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a b s t r a c t

In recent years, numerous partitioned-domain methods have been developed to describe
dislocation behavior at length scales that are usually inaccessible to most classical atom-
istic methods. These methods retain full atomistic detail in regions of interest while using a
continuum description to reduce the computational burden elsewhere. In most of these
methods, however, lattice defects in the continuum are either implemented via consti-
tutive relations, lattice elasticity with dislocation field interactions, or are not permitted at
all. In such approaches, the transit of dislocations across the atomistic/continuum interface
appeals to approximate heuristics intended to minimize the effects of the interface due to
the change from atomistic to continuum degrees of freedom. The concurrent atomistic-
continuum (CAC) method, originally developed for addressing dynamic dislocation
behavior by Xiong et al. (2011), permits dislocations to propagate in a continuum domain
that employs a piecewise continuous finite element description with interelement
displacement discontinuities. The method avoids ghost forces at interface between
atomistically resolved and coarse-grained domains. CAC has subsequently been used to
investigate complex dislocation behavior in face-centered cubic (FCC) metals (Xiong et al.,
2012b,a,c, 2015). In this paper, we propose a quasistatic 3-D method to carry out sequential
energy-minimized simulations at 0 K. This facilitates study of structure evolution along
minimum energy pathways, avoiding over-driven conditions of high rate molecular dy-
namics. Parallelization steps in code implementation are described. Applications are pre-
sented for the quasistatic CAC method in FCC metal plasticity. Comparisons are made with
a fully-resolved atomistic method for generalized stacking fault energy, core structure and
stress field of a single 60� mixed type dislocation, surface indentation, and 60� mixed type
dislocation migration through the interface between atomistic and coarse-grained
domains. It is shown that 3-D CAC simulations are useful in substantially reducing the
number of degrees of freedomwhile preserving key characteristics of dislocation structure,
stacking faults, and plasticity, including the net Burgers vector and long range fields of
interacting dislocations.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Metal plasticity is a multiscale phenomenon that is manifested by irreversible microstructure rearrangement associated
with nucleation, multiplication, interaction, and migration of dislocations (McDowell, 2010). Long range field interactions
between dislocations are extremely important to describe, along with the dissociated character of partial dislocations. The
former necessitates large solution scales, while the latter demands treatment of core effects using accurate underlying
interatomic potentials. Metal plasticity therefore requires concurrent coupling across various scales. While methods such as
molecular dynamics (MD) and discrete dislocation dynamics (DDD) have been widely employed for problems at respective
spatial scales involving core effects and long range fields, efforts have been made to concurrently bridge the discrete and
continuous descriptions, two fundamentally different approaches (Rudd and Broughton, 2000). Chen et al. (2011) reviewed
the theoretical foundations of coarse graining methods and analyzed several representative coarse graining models. A review
of 14 concurrent multiscale modeling methods is presented by Miller and Tadmor (2009), and is further summarized by
Tadmor and Miller (2012).

Concurrent multiscale methods can be categorized as hierarchical and partitioned-domain methods, where the latter
divides the system into atomistic and continuum domains. An example of a partitioned-domain method is the coupled
atomistic and discrete dislocation (CADD) method (Shilkrot et al., 2004). The CADD model permits the transfer of dislo-
cations across the interface between the atomistic and continuum domains. It has been employed to incorporate long range
fields of dislocation pileups to study the impingement of dislocations on symmetric tilt grain boundaries (GB) in Al by
Dewald and Curtin (2007a,b,2011). However, CADD is restricted in that heuristic, ad hoc treatments are introduced to pass
dislocations through the continuumeatomistic interface; dislocations are detected on one side of the interface and inserted
into the other. Moreover, the treatment of curved dislocations of mixed character that might cross domain interfaces is
problematic.

Another concurrent atomistic-continuum approach is the quasicontinuum (QC) method (Tadmor et al., 1996). The QC
method uses the change of deformation gradient to distinguish domains where full atomistic resolution is required from
those where the deformation field varies more smoothly. Representative atoms (repatom) are employed to reduce the
degrees of freedom to a small fraction of those required in fully resolved atomistic simulations. The system energy, based on
the repatoms, is minimized so that the lattice statics at 0 K is reproduced (Miller and Tadmor, 2002). Recently, the QC method
has been extended to include a dynamic, finite temperature formulation (Dupuy et al., 2005; Kulkarni et al., 2008; Tadmor
et al., 2013). In such approaches, it is difficult to avoid introduction of a ghost force at the atomistic/continuum interface.
Also, since the defects can only nucleate and migrate within the fully atomistic domain, ad hoc criteria are needed to assist in
adaptive mesh refinement (Shimokawa et al., 2009).

To the authors’ knowledge, most partitioned-domain methods, including CADD and QC, treat the continuum domain such
that lattice dislocations are either implemented via elastic constitutive relations, or not permitted at all. This motivated
development of a new partitioned-domain method called the concurrent atomistic-continuum (CAC) method that employs
piecewise continuous first order shape function and interpolation function within elements and admits displacement dis-
continuities between elements (Xiong et al., 2012a). Boundary layers are employed near element interface to accommodate
additional inhomogeneous deformation. In this way, nucleation of dislocations and transport between fully resolved atom-
istic and coarse-grained domains are permitted, without requiring heuristic rules or overlapping pad regions. Ghost forces are
avoided at such interfaces.

The theoretical foundation of the CAC method is the atomistic field theory (AFT). It is rooted in micromorphic theory,
where a local density function is used to connect the micromorphic theory and molecular dynamics, in which a crystalline
material is viewed as a continuous collection of lattice points, while embedded within each point is a unit cell with a group of
discrete atoms (Chen and Lee, 2005). The same balance equations for both fully resolved atomistic and coarse-grained
continuum domains are employed to compute the properties of general crystals. In the continuum domain, the inter-
atomic potential serves as the only constitutive relation. The AFT was originally designed with multi-atom crystalline
materials inmind (Chen and Lee, 2003a,b), and CAC has been applied on strontium titanate (Yang et al., 2013b; Yang and Chen,
2015) and phonon properties of the 1-D polyatomic crystals (Xiong et al., 2014a).

For monoatomic crystalline materials, each primitive unit cell contains only one atom. Xiong et al. (2011) performed
CAC simulations to reproduce the complex dislocation phenomena in FCC metals such as dislocation nucleation/
migration and formation of multiple stacking fault ribbons. Deng et al. (2010) and Deng and Chen (2013) studied the
wave and crack propagation, as well as the impact fracture in an ideal brittle material. More recently, the embedded
atom method (EAM) potential was incorporated in CAC simulations to study more general dislocation behavior such as
migration of curved dislocations, formation of leading and trailing partial dislocations, dislocation loop coalescence,
dislocationephonon interactions, and dislocationevoid interactions in pure FCC crystals (Xiong et al., 2012b,c,a, 2014b,
2015).

The objective of the present work is to briefly review the basic formulations in AFT, formulate a new quasistatic 3-D CAC
method that employs sequential energy minimization for problems involving dislocation migration and interaction with
domain interface, detail the numerical implementation, and demonstrate its applicability to metal plasticity involving arrays
of dislocations in pure FCC crystals. Since the quasistatic CAC method facilitates exploration of structure evolution along
minimum energy pathways, in contrast to over-driven MD simulations at high rates, we explore how the quasistatic CAC
method provides largely satisfactory predictive results for benchmark simulations at a much lower computational cost than
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the fully atomistic version of the samemodels. In addition to the quasistatic implementation of the original CACmethod, new
elements are introduced to improve the accuracy inmodeling generalized stacking fault energy in the coarse-grained domain.
To our knowledge, this is the first coarse-grained atomistic approach that can approximate dislocation core level effects
without adaptive mesh refinement to the atomic scale.

2. Basic formulations

2.1. Governing equation

Within the framework of atomic N-body dynamics, Chen (2009) formulated the microscopic balance equations of the
instantaneous mass, linear momentum, and internal energy. Fundamentally different from the form of coarse-grained
particle models, the governing equations in AFT are expressed in terms of local densities (Chen et al., 2011). While the
balance equations can be expressed in terms of either Eulerian or Lagrangian coordinates, we follow the work of Chen (2009)
and adopt Eulerian coordinates in this paper. For a monoatomic crystal, assuming that the temperature gradient is negligible
and there is no external force density, the governing equation in the dynamic CAC method subject to the assumption of
homogeneous temperature is (Chen and Lee, 2005)

r€r� fint ¼ 0 (1)

where r is the microscopic local mass density, r is the physical space coordinates, fint is the internal force density, and the
superposed dots denote the material time derivative. Note that the local density is defined as the time-interval averages of
instantaneous quantities, as in MD method, rather than the ensemble averages employed in statistical mechanics. The
local density is continuous in the physical space up to the point of structural instability (e.g., dislocation nucleation or
fracture).

While it appears straightforward to apply this equation to solve the dynamic problem for any prescribed homogeneous
temperature, it is difficult to construct a uniform temperature formulation for both atomistic and continuum domains, and is
a matter of ongoing development. In this paper, we propose a quasistatic analog of the CAC method, similar in character to
molecular statics (MS). At 0 K, coarse-grained MS simulations are useful for probing the energy landscape of the material
system, and help to distinguish structural contributions to mechanical properties from common overdriven conditions
associated with very high strain rates in MD and/or thermal fluctuation due to finite temperature. In the following sections,
instead of adopting Eq. (1) directly, we use it to derive the equivalent nodal force and energy, forming the basis for the energy
minimization procedure.

2.2. Continuum quantities from atomistics

In the continuum, the instantaneous mechanical variables r, r€, and fint are defined at each material point r in physical
space. In an atomistic description, however, their values must be obtained in terms of the discrete properties defined for each
atom in the system (e.g., position, momentum, and energy) at atomic site R in phase space. In AFT, Chen and Lee (2005)
propose that the phase space and physical space descriptions can be linked by the localization function d, i.e.,

rðrÞ€r ¼
XNatom

k¼1

d
�
r� Rk

�
mk €R

k
(2)

XNatom � �

f intðrÞ ¼

k¼1

d r� Rk Fk (3)
where Natom is the number of atoms, d-function has units of inverse volume, Fk is the total atomic force acting on atom k,
having mass mk and position Rk. While d-function can be either a Dirac d-function or a distribution function, it must satisfy
that over the simulation domain U,Z

UðrÞ
d
�
r� Rk

�
dUðrÞ ¼ 1: (4)
In this paper, we employ a Dirac d-function, i.e.,

d
�
r� Rk

�
¼

�
þ∞ r ¼ Rk

0 rsRk : (5)
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If we denote the continuum points r in physical space that correspond to discrete atoms Rk in phase space as rk, the Dirac
d-function indicates that in mapping phase space into physical space, only the pointwise continuum quantities at rk are
sampled. The mechanical variables at rk are related to the atomic values at Rk by

rðrkÞ€rk ¼ mk

Uk
€R
k

(6)

f intðrkÞ ¼ fk ¼
Fk

Uk
(7)

where Uk is the volume of kth atom. At this point, there are many ways to form the continuum field at any continuum
point. For example, given a set of rk, Delaunay tessellation can be constructed, where the 3-D physical space is divided
into tetrahedra whose vertices are at rk (Mott et al., 1992; Stukowski and Arsenlis, 2012). Then, within each 4-atom
tetrahedron, for a perfect lattice, the continuum quantities at any point can be linearly interpolated from the values at
vertices. Line defects (dislocations) and plane defects (e.g., stacking faults and free surfaces) are considered as weak
discontinuities, where the interpolation of the mechanical quantities differs. At a free surface, for example, the me-
chanical quantities should be truncated smoothly in the normal direction. This is because beyond the outer boundaries or
within the inner boundaries, most quantities are meaningless. In addition, volume defects such as voids and cracks are
considered as strong discontinuities and are excluded from the tessellation. It is beyond the scope of this paper to discuss
the details in constructing the tessellation and the discussion below only concerns the continuum quantities at rk for
brevity.
3. Methods

