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ABSTRACT

Metallic nanolaminates exhibit superior strength compared to their coarsely lami-

nated counterparts. For layer thicknesses in the range of a few to tens of nanometers,

the strength of these materials is related to the stress required for individual dislo-

cations to thread through the nanometer-thick layers, a motion called confined layer

slip (CLS).Here,usingatomistic simulations,wemodel theCLS innanolaminatedCu

with incoherent interfaces, with a focus on the role of stacking fault energies (SFEs),

whicharevariedbyuptooneorderofmagnitudewhileothermaterialparametersare

largely kept the same. Our simulations found that (i) the intrinsic SFE affects the

structures of both the dislocation core and the interfaces and (ii) the critical stress for

CLS scales positivelywith the energy of the incoherent interface, but negativelywith

the ratio between the intrinsic SFE and the unstable SFE.

Introduction

Metallic nanolaminates (MNs) have gained much

attention due to the wide range of superior properties

they exhibit. Compared to traditional metals with the

same composition, MNs have outstanding thermal

stability [1], strength [2], ductility [3], as well as

resistance to shock [4] and radiation [5]. MNs are

stacks of well-oriented nanometer-thick, metallic

layers, alternating in crystallography and/or com-

position [6, 7]. MNs are widely used in coatings,

nanoelectronics, sensing, catalysis, gas separation,

and energy-related areas [8–10].

MNs have been shown to demonstrate 3–10�
higher strengths than their coarser layered or coarse-

grained counterparts. For individual layer
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thicknesses h with nanoscale dimensions, the

strength of MNs depends on h, tending to increase as

h decreases. Instrumental in understanding their

superior strength and layer size h effects on strength

is understanding how dislocations move in them and

the stresses associated with this motion. For MNs, the

main dislocation glide mechanism is thought to

depend sensitively on h. Early works have mapped

the dislocation slip mechanisms to a range of h, with

interface crossing prevailing when h � 1–2 nm and

confined layer slip (CLS) occurring for few nm \h\
tens of nm [11–13]. Experimental evidence of both

slip transfer and CLS has been reported in a wide

variety of MNs [14–17].

The h range in which most MNs lie is the range

wherein CLS dominates. In CLS, the dislocation

glides within the nanolayer and as it glides, it must

interact with the bounding interfaces. From disloca-

tion theory, it is expected that the dislocation expe-

riences less resistance to glide in the interior of the

layer and more resistance at the interfaces. Thus, its

morphology in motion is pictured as a dislocation

line bowing out in the interior of the layer and line

deposition in the boundaries, resulting in their

deformation. The former effect is proposed to pro-

duce a strength scaling following lnðhÞ=h [12]. The

latter effect is believed to add extra resistance,

depending on the properties of the interface [18].

Because of its characteristic length (\100 nm), the

discrete dislocation dynamics (DDD) and atomistic

simulations are ideal tools for modeling CLS. Earlier

work of Zbib et al. [19–21] utilized DDD to model

CLS in bi-metal Cu/Nb systems (with coherent

interfaces) and tri-metal Cu/Ni/Nb system (with

both coherent and incoherent interfaces). Their sim-

ulations highlighted the significance of the interfacial

defect configuration, layer thickness, and volume

fractions of constituent materials. In recent years, a

few atomistic simulations were devoted to CLS in

metallic multilayers, such as nanolaminated Cu

[22, 23], nanolaminated Nb [23, 24], and Cu/Nb

nanolaminate [23]. It was found that the dislocation

gliding mode (e.g., smooth vs. jerky) and minimum

resolved shear stress for dislocation glide depend

strongly on the chemical compositions of the inter-

face (e.g., segregation of Zr at a Cu GB [22]), chemical

compositions of the layers (e.g., Cu vs. Nb [23]), the

interfacial structure (e.g., thin vs. thick interface [22]),

and the layer thickness (e.g., from 5 to 70 nm [24]).

