materials
innovation developed at the Georgia Institute of Tech-
nology (GT) with support of the GT Institute for
Materials. While MATIN is focused on emergent field
of materials data science and informatics, it offers
a comprehensive range of functionality targeting the
materials science and engineering domain. After signing
up for a free account, a user can run the PyCAC code via
MATIN on GT’s Partnership for an Advanced Comput-
ing Environment (PACE) cluster or on NSF XSEDE.a

VI. CONCLUSIONS

In this work, we present a novel implementation of
the CAC method—PyCAC—an efficient, user-friendly,
and extensible CAC simulation environment which is

FIG. 8. Python scripting interface scheme. First, input.py() creates CAC simulation cells via a graphical user interface on a local computer and
submits jobs via job schedulers on high performance computing clusters; then CAC simulations compiled from the underlying Fortran code are run
following Figs. 1 or 5; once the simulations finish, output.py() downloads the output data from clusters before processing them locally using the
data analyzer; in the end, visualization.py() employs some visualization software to render CAC simulation results.
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implemented mainly in Fortran 2008 and wrapped with
a Python scripting interface. First, the theoretical back-
ground of the CAC method was briefly reviewed. Then,
the serial algorithms of dynamic, quasistatic, and hybrid
CAC, along with some programming techniques used in
the PyCAC code were discussed. In addition, the parallel
algorithm/scalability of the CAC simulator and some
specific details of the PyCAC software were presented.
Additional information of PyCAC can be found at www.
pycac.org.

While the CAC method has a high coarse-graining
efficiency8 and the PyCAC software shows good scaling
performance, there is still room for improvement in the
code performance by parallelizing the input/output. Future
development of code features will involve implementation
of more types of finite elements and interatomic potentials
to accommodate more crystalline materials such as mul-
ticomponent and polyatomic materials. New types of finite
elements will also be used to replace the filled-in atoms at
the otherwise zigzag simulation cell boundaries to reduce
the computational cost, particularly in the case of PBCs.
Other versions of the CAC simulator, e.g., the one in Ref.
78, may be incorporated into PyCAC. Future extensions
also include developing adaptive mesh refinement
schemes for dislocation migration, in which case the
evaluation point density may evolve with time, requiring
more complicated algorithms to dynamically re-balance
the processor workload.
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END NOTE

a. Currently available resource on XSEDE is San Diego Supercom-
puter Center’s Comet cluster; integration with other XSEDE
resources is planned for the future. Users desiring to run PyCAC
(and other available materials informatics tools) for large-scale
simulation/modeling projects should have their own compute/
storage allocations on PACE or XSEDE and contact MATIN
Project Lead (Aleksandr Blekh, aleksandr.blekh@gatech.edu) to
discuss relevant integration and collaboration.
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