In the CAC approach, there are atomistic domains and coarse-grained domains with different degrees of coarse-graining,
as shown in Fig. 1. The goal of the quasistatic implementation of the CAC approach taken in this paper is to minimize the
Fig. 1. A 2-D CAC simulation domain consisting of an atomistic domain (right) and a coarse-grained domain (left). The atomistic domain is composed of atoms
(black circles), which follow the same governing equations in the atomistic simulation. The coarse-grained domain consists of discontinuous elements of varying
size, each of which contains a large number of underlying atoms with the nodes (red circles) as the only degrees of freedom. Only the force/energy on integration
points (green circles) and nodes are calculated. The positions of atoms within each element (open circles) are interpolated from the nodal positions. In 3-D,
elements have faces on {111} planes, the slip planes of FCC lattice. Note that the elements shown are for illustration purposes only. In (a), an edge dislocation (red
⊥) is located in the atomistic domain. Upon applying a shear stress on the simulation cell, the dislocation migrates into the coarse-grained domain in (b), where
the Burgers vector spreads out between discontinuous elements. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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energy of the system for each increment of system loading, which has contributions from both atomistic (eat) and coarse-
grained (ecg) domains, i.e.,

eintðRÞ ¼ eatðRatomÞ þ ecgðRnodeÞ (8)

where eint is the internal energy and R is the positions of all atoms and nodes, distinguished by associated subscript. The goal
is to find R such that eint is at the minimumwhen the system is subject to certain boundary conditions. As will be explained
later, the atomic force and equivalent nodal force are crucial in the present quasistatic implementation of the CAC approach
because they provide information related to the direction along which the atoms/nodes should move during each iteration.

3.1. Atomistic domain

In the atomistic domain, the atomic force Fk is calculated by the force theorem

Fk ¼ �VRk eint: (9)
When only fully resolved atomistic domains are considered in the simulation, eint is the summation of well defined atomic
energy of all atoms eat(Ratom) computed using the interatomic potential, and so the quasistatic CAC method reduces to
standard MS.

3.2. Coarse-grained domain

3.2.1. Discretization
To solve Eq. (1) in the coarse-grained domain, it can be daunting to compute the forces on each atom, so a finite element

approach is employed. Note that the physical space is continuous in a defect free perfect lattice, and so is the displacement
field u. As indicated previously, the displacement discontinuity in the coarse-grained domain is accounted for by interelement
discontinuity. Rhombohedral elements with all faces lying on {111} planes are selected for several reasons: (1) slip in FCC
metals occurs along close-packed {111} planes, (2) the elements conform to the FCC lattice, (3) the smallest rhombohedral
element is a primitive unit cell in the atomistic domain, and (4) a balance between 2-D triangular elements (would be
tetrahedral elements if in 3-D) with high efficiency (Deng et al., 2010) and 3-D hybrid elements with high accuracy (Deng and
Chen, 2013) that were employed in our earlier work.

Within each element, lattice defects are not allowed and the displacement field has C1 continuity. Between elements,
however, neither displacement continuity nor strain compatibility is required. The lack of such requirements does not
preclude description of a perfect lattice over large domains involvingmany elements, nor does it imply that all types of defects
can be captured, particularly at high resolution. Lattice defects are accommodated by discontinuous displacements between
elements, potentially including both sliding and separation. Domains with full atomic resolution differ from coarse-grained
domains by virtue of their ability to resolve lattice defects, for example dislocation cores, although the net Burgers vector of
such defects can be captured in the coarse-grained description. Adaptive refinement of coarse-grained elements can be
pursued to promote smooth transition of defect migration from atomistic to coarse-grained domains as necessary.

We discretize u within each element via the relation

u ¼ FxðrÞux (10)

where u is a 1 � 3 vector, x are the nodes, the shape functionFx is a 1 � Nnpe vector, and ux is a Nnpe � 3 matrix where Nnpe is
the number of nodes per element. For each node x, Fx is trilinear, i.e.,

Fx ¼ 1
8
ð1±cÞð1±hÞð1±zÞ (11)

where c, h, and z are natural coordinates. Thus, it can be said that the displacement field is discretized by employing a
piecewise continuous shape function.

The equivalent nodal force F x on node x is calculated by

F x ¼
P

mumFmxFmP
mumFmx

(12)

where Fm is the force on the integration point m, um the weight, and Fmx the trilinear shape function. The derivation of Eq. (12)
and the details of integration points are given in Appendices A and B, respectively.

3.2.2. Piecewise continuous interpolation function
In energy minimization, the variations of the nodal positions in each iteration change the shape of the element and

displace the atoms. In a 3-D element, the “surface atoms” are located in subregions a, b, and gwhile the “interior atoms” are in
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subregion d, as shown in Fig. B.23. One way to distinguish the displacements of the two types of atoms is to apply different
shape functions and interpolation functions in different subregions. In the present work, however, we employ the same shape
function for all atoms within an element, with the subregions having different integration points and weights. Moreover, we
assume that the deformation of the kth atom within an element, including the integration points, conforms to that of the
element, i.e.,

Rk ¼ fkxR
x (13)

where the first order interpolation function f is the same as the trilinear shape function F. In this way, each element domain
with interpolation in Eq. (13) contains a hyperelastic defect-free lattice that can only have homogeneous deformation, and the
element is isoparametric. Since interelement discontinuity is allowed, this essentially represents a piecewise continuous
interpolation function in each element.

For more general crystalline materials, the interpolation function fails to properly describe the internal atomic positions
within the unit cells. In the case of higher order shape functions, employing the trilinear interpolation function results in
subparametric elements. However, in the present work, only monoatomic pure FCC crystals are considered with a trilinear
shape function, so the trilinear interpolation function applies.

3.3. Force calculation

In both atomistic and coarse-grained domains, the force F on atoms or integration points is calculated using Eq. (9). The
EAM formulations for potential energy and force are given by

eint ¼
1
2

X
i

X
j

jsi

V
�
Rij

�
þ
X
i

F
�
ri
�

(14)

X8<vV
�
Rkj

� 2
vF

�
rk
� �

j
�3

vr
�
Rkj

�9= kj

Fk ¼

j

jsk

: vRkj
þ 4

vrk
þ vF r

vrj
5

vRkj ;R
Rkj

: (15)

kj
Here, V is the pair potential, F is the embedding potential, r is the host electron density, R is the vector from atom k to
atom j with norm Rkj

Rkj ¼ Rj � Rk (16)

rk ¼
X
ksj

rkj
�
Rkj

�
(17)

where r is the local electron density between an atomic pair. Equation (9) suggests that the force applied on an atom is the
negative variation of the internal energy with respect to its displacement. In the atomistic domain, each atom has inde-
pendent degree of freedom, so we can fix all atoms but k in calculating Fk.

In the coarse-grained domain, however, when integration points m and their neighbors j are in the same element, they are
bound by the interpolation function, so we can't move mwhile fixing j. In this regard, the force that needs to move an atom by
the same displacement is slightly larger than that in atomistic domain because of the collective displacements of other atoms
given the non-local force field.

3.4. Energy calculation

In the atomistic domain, the internal energy eint is the sum of the energy of all atoms. Since the force vector field is the
negative gradient of the internal energy scalar, it becomes zero when the energy scalar is at the minimum, and vice versa.

In the coarse-grained domain, however, explicitly calculating the energy of all atoms is quite cumbersome. A formulation
of eint must be constructed to fulfill two requirements. The first one is that for element I, its energy eI equals that given by Eq.
(14), i.e.,

eI ¼
XNape

k

ek (18)

where Nape is the number of atoms per element.
The second requirement is that the global equivalent nodal force vector is zero when eint is at its minimum.
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From Eq. (12), we know that the equivalent nodal force is a linear combination of the atomic force on the integration
points. This motivates us to construct eint as a linear combination of the atomic energy of the integration points, i.e.,

ecg ¼
XNele

I

eI ¼
XNele

I

XNnpe

x

XNipe

m

umFmxem (19)

where Nele is the number of elements in the system, Nipe is the number of integration points per element, and em is the atomic
energy of integration point m.

Similar to Eq. (B.4), within a subregion, ek ¼ em for all atoms k, i.e.,

Xum

k

ek ¼ umem: (20)

Therefore, the element energy in Eq. (19) becomes
eI ¼
XNnpe

x

XNipe

m

umFmxem ¼
XNnpe

x

XNipe

m

Fmx

Xum

k

ek

¼ PNipe

m

Pum

k
ek

PNnpe

x

Fmx ¼
PNipe

m

Pum

k
ek ¼ PNape

k
ek

(21)

and the first requirement is satisfied.
Regarding the second requirement, when ecg is at its minimum, so is the energy of each integration point em, which leads to

zero Fm andF x. The second requirement is thus fulfilled. Its converse, however, is not necessarily true, because zeroF x could
be achieved by a combination of non-zero Fm, where ecg is not at its minimum. Nevertheless, experience shows that such
exception rarely if ever occurs.

Following the equivalent nodal force and applying the assumptions in dividing one element into subregions as described
in Appendix B, we define the equivalent nodal energy of node x as

Ex ¼

P
m
umFmxemP

m

umFmx

(22)

which is of the same order as the atomic energy.

3.5. Energy minimization

A system at equilibrium corresponds to a local minimum on the potential energy surface. The energy minimization of a
many-body system requires that the degrees of freedom are systematically varied until the global minimum is reached. A
generic non-linear energy minimization algorithm consists of three steps (Tadmor and Miller, 2012):

1. For each degree of freedom in global position vector R, find the global direction vector d and the global step size a.
2. Update R to R þ ad to get the minimum of potential energy along d.
3. Calculate the new potential energy, update d.

Non-linear energy minimization methods differ from each other in that the direction vector d is computed in different
ways. Steepest descent and conjugate gradient methods are employed in CAC simulations. Both methods use the negative
gradient of potential energy as the initial direction; from the second step, however, the steepest descent method uses the
current negative gradient while the conjugate gradient method uses the negative gradient conjugated to the current potential
surface. Iteration stops when some tolerance criterion is satisfied.

In a CAC simulation, whenever we need the negative gradient vector of potential energy, we adopt the current global force
vector Fglobal, i.e., the atomic force vector is concatenated with the equivalent nodal force vector,

Fglobal ¼

2
6666664

F1atom
«

FNatom
atom
0
«
0

3
7777775
þ

2
6666664

0
«
0

F1
node
«

FNnode
node

3
7777775

(23)

where Nnode is the number of nodes.