In face-centered cubic (FCC) metals, the stacking

fault energy (SFE) is known to influence the disloca-

tion core structure [25], edge dislocation climb [26],

screw dislocation cross-slip [27], deformation twins

[28], growth twins [29], grain boundary (GB) energy

[30] etc. For Cu, a few sets of interatomic potentials

[31, 32] have been developed whereas the intrinsic

SFE (ISFE) and/or unstable SFE (USFE) were varied

by up to one order of magnitude, while all other

material properties were kept almost identical. Using

these interatomic potentials, it was found that the SFE

plays an important role in collision cascades-induced

defect formation [33–37], GB migration [38], disloca-

tion nucleation from GBs [32] and bi-metal interfaces

[39], dislocation/Frank loop interactions [40], dislo-

cation/void interactions [31, 41–43], self-interstitials/

twin boundary interactions [44], and deformation of a

nanotwinned structure [45] in Cu.

Given that the SFE influences both dislocation and

interface, it would be interesting to explore how SFE

affects CLS, a process that involves a dislocation

gliding between interfaces. To our best knowledge,

the effect of SFE on CLS remains unexplored. Some

unanswered questions are: Does SFE affect CLS

simply through its influence on dislocation and

interface? Is the role of SFE on dislocation more

pertinent than that on interface? The insight gained

would benefit the design of strong nanolaminates

composed of FCC metals. In this work, we use ato-

mistic simulations to investigate the role of ISFE and

USFE in the CLS behavior of dislocations in

nanolaminated Cu. Without loss of generality, the

edge dislocation and {112} interfaces are employed

here. Further, the layer thickness is fixed to 5.4 nm, a

fine length scale at which dislocations are believed to

move via CLS. The interatomic potential developed

by Borovikov et al. [32] is employed to assess the

effects of both ISFE and USFE on dislocation glide

behavior and its initial glide resistance, termed criti-

cal resolved shear stress (CRSS) in this paper. We find

that the SFEs affect the dislocation structure, interface

structure, interface energy, stress–strain responses,

and slip resistance. The dislocation glide mode is

jerky in all cases and unaffected by variations in SFEs.

Apart from a few exceptions, the ISFE and USFE have

opposing influences on the CRSS. Increasing ISFE

largely lowers the CRSS, while increasing USFE rai-

ses it. Therefore, CRSS can be expected to decrease as
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the ISFE/USFE ratio increases. Last, we show that the

CRSS increases with the interface energy.

Materials and methods

Interatomic potentials

A set of eleven embedded atom-method (EAM)

potentials [32] are employed to help isolate the effects

of SFEs on material behavior. The ‘‘base’’ interatomic

potential (denoted as Cu3) on which these potentials

are built was developed by Mendelev and King [44]

to best represent Cu. Six potentials are produced by

first varying the ISFE with a fixed USFE corre-

sponding to Cu (denoted as Cu1, Cu2, and Cu4–Cu7)

[45]. The remaining four potentials correspond to

those created by varying the USFE with a fixed ISFE

associated with Cu (denoted as Cu31–Cu34) [32].

Other material properties, such as the basic structural

parameters, melting temperature, surface energy,

point defect formation, and migration energies are

nearly identical among the eleven potentials. The

lattice parameter, for instance, is either 3.638 Å or

3.639 Å. The values of the three independent elastic

constants C11, C12, and C44 are 168–180 GPa,

125–131 GPa, and 83–86 GPa, respectively, varying

less than 3.5%.

To find the relevant SFEs, the relaxed generalized

SFE (GSFE) surfaces are calculated for each of the

eleven potentials using procedures described in Ref.

[48, 49]. Figure 1 presents the GSFE curves along the

110h i and 112h i directions. Table 1 presents values of

ISFE, USFE, and the peak SFE along the 110h i direc-
tion cp110, calculated for each potential. The ISFE and

USFE are the local minimum and local maximum,

respectively, on the portion of the 112h i GSFE cur-

ve shown in Fig. 1b. As expected, from Cu1 to Cu7,

the ISFE steadily increases spanning 170 mJ/m2,

while the USFE is fixed at around 230 mJ/m2. From

Cu31 to Cu34, for which the USFE varies while the

ISFE is fixed at 44 mJ/m2, the USFE increases by

143 mJ/m2. Changes in the peak cp110 among the

potentials are small, only increasing slightly with

USFE, but nearly unchanged with ISFE. Thus, the key

changes within the GSFE surface among these

potentials pertain to the ISFE and USFE.

In our earlier CLS study in nanolaminated Cu [23],

another interatomic potential by Zhang et al. [46] was

used. As a matter of comparison, we note that while

it predicts similar ISFE as the base potential Cu3, the

lattice parameter is smaller, 3.613 Å, the elastic con-

stants are lower, C11, C12, and C44 of 169.9 GPa,

122.6 GPa, and 76.2 GPa, respectively, and the USFE

is lower, 161.27 mJ/m2 [47]. Thus, we can expect that

the dislocation structure, interface energy/structure,

and CLS associated with the Zhang potential would

be different from those studied here.

Nanolaminate model

Figure 2 shows a schematic of the simulation cell for

nanolaminated Cu. The edge lengths of the cell along

the x, y, and z directions are 43.7 nm, 10.7 nm, and

25.8 nm, respectively. The cell consists of three layers

Figure 1 GSFE curves along the a 110h i and b 112h i in Cu using
the eleven EAM potentials [32].
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along the y direction. The leftmost and rightmost

layers have the same crystallographic orientations of

x½1�10�, y[112], and z½�1�11�. The central layer, denoted

as M, has a crystallographic orientation of x½1�10�,
y½11�2�, and z[111]. Periodic boundary conditions are

applied in all three directions. As a result, the left-

most and rightmost layers become a single layer

(denoted as M0) and there are two {112} interfaces in

the simulation cell.

Along the y direction, the layers M andM0 have the

same thickness of 5.4 nm. Prior calculations show

that at 1 K, the critical stresses to glide an edge

dislocation between two {112} interfaces spaced by

5 nm, 22–278 MPa [23] are less than that for the same

dislocation to transmit across the {112} symmetric

incoherent twin boundary (SITB), 100–600 MPa [50].

Therefore, an edge dislocation would glide via CLS in

our nanolaminate model.

Stable interface structures

Once the simulation cell is built, a series of operations

are conducted to identify the stable interface for each

EAM potential. First, layer M is shifted with respect

to layer M0 along the two in-plane directions, i.e., x

and z, to create 100 rigid body translations. In addi-

tion, six different cutoff distances (i.e., 0, 0:3a0, 0:4a0,

0:5a0, 0:6a0, 0:7a0, where a0 is the lattice parameter)

within which one atom is removed from the atom

pair within the boundary are considered. As a result,

a total of 600 initial structures are built for the

nanolaminate. For each structure, energy minimiza-

tion using the conjugate gradient algorithm is per-

formed [51], before the interface energy is calculated

for each energy-minimized boundary using the

method in Refs. [23, 24, 52]. The boundary with the

lowest interface energy is selected as the stable one.

Dislocation glide simulation

Once the stable interface is determined, an edge

dislocation is built into the layer M near the mid-z

plane. The dislocation has a slip plane of (111) and a

Burgers vector of ½1�10�. Following another energy

minimization procedure, a shear strain �xz with a

constant rate of 107 s�1 is applied to drive the edge

Table 1 ISFE, USFE, peak

SFE along the 110h i direction
(cp110), interface energy, based

on the eleven Borovikov

potentials [32] and the Zhang

potential [46]

Potential ISFE USFE cp110 Interface energy

Cu1 14.63 235.8 643.76 642.88

Cu2 24.89 235.14 640.89 653.76

Cu3 44.1 232.01 640.91 710.37

Cu4 61.54 229.17 640.9 719.32

Cu5 94.41 225.84 643.07 725.51

Cu6 149.16 223.66 643.03 727.27

Cu7 185.55 231.83 642.32 696.79

Cu31 44.43 159.96 583.6 1540.01

Cu32 44.27 197.87 607.3 536.54

Cu33 44.04 266.78 670.26 838.99

Cu34 43.96 302.18 703.16 1494.58

Zhang 43.81 [47] 161.27 [47] 478.32 [47] 467.8 [23]