Table 1
Quasistatic CAC algorithm. l is the controlled loading and Dl is the loading step size.

Step Atomistic domain Coarse-grained domain Methods

1 Initialize Rk(l) Initialize Rx(l)
2 Calculate Rk(l) from Rx(l) Eq. (13)
3 Calculate Fk(l) Calculate Fm(l) Eq. (15)
4 Calculate F xðlÞ Eq. (12)
5 Calculate dk(l) Calculate dx(l)
6 Calculate a(l) line search
7 Rk(l) ¼ Rk(l) þ a(l)dk(l) Rx(l) ¼ Rx(l) þ a(l)dx(l)
8 Calculate eint(R) if necessary Eq. (8)
9 Repeat from step 2 until the

tolerance is reached
10 Advance loading step, get R(l þ Dl)
11 Repeat from step 2
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In practice, however, the step size a is applied for all degrees of freedom.While this has numerical benefits, a constraint is
accordingly applied on the minimization process, such that the energy of each atom can't reach its individual minimum
simultaneously. This means that the computed minimum system energy is slightly larger than the exact result. The length of
the global force vector is also only close to zero when the minimized eint is found, and vice versa. It follows that we have two
equivalent tolerance criteria: (1) the energy variation between successive iterations divided by energy from the current step is
close to zero and (2) the length of the global force vector is sufficiently small. The second criterion suggests that we could
minimize the system energy by directly zeroing the global force vector. Two methods to do this d the quenched dynamics
method (Sheppard et al., 2008) and the fast inertial relaxation engine (FIRE) method (Bitzek et al., 2006) d are also included
in CAC algorithm, but are not used in the simulations reported in this particular paper. Moreover, the size/shape of the
simulation box can be adjusted during the energy minimization to converge to the desired stress tensor (Tadmor and Miller,
2012).

3.6. CAC simulation theme

The CAC simulation scheme is summarized by the recipe in Table 1. In practice, to have a reasonably fast convergence of the
energy minimization process, a loading step size Dl varying from 0.001a0 to 0.01a0 is employed, where a0 is the lattice
parameter. The minimization is considered to converge when the absolute energy variation between successive iterations
divided by the energy magnitude is smaller than either 10�5 or 10�6. Some algorithmic issues in CAC implementation are
presented in Appendix C.

4. Discussion

4.1. Non-local nodes

In the QCmethod, the repatoms are categorized into local and non-local types, according to a nonlocality criterion (Tadmor
et al., 1996). Local atoms are used when the energy of an element is determined only by its deformation gradient. A large
deformation gradient is manifested where the deformation is plastic due to emergent lattice defects, and so the eigenvalue of
the deformation gradient can capture the nonlocality, which is used to decide if the nodes are local or non-local and if the
coarse-grained domains need to be refined.

In CAC simulations, each element is a hyperelastic body that can only have elastic deformation, and the relative
displacement (slip) between elements accommodates plastic deformation such as dislocation migration. In QC, in contrast,
the deformation is continuous. Thus, the deformation gradient of a single element in CAC is generally smaller than that in QC
especially in the presence of plasticity; in other words, the deformation gradient alone can't be used to assess the nonlocality.
On the other hand, for general formulations all nodes must be non-local, prepared for any possible case. Therefore, all force/
energy calculations in CAC simulations, are non-local, i.e., across the atomistic/coarse-grained domain interface, themotion of
nodes cause forces on atoms and vice versa. When the interface lies within an infinitely large perfect lattice subject to a
homogeneous deformation, the forces on all kth atoms in the atomistic domain and those on all mth integration points in the
coarse-grained domain are the same, because the trilinear interpolation function precisely represents the atomic positions
under homogeneous deformation, i.e.,

Fk ¼ Fm ¼ Fhomo (24)
Substituting Eq. (24) into Eq. (12), it follows that the equivalent nodal force on all xth nodes are Fhomo, i.e., no extra force is
introduced compared with an equivalent full atomistic model. Therefore, there is no ghost force at the domain interface in
both undeformed and homogeneously deformed configurations.
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4.2. Equivalent nodal force/energy

In the coarse-grained domain, the equivalent nodal force F x and energy Ex are defined in Eq. (12) and Eq. (22), respec-
tively. While the choice of the integration points have been discussed in Appendix B, one may wonder why we don't simply
use the atomic force/energy of the node, i.e.,

F x ¼ Fx and Ex ¼ ex: (25)

The equation implies that the nodes are the only integration points. Employing Eq. (B.1), we have
ux ¼
Nape

Nnpe
(26)

which suggests that one node represents a group of ux number of atoms. This choice of integration points overestimates the
force/energy if the nodes don't reside in a perfect lattice. For example, when a node is at a corner in the vicinity of three free
surfaces, its force is larger than the atomic force of an atom inside a perfect lattice. Equation (26) means that the group of ux

number of atoms represented by the node identically has the same environment (i.e., at the corner), which will unavoidably
lead to the overestimation of the force. In practice, adopting Eq. (25) results in large displacement of the nodes on the traction
free boundary within a few simulation steps.

A similar instability of the nodal integration scheme occurs in themeshfree particle method. Beissel and Belytschko (1996)
found that although the nodal integration of a Galerkin approximation is faster and easier to implement than the quadrature
method, it results in a spatial instability. One approach to stabilize the integration is to use additional quadrature points (Dyka
et al., 1997). Later, Xiao and Belytschko (2005) and Rabczuk et al. (2004) concluded that while the interpolation in Eulerian
coordinate affects material instability, an interpolation in Lagrangian coordinates promotes numerical stability. In CAC
simulations, such interpolation is realized by the application of a piecewise continuous interpolation function within ele-
ments, which is essentially of Lagrangian type although the balance laws are expressed in Eulerian coordinates.

4.3. Quasistatic stress calculation

In CAC, the 2nd rank Cauchy stress tensor s is calculated a posteriori. In the atomistic domain, the average stress of a region
with volume Uat is given by

sat ¼ 1
2Uat

X
k

X
j

jsk

Rkj5Fkj: (27)
In the coarse-grained domain, the average stress of a region with volume Ucg is given by

scg ¼ 1
2Ucg

XNele

I

X
m

umFmx

X
j

jsm

Rmj5Fmj: (28)
So in a CAC simulation cell, the average stress is

ssys ¼ satUat þ scgUcg

Uat þ Ucg
: (29)

k
The atomic stress at atom k with volume U is defined as

sk ¼ 1
Uk

X
j

jsk

Rkj5Fkj: (30)
The equivalent nodal stress at node x

Sx ¼

P
m
umFmxs

m

P
m

umFmx

(31)

which is of the same order as the atomic stress.



Fig. 2. Coarse-graining efficiency of CAC simulations as a function of element size. Time for both force/energy calculation and neighbor list updating is included.
Both employing EAM potentials, EAM (accur rj) calculates the host electron density r of all atoms, while EAM (approx rj) only calculates r of the integration
points and it is assumed that all atoms in the same subregion within one element have the same r as that of the integration point. It is found that both pair and
EAM potentials (with proper approximation) give coarse-graining efficiency of 150 for 1NN element and 50 for 2NN element when Nape ¼ 9261.
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4.4. Coarse-graining efficiency in one iteration

In estimating the ideal coarse-graining efficiency in one iteration, jcg, we assume that each atom or integration point has
Nnei number of neighbors within the cutoff distance; then, in one element in the coarse-grained domain, there are NipeNnei
unique atomic pairs. In the equivalent atomistic domain, there are NapeNnei/2 unique atomic pairs. This suggests that
jcg ¼ Nape/(2Nipe). If Nape ¼ 2197, jcg ¼ 40.69 for 1NN element and jcg ¼ 8.79 for 2NN element. Moreover, jcg increases with
the element size, as shown in Fig. 2.

The ideal jcg is calculated based on the assumption that only the pairs between the integration points and their
neighbors are taken into account. Thus, it agrees well with the actual efficiency using a pair potential. In calculating the
force on one integration point m using EAM potential, however, one needs to know the host electron density of its
neighbors j (i.e., rj in Eq. (15)), which requires considering pairs between j and j's neighbors. The direct calculation of all
these pairs includes a significant number of repeated computations because the atoms involved are located in close
proximity.

Oneway to avoid the duplication is to calculate r of all slave atoms using Newton's third law.While giving accurate r of the
integration points m and their neighbors j, this method also calculates r of a large number of unused slave atoms, especially so
in a large element with sparse integration points. It is shown that this method gives a low jcg around 2.5 for Nape ¼ 2197.
Therefore, we introduce a similar approximation as in the force/energy calculation that within one element, r of the slave
Fig. 3. Relaxed generalized stacking fault energy on (111) plane along [112] direction in Cu in a fully atomistic domain. b is the magnitude of Burgers vector
b ¼ 1=2½112�a0 . Consideration of only 2 layers of atoms on each side of the stacking fault is sufficient to reproduce results of full atomistics.



Fig. 4. Relaxed generalized stacking fault energy on (111) plane along [112] direction in both Cu and Al in the coarse-grained domain. b is the magnitude of
Burgers vector b ¼ 1=2 ½112�a0. The 2NN element provides more accurate predictions than the 1NN element.
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atoms in one subregion equals that of the integration points in the same subregion (see Fig. B.26 for the illustration of
subregion). In this way, we need only to calculate r of the integration points, and the coarse-graining efficiency is increased
substantially, which is shown as EAM (approx rj) in Fig. 2. It is found that if Nape ¼ 9261, jcg z 150 for 1NN element and
jcg z 50 for 2NN element. Note that in parallel computing, a similar method as in Appendix C is needed to estimate r in the
elements shared by multiple processors.

The coarse-graining efficiency shown in Fig. 2 is calculated by comparing the number of arithmetic operations required in
both domains in one iteration. Hence, jcg is also the efficiency of dynamic CAC. The quasistatic approach, however, involves an
outer iteration loop which sets the search direction and an inner iteration loop inwhich a line search algorithm is performed,
while jcg is only the efficiency within one iteration. In the conjugate gradient method, e.g., the outer iteration converges in at
most n steps where n is the number of degrees of freedom in system. This suggests that the energy minimized structure may
be more rapidly achieved in the coarse-grained domain than in the atomistic domain. The coarse-graining efficiency of the
energy minimization method will be explored in Section 5.2.

5. Applications and validation

We next apply quasistatic CAC applications to certain benchmark problems, including generalized stacking fault energy,
core structure and stress field of a single 60� mixed type dislocation, surface indentation, and 60� mixed type dislocation
migration between atomistic and coarse-grained domains. We choose 60� mixed type dislocation because it has both edge
and screw components and is more general. All simulationse fully atomistic, fully coarse-grained, CACe are quasistatic (0 K).