All energies are in units of mJ/m2

Figure 2 Schematic of the simulation cell for nanolaminated Cu.
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dislocation to move along the x direction. The ‘‘flex-

ible boundary condition,’’ as described in Ref. [53], is

employed to keep a constant temperature of 1 K and

to remove the spurious forces on the dislocation

associated with its motion within a small cell. For

more details on the simulation set-up, the readers are

referred to Ref. [23]. All atomistic simulations in this

paper are conducted using LAMMPS [54]. Atomic

configurations are visualized using OVITO [55],

while defects (e.g., dislocations and interfaces) are

identified using the adaptive common neighbor

analysis [56].

Results and discussion

Interface structure and energy

All stable interface structures modeled by the eleven

EAM potentials are presented in Fig. 3. Ten of the

interfaces are SITBs, wherein the structure consists of

a repeating unit spanning three {111} planes, as

depicted in the Cu3 panel. On plane 2, a misfit dis-

location dissociates and the stacking fault extends out

of SITB by a few Å into the M layer. The length of the

extension decreases with increasing ISFE, but is

unaffected by changes in USFE. If the edge disloca-

tion is inserted into plane 1 (or plane 3), the extended

stacking fault would experience tension (or com-

pression). Due to these distinctions, the CLS of an

edge dislocation in these three glide planes is simu-

lated and examined hereinafter. The interface from

the Cu7 potential has no misfit dislocations and is

coherent.

As mentioned, it has been proposed that the

interface energy affects the resistance to CLS. Before

discussing CLS results, the effect of ISFE and USFE

on the interface energy is examined. Table 1 provides

the interface energies from the eleven potentials.

Among the ten SITBs, the interface energies are dis-

tinct despite similar interface structures. From Cu1 to

Cu7 with fixed USFE, the interface energy generally

increases with the ISFE, apart from the decrease in

interface energy from Cu6 to Cu7, the latter of which

corresponds to a coherent interface. From Cu31 to

Cu34 with fixed ISFE, no correlation between the

interface energy and the USFE is found. The Cu1 and

Cu2 potentials achieve the lowest interface energies

while the Cu31 and Cu34 potentials the highest ones,

although the interface structures based on the four

potentials are similar, as shown in Fig. 3. While the

Cu7 potential corresponds to a coherent interface, it

does not have the lowest interface energy. The ISFE

can therefore influence the resistance to CLS by

affecting the interface energy.

Stacking fault

Before a driving stress is applied, an edge dislocation

is inserted into one of three planes for each potential

and then relaxed. In all cases, under no applied

stress, the dislocation dissociates and achieves a

stacking fault width (SFW) that depends on which of

the three planes it lies on and the potential used.

These values all deviate from the SFW of the same

Figure 3 Stable interface structures in Cu using the eleven EAM

potentials [32]. Red, green, and white are atoms within local

hexagonal close-packed, FCC, and disordered local structures,

respectively. Three distinct slip planes within which an edge

dislocation can be inserted are shown in the Cu3 panel.
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dislocation in a Cu single crystal with the Cu3

potential (3.65 nm). Figure 4 presents selected, zero-

stress dislocation structures. The Cu7 potential gives

the smallest SFW, which can be expected due to its

highest ISFE, and Cu1 the largest SFW, due to its

lowest ISFE. The largest SFW is 5.26 nm, which is still

smaller than the layer thickness 5.4 nm. Among the

three planes, the SFW is the smallest for a dislocation

on plane 2, due to direct interaction with the exten-

ded misfit dislocation. Also, there is a larger SFW on

plane 1 than on plane 3. As further confirmation, the

SFW is nearly uniform between the two coherent

boundaries (i.e., with no misfits, predicted by the Cu7

potential) among the three planes. Figure 5 shows the

variation in the zero-stress SFW with ISFE and USFE.