Fig. 5. Relaxed generalized stacking fault energy surface on (111) plane along both [112] and [110] directions in both Cu and Al in the coarse-grained domain. The
energy surface is close to the results given in the full atomistics, with relative error less than 5%.
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All models are fully 3-D with periodic boundary conditions (PBCs) applied along the dislocation line direction. Models for
both Cu and Al are of the same size except for a different lattice parameter. EAM potentials for Cu (Mishin et al., 2001) and Al
(Mishin et al., 1999) are employed because they well reproduce the generalized stacking fault energy curve as predicted by
experiments (Chassagne et al., 2011). In the coarse-grained domain, 2NN elements with Nape ¼ 2197 are employed unless
indicated otherwise. The calculations involving the atomic structures, including disregistry, von Mises shear invariant, and
Burgers vector, are performed after the atomic positions are interpolated from the nodal positions. We apply the approxi-
mation that within one element all atoms in one subregion have the same host electron density. Energy minimization is
achieved using the conjugate gradient method after each deformation increment step. In each case, multiple loading step
sizes are evaluated such that the results are step size independent. The minimization is considered to converge when the
absolute energy variation between successive iterations divided by the energy magnitude is smaller than 10�6. Simulation
results are visualized using ParaView (Schroeder et al., 2006) and OVITO (Stukowski, 2010). A preliminary convergence and
error analysis based on the results is presented.

5.1. Generalized stacking fault energy

Both the stable and unstable stacking fault energies on {111} planes along 〈112〉 directions are relevant in modeling
dislocation nucleation and migration in FCC metals (Van Swygenhoven et al., 2004). In the atomistic domain, the generalized
stacking fault energy (GSFE) is calculated as

eSF ¼
eat � ecohNat

A0
(32)

where eat and Nat are the total energy and number of atoms, respectively, ecoh is the cohesive energy per atom, and A0 is the
faulted area. The atoms considered are usually up to 8 to 10 layers on each side of the stacking fault. Fig. 3 shows that



Fig. 6. The disregistry ux and uy are the displacements of the dislocation core atoms from their perfect crystal positions parallel to and normal to Burgers vector
b ¼ 1=2 a0½101�, respectively. The results in the coarse-grained domain with varying element size Nape from 125 to 9261 are compared with those of the atomistic
domain in both Cu and Al. The disregistry is b/2 at the center of the dislocation. In the coarse-grained domain, there is a linear correlation between disregistry and
atomic position within an element, due to the trilinear interpolation function.
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considering only 2 layers of atoms on each side is sufficient to calculate the generalized stacking fault energy on (111) plane
along [112] direction in Cu. This is also true for Al, though the results are not given here.

In the coarse-grained domain, the 1NN and 2NN elements consider only the force/energy up to 1 and 2 layers of atoms on
each side, respectively, of the interface. In calculating the stacking fault energy, eat and Nat in Eq. (32) are replaced by ecg and
Ncg, respectively. Fig. 4 shows that the 2NN element gives more accurate results in both Cu and Al compared to fully resolved
atomistic than the 1NN element, regardless of the element size. Both stable and unstable stacking fault energy (gsf and gusf) as
well as their ratio gsf/gusf provided by 1NN element are lower than that of the atomistic domain. As suggested by Van
Swygenhoven et al. (2004), a lower gsf/gusf ratio is companied by a higher energy barrier to nucleate the trailing partial
dislocation. This finding explains the previous observation using 1NN elements that the amplitudes of strain bursts in the
stressestrain curves after yielding are larger in the coarse-grained domain than the atomistic domain (Xiong et al., 2012a).

The study is then extended to the generalized stacking fault energy surface that is on (111) plane along both [112] and
[110] directions. The energy surface obtained in the coarse-grained domain (Fig. 5) is close to that of the fully atomistics, with
relative error less than 5%.

As discussed in Appendix B, the newly developed 2NN elements better capture dislocation-mediated surface rear-
rangement/reconstruction, leading to improved characterization of the generalized stacking fault energy. To our knowledge,
no other coarse-grained atomistic approaches in the literature are able to accurately describe dislocation core level effects in
the coarse-grained domain without fully atomistic mesh refinement.
5.2. Core structure and stress field of a single 60� mixed type dislocation

In FCC metals, a perfect dislocation is dissociated into an extended one that consists of two partial dislocations separated
by a stacking fault. In describing the reactions between dislocations and lattice defects, it is important to obtain a correct
dislocation core structure. We explore the core structure and stress field of a single 60� mixed type dislocation with Burgers
vector b ¼ ð1=2Þa0½101� in the coarse-grained domains in both Cu and Al with element size Nape varying from 125 to 9261. The
dislocation is created by displacing a part of themodel along ½101� direction on ð111Þ plane. The total displacement, ð

ffiffiffi
2

p
=2Þa0,

is reached in 180 simulations steps with 0:004a0 each step.



Fig. 7. In both Cu and Al, the coarse-grained domain gives a larger dislocation width than the atomistic domain, and wd increases with element size. As a result,
the repulsive force per unit length between two partial dislocations, frepul, decreases with element size. frepul is calculated using Eq. (33). For Cu, G ¼ 41.17 GPa and
bp ¼ 1.4758Å; for Al, G ¼ 28 GPa and bp ¼ 1.6534Å.
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Disregistry, which is the displacement of dislocation core atoms from their perfect crystal positions, is employed to
represent the core structure, as shown in Fig. 6; ux and uy are the disregistry parallel to and normal to the Burgers vector,
respectively. It is found that in the coarse-grained domain, there is a linear correlation between disregistry and atomic po-
sition within an element, due to the trilinear interpolation function. Thus, as the element size increases, the coarse-grained
domain gives a “flatter” dislocation core structure, which agrees with the larger distance between two partial dislocations. It
is therefore advisable to employ a smaller element (e.g., Nape ¼ 125) to better capture the dislocation core structure in the
coarse-grained domain.

The width of the 60� mixed type dislocationwd is defined as the distance over which the disregistry parallel to the Burgers
vector is greater than 1/4 of the magnitude of the Burgers vector. wd is also the stable stacking fault width in energy mini-
mization. It is shown that in both Cu and Al, the coarse-grained domain gives a larger dislocation width than the atomistic
domain, and wd increases with element size Nape (Fig. 7). Because the dislocation dissociation is energetically favorable
(Frank's rule), a repulsive force per unit length frepul exits between leading and trailing partial dislocations (Hull and Bacon,
2011). Assume that the Poisson's ratio is zero, for any dislocation line orientations, we may write

frepul ¼
Gb2p
4pwd

(33)



Fig. 8. Snapshots of the shear stress field around a single 60� mixed type dislocation in both atomistic and coarse-grained domains in Cu. A higher degree of
coarse-graining gives a wider dislocation core width, as well as a reduced maximum magnitude of shear stress. In the coarse-grained domain, the far field stress
away from the dislocation core is preserved. Note that syz is for the edge component only since it is zero for the screw component.
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where G is the shear modulus and bp is the magnitude of Burgers vector of the partial dislocations. Consequently, frepul in the
coarse-grained domain is smaller than that in the atomistic domain, and the larger the element, the smaller the frepul. Besides
the repulsive force, there is also an attractive force per unit length fattra acting to bring the partials together: the coarse-
grained domain gives accurate fattra because the latter is provided by the stable stacking fault energy.

In the atomistic domain, fattra balances frepul. In the coarse-grained domain, however, the difference between fattra and frepul
must be compensated by an extra force caused by the constraint of the atomic position imposed by the trilinear interpolation
function, i.e.,

fattra ¼ frepul þ fconstr (34)

where fconstr increases with element size.
Our simulations show that the dissociation of a 60� mixed type dislocation into partials is affected by the degree of coarse

graining in view of the altered packing sequence in the stacking fault. In addition, the maximummagnitude of shear stress at
dislocation core decreases with an increasing element size, while the far field stress away from the core is preserved, as shown
in Fig. 8.

These imply that although dislocations migrate within the coarse-grained domain with reasonable approximation as well
as correct overall long range stress and Burgers vector, the core structures and dislocation interactions are better described in
the atomistic domain, an intuitive result. In addition, elements with graded sizes should be applied in a way that smaller
elements are used in the vicinity of the atomistic domain (where dislocation nucleation and primary interactions occur) while
larger elements are adopted to address long range fields of arrays of dislocations. Although it was shown earlier using
Lennard-Jones (LJ) potential that dislocationedislocation interactions are reasonably well replicated in the coarse-grained
domain (Xiong et al., 2012a), the results with EAM potentials remain to be studied in detail.

As discussed in Section 4.4, the coarse-graining efficiency in quasistatic CAC is more complicated than that of the dynamic
CAC method. In the coarse-grained domain, (1) the efficiency in one iteration is higher because only force/energy on inte-
gration points are calculated; (2) in theory, the outer iteration loop (i.e., determining the search direction) converges faster
because of reduced number of degrees of freedom; (3) the inner loop (i.e., line search algorithm to find the global step size)
takes the same number of iterations as for the atomistic domain because the magnitude of direction vector for one node (i.e.,
equivalent nodal force) is of the same order as that for one atom. It is therefore expected that while the coarse-graining



Fig. 9. Coarse-graining efficiency of energy minimizing a single 60� mixed type dislocation in a model (a) with PBCs and (b) without PBCs along dislocation line
direction. It is found that while filling in the periodic boundary with atoms reduces the efficiency, the quasistatic approach achieves a higher coarse-graining
efficiency relative to the dynamic method because the outer iteration loop converges faster. The runs were completed using Blacklight on Extreme Science
and Engineering Discovery Environment (XSEDE) (Towns et al., 2014).
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efficiency of energy minimization should be higher than that of the dynamic CAC method, it is limited by the line search
algorithm, whose convergence rate varies from case to case.

The coarse-graining efficiency of energy minimizing a single dislocation is calculated at each simulation step by j¼ tat/tcg,
where t is the runtime for each case, as shown in Fig. 9a. It is found that: (1) compared with the last 150 simulation steps, j of
the first 30 steps is lower due to the low efficiency in energy minimizing stress free surfaces (which occurs in the first 30
steps), and (2) larger elements give higher j. However, expect for the smallest element (Nape ¼ 729), j is lower than the ideal
full coarse-graining efficiency in one iteration. This is attributed to the atoms that fill in the periodic boundary along the
dislocation line direction d a model with larger elements requires a larger number of atoms to fill in at the boundary.

Therefore, we also investigate j of energy minimizing the same dislocation in fully coarse-grained models with non-PBC
along the dislocation line direction, as shown in Fig. 9b. The lower efficiency at the initial stage lasts about 80 simulation steps
because more stress free surfaces need to be relaxed. After that, j becomes higher than the ideal efficiency in one iteration
because the outer iteration loop converges faster.
5.3. Indentation at a surface

Materials with a high surface-area-to-volume ratio have mechanical properties that differ from bulk materials (Zhu et al.,
2008). For example, the hardness of a nano-thin film is known to be a function of the film thickness, and the relevant nano-



Fig. 10. Simulation cell of surface indentation by (a) fully atomistic, (b) and (c) fully coarse-grained with different indenter width, and (d) CAC simulations with
the atomistic domain at the free surface. PBCs are applied along both x and y directions. To apply the periodic boundaries in the coarse-grained domain, the
jagged interstices are filled in with atoms, which are not shown here. A plane indenter is applied along ½011� direction by 0.001a0 each step in Cu, while the
bottom layers of atoms/nodes are fixed. In (d), different dat are employed to quantify the free surface deformation.
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indentation process has beenwidely studied by atomistic simulations. In coarse-graining, however, the lattice deformation at
a free surface may not be accurately captured due to its localized nature (Park and Im, 2008): the trilinear interpolation
function poses a restriction on the atomic configuration, particularly when a large element is employed. Moreover, the
assumption that all atoms in a subregion have the same force/energy is only valid when the deformation gradient within an
element remains nearly the same, which is not the case for highly inhomogeneous deformation. Therefore, it is necessary to
quantify the ability of the coarse-grained domain in describing nano-indentation, shedding light on the treatment of free
surfaces in CAC.

We first perform fully atomistic and fully coarse-grained simulations to analyze the nano-indentation on a thin film in both
Cu and Al, as shown in Fig. 10. PBCs are applied along both x and y directions, while the z direction is non-periodic. A plane
indenter is appliedalong ½011�directionby0.001a0 each step,while thebottomlayers of atoms/nodesarefixed. Toeliminate the
effects of all boundaries but the free surface, sufficiently large models are employed. In Cu, all models have the same size of
184.05 Å � 230.23 Å � 181.58 Å. Simulations in Fig. 10b and c use the same model but different indenter width win: along y
direction the indenter spans over either 1 or 2 elements. Element sizes Nape of 343 and 2197 are employed independently.
During the indentation, the force on the indenter along z direction is calculated then divided by the indentation area.

The indentation forceedepth curves are plotted in Fig. 11. Compared with the fully atomistic model, the fully coarse-
grained model gives a lower and non-monotonically increasing force in the elastic stage, a phenomenon more pronounced
with larger element size or indenter spanning. This was not observed in the stressestrain curve of a LJ potential Cu sample
subject to uniaxial tension where the dislocations were also nucleated from the free surface of the coarse-grained domain
(Xiong et al., 2011). This is perhaps due to the fact that the stress is a quantity averaged over the systemwhile the indentation
force here is calculated locally. To further explore the phenomenon, we calculate the von Mises local shear invariant of each
atom, following the formulation in work of Shimizu et al. (2007), i.e.,

hMises ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E212 þ E213 þ E223 þ

ðE11 � E33Þ2 þ ðE22 � E33Þ2 þ ðE11 � E22Þ2
6

s
(35)

where Eij are the components of the GreeneLagrange strain tensor E, which is calculated by



Fig. 11. Indentation forceedepth curves obtained from the fully atomistic and fully coarse-grained simulations in both Cu and Al, as shown in Fig. 10aec. In the
fully coarse-grained simulations, element sizes Nape of 343 or 2197 are employed, with the indenter spanning over 1 or 2 element along y direction. Compared
with the full atomistics, the fully coarse-grained model gives a lower and non-monotonically increasing force in the elastic stage. In addition, the deviation is
larger with larger element or wider indenter.
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E ¼ 1
2
�
FuF� I

�
(36)

where I is the 2nd rank identity tensor and F is the deformation gradient considering only the nearest neighbor interactions in
the initial undeformed configuration (Zimmerman et al., 2009). The calculation of hMises is done by OVITO.

Snapshots of simulations in Cu with atoms colored by hMises are given in Fig. 12. The indentation depth is 0.144a0, cor-
responding to point A in Fig. 11a. It is found that in the coarse-grained domain, the shear deformation is localized between
elements, a phenomenon more pronounced with larger element size. This is due to the trilinear interpolation function
employed within the element. In other words, the elastic shear deformation in the coarse-grained domain is confined to a
smaller zone than that in the atomistic domain, so a smaller force is sufficient to cause the lattice deformation accommo-
dating the same indentation depth. It is also found that the larger the indenter, the smaller the force per unit area, which
agrees with the MS simulations (Tsuru and Shibutani, 2006). Similar phenomena are also found in Al.

The results suggest that when a surface is subject to indentation, the local lattice deformation is not as well reproduced in
the coarse-grained domain as in the atomistic domain. Therefore, it is advisable to not apply the indentation directly on a
coarse-graining free surface. Instead, fully resolved atomistics should be employed in the vicinity of the indenter when the
local elastic deformation gradients are significant. To quantify the required atomistic domain, we perform a series of CAC



Fig. 12. Snapshots of surface indentation in fully atomistic, fully coarse-grained, and CAC simulations in Cu. The indentation depth is 0.144a0, corresponding to
point A in Fig. 11a. Atoms are colored by von Mises local shear invariant hMises (Eq. (35)). In the coarse-grained domain, element sizes Nape of 343 or 2197 are
employed and the indenter spans over either 1 or 2 elements. It is shown that the shear deformation is localized between the elements, a phenomenon more
pronounced with larger element size or wider indenter. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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simulations, as shown in Fig. 10d. Atomistic domains with different thickness dat are employed at the surface where the
indentation is applied.

The indentation forceedepth curves show that the larger the dat, the closer the CAC simulation results are to those of the
full atomistics. While the shear invariant distribution in the atomistic domain is the same as that in the fully atomistic model,
it is disturbed by the atomistic/coarse-grained domain interface and localized between the elements in the coarse-grained
domain, as shown in both Fig. 12c and f. The effect of the coarse-graining decreases with increasing dat. We define the
optimal atomistic domain thickness as the smallest dat that results in a monotonically increasing force prior to the yield point.
The optimal dat values are 13.856a0 in Cu and 20.784a0 in Al, regardless of the degree of coarse-graining in the model. Thus,
we conclude that the optimal dat depends on the material, but not the underlying coarse-grained domain.

5.4. 60� mixed type dislocation migration through the interface between atomistic and coarse-grained domains

One major advantage of CAC compared to the other partitioned domain methods is that dislocations can pass between
atomistic and coarse-grained domains without heuristic rules or special provisions. When the slip planes are aligned with the
planes between elements, the dislocations pass the domain interface smoothly instead of being reflected or pinned. However,
Section 5.2 reveals that the 60� mixed type dislocation has different width in atomistic and coarse-grained domains. This
raises the question of how the dislocation width varies as the dislocation migrates across the interface between the two
domains and whether this interface affects the dislocation migration significantly. Thus, four cases are considered to clarify
distinctions of dislocation migration in fully atomistic, fully coarse-grained, and CAC models in both Cu and Al. All models
have the same overall size of 114.55 Å � 173.61 Å � 224.47 Å in Cu. The indentation process and the force calculation are the
same as in Section 5.3, except that the indenter moves 0.01a0 each step. To eliminate the free surface effect, we fix the top
layers (free surface) except those below the indenter, as well as the bottom layers. The fixed atoms/nodes are labeled by red
boxes in Fig. 14.

No significant change of indentation force is observed when the dislocation migrates across the interface between
atomistic and coarse-grained domain, as shown in Fig. 15. Using the method in Section 5.2, we study the structure of a 60�

mixed type dislocation core across the domain interface, as shown in Fig. 16. It is shown that the interface only slightly alters
the atomic positions in its vicinity, and the dislocation has a correct core structure once it migrates into the atomistic domain.
These results indicate that the domain interface only slightly affects the dislocation migration process in quasistatic CAC.



Fig. 13. Indentation forceedepth curve obtained from the simulations in both Cu and Al as shown in Fig. 10. The indenter spans along y direction over 1 element
when Nape ¼ 2197 or 2 elements when Nape ¼ 343. Free surface atomistic domains with different thickness dat are introduced. The optimal thickness is the
smallest dat that results in a monotonically increasing force. It is shown that the optimal dat depends on the materials, but not on the underlying degree of coarse-
graining.
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To further understand the dislocation dissociation across the interface, a dislocation extraction algorithm (DXA)
(Stukowski et al., 2012) is employed to visualize the partial dislocations, as shown in Figs. 17 and 18. It is found that
subject to the indentation, a series of 60� mixed type dislocations are nucleated and dissociated into partials with
intrinsic stacking fault in between. In Fig. 17a, the dislocation has a correct width in the atomistic domain. With further
indentation, the leading partial is first impeded by the domain interface while the trailing partial is unaffected, resulting
in a narrower dislocation, as shown in Fig. 17b. Later, the trailing partial is also slowed down by the interface while the
leading partial is now migrating steadily in the coarse-graining domain (Fig. 17c). The delay of the partial dislocations is
due to the change of the packing sequence in the stacking fault, where the disregistry of atoms are rearranged to have a
linear correlation with their positions. It follows that the dislocation becomes wider in the coarse-grained domain, as
shown in Fig. 17d. Note that the variation of dislocation width is not observed when the dislocation migrates in an in-
dividual domain. Moreover, the averaged dislocation migration velocity in both domains are the same (Xiong et al.,
2014b).

When the dislocation migrates from the coarse-grained domain to the atomistic domain, the propagation of both
leading and trailing partials are facilitated by the domain interface (Fig. 17eeg) due to a more relaxed environment in full
atomistics. Consequently, the dislocation has a correct width once it migrates into the atomistic domain, as shown in
Fig. 17h. The domain interface itself, as well as the coarse-grained domain, don't influence the dislocation behaviors in the
atomistic domain when the dislocation is not in adjacent to the interface. Similar phenomena are observed in Al, as shown
in Fig. 18.

Using the same models, we also study the overall Burgers vector in both fully atomistic and fully coarse-grained domains
with varying element size in Al. It is found in Fig. 19 that the non Shockley partial dislocations are nucleated under the
indenter in the atomistic domain, while only ð1=6Þa0〈112〉 Shockley partials are formed in the coarse-grained domain, due to
that the dislocations only migrate between the elements, along which the Burgers vector is smeared. At the same indentation
depth 2.62a0, the overall Burgers vector of dislocations on the same slip plane are the same in both atomistic and coarse-
grained domains. Therefore, the long range stress field of these dislocations is preserved because the dislocation core ef-
fect is usually small and local (Bulatov and Cai, 2006). The results using EAM potentials with approximated rj proposed in
Section 4.4 are only slightly different from those employing EAM potentials with accurate rj. Similar phenomena are observed
in Cu.



Fig. 14. Four cases comparing the dislocation migration through the interface between atomistic and coarse-grained domains in Cu and Al: (a) fully atomistic
case, (b) from atomistic to coarse-grained domain, (c) from coarse-grained to atomistic domain, and (d) fully coarse-grained case. PBCs are applied along both x
and y directions. To apply the periodic boundaries in the coarse-grained domain, the jagged interstices are filled in with atoms, which are not shown here. The
indenter moves 0.01a0 each step in Cu along ½011� direction. The atoms/nodes illustrated by red box are fixed. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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5.5. A preliminary convergence and error analysis

As pointed out by Yang et al. (2014), while many multiscale methods have been proposed, few corresponding convergence
and error analyses exist. Somemathematical and/or numerical analyses include, but are not limited to, those of QC (Knap and
Ortiz, 2001; Lin, 2003, 2007; Luskin and Ortner, 2009; Van Koten and Luskin, 2011), heterogeneous multiscale method (E and
Ming, 2004), bridging scale method (Tang et al., 2006), atomistic-to-continuum coupling (Luskin and Ortner, 2013), and
multiresolutionmolecular statics (Yang et al., 2014). Our previous work (Xiong et al., 2011, 2012b) shows that in dynamic CAC,
the coarse-grained domains give closer results to those of the full atomistics when finer elements or larger models are
employed. In this section, we present a preliminary convergence and error analysis of quasistatic CAC.

We take the fully atomistic MS result as the “exact solution” that a fully coarse-grained or CAC simulation should be
compared with. Thus, the atomistic domain, except the region in adjacent to the atomistic/coarse-grained domain interface,
yields an exact result since it employs the same governing equation as MS without interactionwith the domain interface. The
coarse-grained domain, however, introduces numerical errors due to two main approximations: (1) discretization error by
using the trilinear shape function and interpolation function; (2) integration error by dividing an element into subregions and
adopting the integration points. The approximations also introduce errors to regions in the atomistic domain that are in the
vicinity of the domain interface because of the non-local force/energy. It is beyond the scope of this section to distinguish
different sources of error in each domain and perform a comprehensive convergence and error analysis; rather, we will
analyze the simulation results to show the convergence and error of quasistatic CAC with respect to MS as a function of (1)
ratio of the number of integration points per element to the number of atoms per element, i.e., Nipe/Nape, (2) element size Nape,
and (3) the atomistic domain thickness dat at a surface subject to indentation. The convergence is illustrated by the relative
error erel between two scalars A, i.e.,

erel ¼
jAcal � AMSj

jAMSj
(37)

where AMS is the result from MS and Acal is obtained by either fully coarse-grained or CAC simulations.



Fig. 15. Indentation forceedepth curve obtained from the simulations in both Cu and Al as shown in Fig. 14. No significant change of force is observed when the
dislocation migrates across the interface between atomistic and coarse-grained domains.
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1. In Section 5.1, the generalized stacking fault energy along ½112� in the coarse-grained domain is calculated using both 1NN
and 2NN elements. Each element contains either 2197 or 9261 atoms. The relative errors of both gusf and gsf in both Cu and
Al decrease to nearly zero when Nipe/Nape > 0.013, as shown in Fig. 20. From the perspective of numerical integration, a
larger number of integration points yields an exact result for higher order integrand, which is desired for larger element.
AsNipe/Nape approaches 1, the integration error tends to disappear while the discretization error still exists. It is shown that
for the element sizes studied here, the 2NN type captures well the stacking fault energy in both materials, so extra
integration points are not necessary.

2. In Section 5.2, the 60� mixed type dislocation wd in the coarse-grained domain is calculated using the 2NN elements as a
function of the element size Nape. Fig. 21 shows that wd in both Cu and Al approach the MS results as Nape decreases. The
smallest element contains 125 atoms, suggesting that all atoms are taken as integration points and the integration error
is zero. However, the total error is not zero because of the existence of the discretization error. With a larger element, the
integration errors increase due to a smaller Nipe/Nape. Although the largest element results in a relative error of nearly 1,
this doesn't significantly affect the dislocation behaviors in the atomistic domain, as concluded in Section 5.4. In the
coarse-grained domain, dislocation mobility approximations are not relevant to quasistatic CAC. As shown in Section 5.4,
the net Burgers vector of interelement dislocation and long range stress field are preserved even using the largest
element.

3. In Section 5.3, atomistic domains with different thickness dat are employed at the indentation surface. In the underlying
coarse-grained domain, each element contains either 343 or 2197 atoms. The indentation force per unit area Pin is
studied with respect to the indentation depth din to quantify the free surface effect. We calculate the largest relative



Fig. 16. The 60� mixed type dislocation core is located across the interface (x ¼ 0) such that half of it is in the atomistic domain while the other half the coarse-
grained domain in both Cu and Al. The disregistry ux and uy of dislocation, calculated using the method in Section 5.2, are compared with those in fully atomistic
and fully coarse-grained models. The Burgers vector b ¼ 1=2 a0½110�. It is shown that the interface only slightly alters the atomic positions in its vicinity, and the
dislocation has a correct core structure once it migrates into the atomistic domain.

Fig. 17. Snapshots of dislocation migration from the atomistic to coarse-grained domain (aed), as well as in the opposite direction (eeh) in Cu. The green curves
refer to 1=6a0〈112〉 Shockley partial dislocation lines. The gray ribbons are the intrinsic stacking fault. To apply the periodic boundaries in the coarse-grained
domain, the jagged interstices are filled in with atoms, which are not shown here. The domain interface in the first case delays the partials while the one in
the second case facilitates the dislocation migration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 18. The same snapshots of dislocation migration as Fig. 17, but in Al. Similar phenomena are observed.

Fig. 19. Snapshots of dislocation migration subject to indentation in both fully atomistic and fully coarse-grained domains with varying element size in Al. The
green and red curves refer to 1=6 a0〈112〉 Shockley partial and 1=2 a0〈110〉 perfect dislocations, respectively. The gray ribbons are the intrinsic stacking fault. It is
shown that while only Shockley partials are nucleated in the coarse-grained domain, several non Shockley partials are formed in fully atomistic model. At the
same indentation depth 2.62a0, the overall Burgers vector of 9 partial dislocations on the same slip plane are the same, regardless of the element size or whether
the EAM potential is employed with approximated rj . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 20. The relative errors of both gusf and gsf in both Cu and Al calculated in the coarse-grained domain using both 1NN and 2NN elements. Each element contains
either 2197 or 9261 atoms. The values of stacking fault energy are from Fig. 4. It is shown that the relative errors reduce to nearly zero with increasing Nipe/Nape.

Fig. 21. The relative errors of the 60� mixed type dislocation width wd in both Cu and Al calculated in the coarse-grained domain using 2NN elements with
varying element size Nape. The values of wd are from Fig. 7. It is shown that the relative errors reduce to nearly zero with the smallest Nape.

Fig. 22. The largest relative errors of the indentation force per unit area Pin between din > 0.1a0 and the yield point in both Cu and Al in the nano-indentation
simulations. In the underlying coarse-grained domain, each element contains either 343 or 2197 atoms. The values of Pin are from Fig. 13. It is shown that the
relative errors reduce to nearly zero with the largest dat.
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S. Xu et al. / International Journal of Plasticity 72 (2015) 91e126116
errors of Pin between din > 0.1a0 and the yield point in each case, as shown in Fig. 22. The convergence of Pin to the MS
result with an increasing dat indicates that the effect of the atomistic/coarse-grained domain interface is negligible at a
finite distance.

In summary, a preliminary convergence and error analysis shows that the fully coarse-grained quasistatic implementation
provides convergence to fully resolved MS energy minimization by virtue of the inherent consistency of the same underlying
interatomic potential in both domains. Similar results are found in two FCC crystalline materials with distinct stacking fault
energy.
6. Conclusions

In this paper, the basic formulation of atomistic field theory is reviewed, and a first order quasistatic concurrent atomistic-
continuummethod is presented. This method is then applied in several benchmark 3-D problems in dislocation plasticity for
pure FCC crystals of Cu and Al. Results are summarized as follows:

1. The proposed method partitions the simulation cell into two domains: atomistic and coarse-grained, with atomistic field
theory as a unified governing equation. The atomistic domain is solved as in classical molecular statics with sequential
energy minimization; in the coarse-grained domain, a finite element method is employed to solve the governing equation
in the continuum field that admits discontinuous displacement between elements. Dislocations can pass along these
interelement boundaries.

2. The quasistatic CAC method and its implementation are described in detail. Although the algorithm has similarities
with full atomistics, some distinctions are addressed, including the choice of the integration points, the force/energy/
stress calculation, periodic boundaries, and the parallel computing implementation. The major advantage of the CAC
method, compared to other partitioned domain methods, is in the use of interelement discontinuity for dislocation
nucleation and migration, facilitating seamless passage of dislocations between atomistic and coarse-grained
domains.

3. We explore the capabilities of the quasistatic CAC method by investigating the behavior of dislocations in the coarse-
grained domains. First, it is found that the ratio of relaxed stable to relaxed unstable stacking fault energy is lower in
the 1NN element, explaining the previous observation in the stressestrain curves that the amplitudes of strain bursts
after yielding are larger; second, for a 60� mixed type dislocation, there is a linear correlation between disregistry and
atomic position within an element, so the larger the element, the wider the dislocation core and the smaller the
maximum magnitude of shear stress; third, the atomistic domain should be applied in place of the coarse-grained
domain where the local elastic deformation is significant; fourth, it is shown that the atomistic/coarse-grained
domain interface only slightly affects the dislocation migration process and that the overall Burgers vector of dislo-
cations on the same slide plane are the same in both atomistic and coarse-grained domain. Moreover, a preliminary
convergence and error analysis shows that the fully coarse-grained quasistatic energy minimized simulations provide
satisfying convergence to fully resolved MS energy minimization as the number of atoms per element is reduced.

Both dynamic and quasistatic CAC methods have advantages over most coarse-grained approaches:

1. A unified governing equation and the same interatomic potential are employed in both atomistic and coarse-grained
domains, inherently providing the convergence of CAC quasistatic simulations to fully resolved atomistic. Also, since all
force/energy calculations are non-local, no ghost forces exist at the atomistic/coarse-grained domain interface in both
undeformed and homogeneously deformed configurations.

2. Adaptive remeshing, which is costly and usually employed in multiscale methods to capture lattice defects in the present
of continuous elements, is not essential in the current quasistatic CAC implementation, because interelement disconti-
nuity admits the propagation of edge, screw, and mixed character dislocations albeit with a smeared treatment of the
dislocation core/Burgers vector. This results in a consistent coarse-graining efficiency compared to MS.

3. Because net Burgers vector and associated long range fields of dislocation arrays are preserved in the coarse-grained
domain, CAC coarse graining can be employed in regions remote from defects (e.g., interstitial, vacancy, void, and in-
terfaces), while full atomistic resolution should be employed in the vicinity of defects to reproduce dislocationedefect
reactions.

Specifically, the current work contributes to advancing the CAC method in the following ways:

1. The quasistatic approach allows us to describe the precise energy landscape, avoiding issues related to overdriven kinetics
in dynamic simulations.

2. The implementation is detailed in a mathematically rigorous matter, where the choice of integration point and
Gaussian quadrature are explained. Based on our previous CAC method, 2NN element with first order Gaussian
quadrature in each subregion is proposed for the first time, giving an accurate generalized stacking fault energy
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without mesh refinement to atomistic scale which, to our knowledge, is beyond the capability of existing coarse-
grained methods in the literature.

3. Dislocation core structures in the coarse-grained domain are systematically studied for the first time. Direct evidence is
provided to show that the overall Burgers vector and long range stress field of dislocations are preserved.

4. Dislocation migration across the atomistic/coarse-grained domain interface, which is treated artificially in most coarse-
grained methods, is explored. Attention is paid in the variation of dislocation core structure across the interface which
proves that the interface only slightly affects dislocation migration.

5. The coarse-graining efficiency in one iteration, as well as that of the quasistatic approach, are carefully analyzed. Signif-
icant computational benefits are gained using the CAC model relative to the equivalent fully atomistic simulation. Also, a
preliminary convergence and error analysis of the CAC method is performed to show that the coarse-grained model
converges to fully resolved MS as the element size is decreased.

6. From the computational perspective, several improvements are made based on our previous CAC implementation with
regard to parallelization. First, atoms are employed to fill in the jagged interstices to allow periodic simulation cell
boundaries; second, in the spatial-decomposition parallelization algorithm, elements are shared between neighboring
processors, each of which only calculates force/energy of the integration points within its own domain d parallel effi-
ciency is thus improved; third, the host electron density of atoms within the same subregion is assumed constant,
facilitating application of the EAM potential; last, the spatially unbalanced work load between processors, which is a
common issue inmultiscale modeling, is alleviated by adaptively assigning approximately the same number of “evaluation
points” to different processors.

However, because the dislocation paths are confined to lie along interelement boundaries, not all types of defects can be
captured in the coarse-grained domain. For instance, complex extended core interactions cannot be accurately described.
Future development of the quasistatic implementation of CAC described in this paper will consider adaptive mesh refine-
ment, higher order shape/interpolation functions, and enrichment functions within elements to admit dislocations in
element interior regions (Belytschko et al., 2009). While all computations in this work use 3-D models, we leave the study of
larger domains and larger scale curved dislocations of mixed character to future work.

The purpose of this paper is to compare quasistatic CAC with MS simulations to demonstrate its capability in describing
individual dislocations in the coarse-grained domain, as a prelude to modeling large numbers of dislocations. It is not our
intent here to shed light on improved understanding of dislocation core level phenomena, but rather to establish that the
method adequately replicates essential aspects of dislocation fields. For example, an issue of great relevance that chal-
lenges the length scale limits of classical atomistic simulations is the multiple, successive reactions of leading dislocations
in long range pile-ups against atomistically resolved grain boundaries or interfaces. Exploring this matter using quasistatic
CAC and providing a comprehensive convergence and error analysis involving different integration schemes are left to
future research.
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Appendix A. Equivalent nodal force

The displacement field u is the difference between the reference and current configurations, i.e.,

uðX; tÞ ¼ rðX; tÞ � X (A.1)
where X denotes the position of a material point in the reference configuration. So we have

€r ¼ €u: (A.2)
In the quasistatic implementation of CAC, there is no dynamic or inertial effects, so the accelerations of the atoms/nodes
are zero and the inertia effect, which involves both the atomic mass in the atomistic domain and the mass matrix in the
coarse-grained domain, doesn't influence the simulation result. In the following sections, however, the acceleration andmass
are employed as a means to relate the continuum and atomistic domains and derive the equivalent nodal force in Eq. (12),
which does not depend on acceleration nor mass.
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We apply the weighted residual method by substituting Eq. (A.2) into Eq. (1), multiplying the latter equation by a weight
function Fn, and performing the integration over the simulation domain U, i.e.,Z

UðrÞ

�
rFnðrÞFxðrÞ€ux � FnðrÞfintðrÞ

	
dUðrÞ ¼ 0 n ¼ 1;2;…;Nnpe: (A.3)

The Galerkin method is employed, by taking the shape function as theweight function. Eq. (A.3) can be viewed as a system

of equations for the (time varying) nodal displacements for the dynamic problem derived by the principle of virtual work. The
second term is the internal force that causes the nodal displacement. Since here we don't integrate by parts to decrease the
continuity requirement on u, Eq. (A.3) is not a weak form.

Writing Eq. (A.3) in matrix form, the first term becomesZ
UðrÞ

rFnðrÞFxðrÞ€uxdUðrÞ ¼ M€ux ¼ M€R
x

(A.4)

where Fn is an Nnpe � 1 vector, R€x is a Nnpe � 3 matrix, and

M ¼
Z

UðrÞ
rFnðrÞFxðrÞdUðrÞ (A.5)

is a Nnpe � Nnpe local mass matrix.
The second term of Eq. (A.3) can be replaced by a quadrature, i.e.,

Z
UðrÞ

FnðrÞfintðrÞdUðrÞ ¼
XNipe

m

u0
mFmnfm (A.6)

where u0
m are the quadrature weight in terms of force density, Fmn is a Nnpe � 1 vector, and fm is a 1 � 3 vector. While inte-

gration points m can correspond to any material point in the continuum, we let m correspond to actual atoms. In this way, the
calculation of force/energy is straightforward, as indicated in Section 2.2. It follows that

fm ¼ Fm

Um (A.7)

where 1 � 3 vector Fm is the atomic force at m and Um is the volume of mth integration point.
Substituting Eqs. (A.4), (A.6), and (A.7) into Eq. (A.3) leads to

M€R
x �

X
m

umFmnFm ¼ 0 (A.8)

where um, the quadrature weight in terms of atomic force, is related to u0
m by
um ¼ u0
m

Um : (A.9)
Changing the dummy index n to x, Eq. (A.8) becomes

mx €R
x �F x ¼ 0 (A.10)

where
F x ¼ mxM�1
X
m

umFmxFm: (A.11)

x x
Here,F , a Nnpe � 3 matrix, is the equivalent nodal force on nodes x. To ensure that F is on the order of atomic force, we
require

F x ¼

P
m
umFmxFmP

m
umFmx

(A.12)
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which is the equivalent nodal force formulation in Eq. (12).
Comparing Eq. (A.11) with Eq. (A.12), we must satisfy

mxM�1
X
m

umFmx ¼ G (A.13)
where G is a Nnpe � 1 matrix with all elements unity. Equivalently,

X
m

umFmx ¼ MG

mx
(A.14)
where MG is a Nnpe � 1 matrix, whose elements are the sum of rows in M. We use a lumped mass matrix, whose diagonal
elements of its inverse matrix M�1 are Nnpe/(mxNape). Then, for each node x

X
m

umFmx ¼
Nape

Nnpe
: (A.15)
Appendix B. Integration points

While multiple choices of integration points m and weight um satisfy Eq. (A.15), we take the liberty to further restrict that

X
m

um ¼ Nape (B.1)

such that the total weight of the integration points within one element is the number of atoms it contains. The integration
points play a similar role to the sampling atoms used in other concurrent multiscale methods such as virtual atom cluster
(Qian and Gondhalekar, 2004), atom collocationmethod (Yang et al., 2012), andmultiresolutionmolecular mechanics (MMM)
(Yang et al., 2013a; Biyikli et al., 2014). In these methods, the computational demand is reduced by only calculating the force/
energy of the sampling points, and Eq. (B.1) is usually satisfied.

In Eq. (A.6), the integral is approximated by aweighted sum of the evaluations of the integrand at a set of integration points
m. In numerical integration, the positions andweights of m are usually determined by the order of the integrand. It is, however,
difficult to employ a unified set of integration points within an element due to two reasons:

1. The integrand Fn(r)fint(r) can be a complicated and highly non-linear function of r, whose order is usually difficult to
anticipate a priori.

2. The varying of the integrand is not uniform within an element. Among all atoms, those close to the element surface can
better “feel” what happens outside, i.e., their force/energy are more sensitive to external influences. In contrast, the
remaining “interior atoms” are arranged in a similar local lattice structure decided only by the element's overall defor-
mation through a trilinear interpolation function. For example, assume that an element initially represents a perfect
lattice, where all atoms have the same force/energy.When a dislocation propagates between elements, the force/energy of
each “surface atom” varies substantially while those of the “interior atoms” remain nearly the same.

To circumvent this problem, we divide one element into a number of non-overlapping subregions, as shown in Fig. B.23. In
this way, we only need to determine the order of the integrandwithin each subregion, which is usually lower than that within
the whole element and is more easily approximated. The integration in Eq. (A.6) becomes

Z
UðrÞ

FnðrÞfintðrÞdUðrÞ ¼
XNspe

a

Z
UaðrÞ

FnðrÞfintðrÞdUaðrÞ ¼
XNspe

a

XNips

m

u0
mFmnfm (B.2)
where Ua is the volume of subregion a, Nspe the number of subregions per element, and Nips the number of integration points
per subregion. The accuracy of the quadrature in Eq. (A.6) depends on (1) how the element is divided and (2) whether the
evaluations at the integration points can represent that of all atoms in the same subregion. Below, we first discuss the
integration within one subregion as this determines the division of the element.
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Fig. B.23. 3-D illustration of the subregions within an element in natural coordinates in CAC simulations. The atoms are not shown. Four types of subregions, a, b,
g, and d, are marked in red, blue, green, and gray, respectively. Within each subregion there is one integration point, as shown in Fig. B.26. The same type of
subregion contains different numbers of atoms in 1NN and 2NN elements, so the relevant integration points have different weights, according to Eq. (B.8). The
“surface atoms” are located in subregions a, b, and g, while the “interior atoms” are contained by subregion d. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

The integrand Fn(r)fint(r) in Eq. (A.6) is a Nnpe � 3 matrix, i.e.,

2
4 F1

«
FNnpe

3
5$hf cint f hint f zint

i
¼

2
64 F1f

c

int F1f
h

int F1f
z

int
« « «

FNnpe
f cint FNnpe

f hint FNnpe
f zint

3
75: (B.3)
Taking the first element F1f
c

int of the matrix as an example, we assume that within each subregion, the force density is
quasi-constant, i.e.,

f cintðrÞ ¼ f cm (B.4)

except at the boundary, because different subregions have a different f c which is continuous at the boundary. Moreover, since
m

the force density is related to the deformation gradient, the assumption only applies when the deformation gradient remains
nearly the same within an element, regardless of the order of the shape function. In practice, however, the force density
gradient within the subregion boundary is small because it is essentially calculated between two neighboring atomic sites. So
the boundary effect is negligible. Within subregion a, the integral on the first element in Eq. (B.3) becomesZ

UaðrÞ
F1ðrÞf cintðrÞdUaðrÞ ¼ f cm

Z
UaðrÞ

F1ðrÞdUaðrÞ (B.5)

where the shape function for node 1, F (r), is trilinear with respect to r, regardless of the subregion. The Gaussian quadrature
1
rule suggests that in 1-D integration on interval [a,b], one integration point located at bþ a=2 with weight (b� a) can yield an
exact result for a linear polynomial integrand (Chapra and Canale, 2009). Thus in this paper, the 1st order Gaussian quadrature
is employed for the numerical integration. A higher order Gaussian quadrature is desired if the force density varies within
each subregion and/or a higher order shape function is employed; the exact force density function within a subregion de-
pends on both the size/position of the subregion and the interatomic potentials. For 2-D integration within a subregion
illustrated in Fig. B.24, the interval along c and h directions are ½�ðNc þ 1=2Þa0=2; ðNc þ 1=2Þa0=2� and
½�ðNh þ 1=2Þa0=2; ðNh þ 1=2Þa0=2�, respectively. Thus, the integration point should be located at (0,0) with weight

u0
m ¼ u0

cu
0
h ¼



Nc þ 1

2

�

Nh þ 1

2

�
a20: (B.6)
In a 2-D subregion, Um is the area of a unit cell in natural coordinates, i.e.,

Um ¼ a20
4
: (B.7)
Substituting Eqs. (B.6) and (B.7) into Eq. (A.9), we have
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um ¼ �
2Nc þ 1

��
2Nh þ 1

�
; (B.8)
which suggests that the weight of an integration point is the number of atoms within the same subregion. The same
conclusion can be obtained for a 3-D subregion. Equation (B.1) is therefore satisfied.

Fig. B.24. Illustration of a 2-D subregion containing (2Nc þ 1) � (2Nh þ 1) atoms in natural coordinates. The filled circle in the origin is the integration point. The
open circles are non-integration point atoms. The boundaries of the subregion along c and h directions are ½�ðNc þ 1=2Þa0=2; ðNc þ 1=2Þa0=2� and
½�ðNh þ 1=2Þa0=2; ðNh þ 1=2Þa0=2�, respectively. Note that in the field description of an element, an integration point can be any continuum point. In this paper,
we choose the actual atoms because the force/energy calculation is straightforward.

Equation (B.4) suggests that the force density field within one element is approximated by a piecewise constant function.
To ensure that the approximation is accurate, we first need to determine the spatial variation of atomic force Fk, which is
related to the force density by a constant via Eq. (7), within one element. Then we identify a coarse subregion with large
number of atoms where the atomic force doesn't vary much, and a fine subregion where the atomic force has a substantial
gradient. We notice that although the force/energy caused by one atom is effective at an infinitely large distance, the
interaction between a pair of atoms is negligible when separated farther than a cutoff distance rc. In particular, for the EAM
potentials employed in this paper, the force/energy changes very little beyond the second nearest neighbor (2NN) and third
nearest neighbor (3NN) distances, respectively, as shown in Fig. B.25. This suggests that to provide a reasonable approxi-
mation for energy minimization, the atoms beyond 2NN distance from the element surface can be taken as “interior atoms”.
We validate this assumption quantitatively in Section 5.1.

Fig. B.25. The interatomic force and pair energy are calculated using the Cu EAM potential (Mishin et al., 2001) with respect to the interatomic distance. Change
in the pair energy is negligible when the interatomic distance is beyond the 2NN distance, whereas change in the force is negligible beyond the 3NN distance. This
suggests that sampling atoms within 2NN distance from the element surface may provide a reasonable approximation for energy minimization. The same can be
said for Al. Note that the host electron density is assumed constant, so only the force contribution from the pair potential is shown here.
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Following these ideas, we develop two types of elements: 1NN and 2NN elements in CAC simulations. Fig. B.26 illustrates
the division of subregions in a 2-D element, with gray representing the “interior atoms”, both red (nodes) and blue the
“surface atoms”. A coarse subregion is employed to contain all “interior atoms” because they are beyond a certain distance
from the element surface along both c and h directions and are assumed to have the same force/energy. For the “surface
atoms”, more highly resolved subregions are adopted. Note that some atoms, e.g., atom b, lie on the surface along the h

direction but are far from the surface in terms of the c direction. We can then assume that atom b and atoms in similar
positions (e.g., b1 and b2) have the same force/energy and so they are in the same subregion.

Fig. B.26. 2-D illustrations of part of a 1NN and a 2NN element in natural coordinates in CAC simulations. rc is the cutoff distance of the interatomic potential. The
element is divided into a number of subregions by dotted lines, each of which contains one integration point (filled circle) that is located in the center of the
subregion. The gray circles are the “interior atoms” and both red and blue are the “surface atoms”. The red circles are also the nodes fromwhich all atoms within
an element are interpolated. Within a 3-D element, there are 27 and 125 integration points in a 1NN and a 2NN element, respectively, regardless of the element
size. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

As illustrated in Fig. B.23, four types of subregions in a 3-D element, a, b, g, and d, are marked in red, blue, green, and gray,
respectively. Except subregion type awhich only contains one atom, the same type of subregion contains different numbers of
atoms in 1NN and 2NN elements, and so the relevant integration points have different weights, according to Eq. (B.8). In
general, the subregions are located symmetrically with respect to the axes in natural coordinates and the integration points
are in the center of the subregion; we therefore require that the subregions and elements have an odd number of atoms along
each axis. The number of each type of subregion andweight of relevant integration points in a 3-D element are shown in Table
B.2. Within each element, there are 27 and 125 integration points for 1NN and 2NN types, respectively, regardless of Nape.
Equation (B.1) holds for both element types, i.e., for a 1NN element,
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and for a 2NN element,
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In both types of elements, the “surface atoms” and “interior atoms” are treated differently, as explained above.
However, two layers of atoms are in the “surface” of the 2NN element, compared to only one layer of atoms in the 1NN
element. Consequently, the 2NN element better captures the variation of force/energy due to the interelement
displacement discontinuity (e.g., dislocations), and so better describes the associated surface rearrangement/recon-
struction. In practice, elements in the vicinity of a free surface and dislocations should be of 2NN type, while those in
perfect lattice can be of 1NN type to reduce the computational intensity. Moreover, since the justification of the 2NN
element is based on the interatomic force/energyedistance relation, the proper thickness of the “surface” region depends
on the interatomic potential. For example, for a long range interatomic potential, we need elements with a thicker
“surface” region.

Note that although the integration points in CAC are analogous to the sampling points, e.g., in MMM, they don't serve the
same purpose. MMM is a coarse-grained atomistic methodwith no continuum concept such as stress or strain employed in its
framework (Yang et al., 2014), while CAC is based on a continuous field theory. It is also noteworthy to mention that in our
earlier work, both nodal integration (Deng et al., 2010) and 2nd order Gaussian quadrature (Xiong et al., 2011, 2012b,a,c,
2014a,b, 2015; Deng and Chen, 2013; Yang et al., 2013b) are employed. The 2nd order Gaussian quadrature in CAC also di-
vides a 3-D element into subregions as in Fig. B.23 and the positions of each type of subregion are similar to those in the 1NN
element. However, the positions and weights of the integration points are different from those presented in Table B.2. In this
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paper, the subregions are divided such that the 1st order Gaussian quadrature yields exact solutions based on our as-
sumptions, with 1 integration point in each subregion compared with $2^n$ in the 2nd order Gaussian quadraturewhere $n$
is an integer between 0 and 3.
Table B.2
Number of each type of subregion and weight of relevant integration points in 3-D 1NN and 2NN elements.

Element type Subregion type

a b g d

1NN Number 8 12 6 1
Weight 1
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2NN Number 64 48 12 1
Weight 1
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3
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Appendix C. CAC algorithm

Due to the similarity between CAC and MS simulations regarding lattice structure and force/energy calculations, the CAC
algorithm adopts common MS techniques. Newton's third law is employed in the atomistic domain to promote efficiency in
calculating the force, pair potential, local electron density, and stress. The short-range neighbor search adopts a combined
Verlet list (Verlet, 1967) and link-cell (Allen and Tildesley, 1989) methods. The CAC simulations run in parallel using Message
Passing Interface (MPI). We choose the spatial-decomposition algorithm because of its minimized amount of data commu-
nication (Plimpton, 1995).

There are four major issues in CAC simulations with coarse-graining that don't exist in standard MS:

1. In the coarse-grained domain, the surfaces of the rhombohedral elements correspond to {111} planes. While facilitating
the description of dislocation nucleation and migration, this prevents us from constructing a parallelepipedonal coarse-
grained domain with arbitrary lattice orientations relative to surfaces of the overall simulation cell. If we only use
rhombohedral elements in the model, the simulation box will most likely have jagged boundaries, as shown in Fig. C.27a.
To facilitate application of PBCs, we can fill in the jagged interstices at simulation cell boundaries with atoms, as shown in
Fig. C.27b.

2. Another issue in PBCs implementation is that an object crossing through one face of the simulation box should enter the
box through the opposite face. In atomistic simulations, this is realized via displacing the atoms by the box lengths along
the directions along which PBCs are applied. In the coarse-grained domain, however, care must be taken when not all
nodes of one element are displaced, i.e., an element is cut through by a periodic boundary. In this case, the nodal po-
sitions should be reinstated to interpolate the positions of atoms within the element. Subsequently, the reinstated
nodes and some of the interpolated atoms are displaced following the PBC algorithm. The procedure is shown in
Fig. C.28.

3. In CAC quasistatic simulations with both atomistic and coarse-grained domains, only the force/energy/host electron
density of the integration points and atoms (referred to as evaluation points) are computed, so the workload, which is
proportional to the number of interactions, is poorly balanced if we assign each processor an equally-sized cubic domain as
in full atomistics (Pearce et al., 2014). Since the local density of interactions doesn't significantly vary within the simulation
cell, we use the number of evaluation points as an approximation of the workload and assign each processor domain
approximately the same number of evaluation points, which is re-evaluated at regular time intervals (Bulatov et al., 2004).
It follows that at periodic boundaries filled in with atoms or in the vicinity of lattice defects where full atomistics is
employed, the processors are assigned smaller domains that contain more atoms than other processors whose domains
contain more nodes.

4. In Fig. C.27c, element 1 is shared between processors P1, P2, P4, and P5. This overlapping domain is common in parallel
finite element implementations. We use the algorithm described below to address the shared element
implementation.
(a) For element 1, P1, P2, and P5 contain some non-overlapping integration points while processor P4 doesn't have any

integration point. One processor, e.g., P1, is chosen as the host processor for this element.
(b) P1, P2, and P5 calculate the force/energy of its own integration points, which are then sent to P1.
(c) P1 calculates the equivalent nodal force/energy of this element based on the data it receives from the other processors

using Eq. (A.11) and Eq. (22).
(d) P1 varies the nodes along a certain direction (which is a function of the equivalent nodal force) before sending the

updated nodal positions to all other processors.
(e) Note that in Fig. C.27c, although processors P4 doesn't contain any integration points but only a non-integration point

atom k, it still needs to access the updated nodal positions from P1. This is because the position of k is needed by other
atoms P4 contains in doing the non-local force/energy calculations.



Fig. C.27. (a) A simulation cell consists of only elements, with jagged boundaries. (b) Atomistic domains are introduced to “fill in” the interstices between planar
boundaries of a cubic simulation cell and element boundaries. (c) 2-D Illustration of dividing a simulation cell containing 2 elements and 28 atoms in natural
coordinates into a number of link-cells (green and black dot-dash lines) and processor domains (black dot-dash lines). Elements are illustrated by black dash lines,
where red (nodes), blue, and gray filled circles are integration points, open circles are non-integration point atoms. The black filled circles are atoms in the
atomistic domain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. C.28. A 2-D illustration of a simulation cell with PBCs along the direction marked by an arrow. Red filled circles are nodes and gray open circles are
interpolated atoms within an element which is illustrated by black dash lines. (a) An element is cut through by the periodic boundary with one node crossing the
left boundary. (b) It follows that the node enters the simulation box through the right boundary. (c) In interpolating the positions of atoms within the element,
the nodal position is reinstated. (d) Subsequently, the node and some interpolated atoms are displaced following the PBC algorithm. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Although the employment of discontinuous elements in CAC simulation results in a larger number of nodes for an identical
number of elements relative to a continuous formulation, it shares advantages with the discontinuous Galerkin finite element
methods (Cockburn et al., 2011). First, the local formulation promotes the parallelism of the algorithm; second, the assembly
of a global mass matrix is not required, and so the memory is less demanding; third, in the case that one element is shared by
more than one processor, we don't need to communicate the overlapping elements boundary condition between processors;
finally, higher order elements can be implemented locally without concerning the compatibility with its neighbors, both p-
and h-adaptive mesh refinement methods become more convenient to implement.
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Although the shared elements in the coarse-grained domain lead to a lower parallel efficiency than the fully atomistics, it
is worth noting that the parallel efficiency of coarse-graining is not the primary attractive feature of CAC, but rather its ability
to extend the spatial scale under consideration to large dimensions, incorporating many body defect field interactions. This is
quite difficult to achieve using standard MS methods.
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