Much like a dislocation in an otherwise perfect single

crystal, the SFW decreases with increasing ISFE.

When the ISFE is small, the SFW of a dislocation in a

single crystal is the largest, and the SFWs among the

three planes in the nanolaminate differ greatly. Then,

when the ISFE becomes larger, the differences in SFW

among the four cases decrease. This suggests that, for

SFW, the interaction between the gliding dislocation

and the misfit dislocation becomes less important as

the ISFE increases. Compared to the ISFE, the effects

of the USFE on the SFW in the nanolaminate are

much weaker.

The dislocation structure and interface energy

through which it interacts can affect CLS resistance

and glide behavior. In the remainder of the analysis,

we use ‘‘potential ? plane’’ to denote the case with a

specific potential (see Table 1) and with the disloca-

tion gliding on a specific slip plane (see the Cu3 panel

in Fig. 3). Cu32plane2, for instance, uses the Cu32

potential to model a dislocation gliding on plane 2.

Figure 4 Stable, zero-stress stacking fault structures on different

slip planes predicted by the eleven different EAM potentials.

Figure 5 Stress-free SFWs are plotted with respect to a ISFE and

b USFE. In a, results using the Zhang potential [46] are denoted

by three large symbols.
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Stress–strain response

Figure 6 presents the stress–strain curves corre-

sponding to CLS motion in different planes with

different potentials. The shape of the stress–strain

curves is similar in all cases. The stress rises linearly

as the strain is first applied. In this period, the

dislocation does not move. A local peak stress is

reached, corresponding to the moment when the

dislocation starts to move in the layer. The stress

drops suddenly and then, proceeds to oscillate. The

amplitude of the subsequent oscillations generally

remains lower than the first peak stress reached.

Figure 6 Selected stress–strain curves for the glide of an edge dislocation on three slip planes in nanolaminated Cu. Different interatomic

potentials (see Table 1) and slip planes (see the Cu3 panel in Fig. 3) are involved.

J Mater Sci (2024) 59:4775–4787 4781



Thus, the peak stress to initiate motion is considered

the CRSS for CLS.

Once the dislocation starts moving, with increasing

strain, it does not glide continuously but instead

moves back and forth, in a jerky manner, which

corresponds to the oscillation in stress seen in Fig. 6.

In each oscillation cycle, the forward movement is

greater than the backward one, and thus, the net

result is that the dislocation still advances forward

with straining. This jerky mode of CLS was seen in

our prior work [23] for the same layer thickness and

SITB, but using another Cu potential. Apart from one

case, the dislocation glides on its habit plane.

The only exception is the Cu6plane2 case. In that

case, under an applied strain, the misfit dislocation

from one SITB extends further into plane 3 until it

reaches the other SITB. Then, the edge dislocation on

plane 2 partially moves downwards to plane 3,

resulting in a dislocation with a jog in the middle.

With further straining, the jogged dislocation pro-

ceeds to glide in a jerky manner. For more detail,

Fig. 7 provides snapshots of various stages in the

process. We note that this case has the highest ISFE

and finest SFW among all cases where the misfit

dislocations exist. A similar phenomenon was also

observed in our prior work for the glide on plane 2

[23].

Variables affecting CRSS

For the wide range of ISFE and USFE studied, we

show that these SFEs generally do not affect the form

of the stress–strain curve and the mode of CLS glide.

In each case, CRSS corresponds to the stress needed

to initiate dislocation glide and it is sufficient to

sustain CLS with further straining. Also, in all cases,

CLS is found to be jerky. The value of the stresses,

particularly the CRSS, however, is strongly affected

by the dislocation structure and interface energy/

structure which can vary greatly depending on the

GSFE surface alone. In this section, we examine the

effects that these variables have on the CRSS for CLS.

First, we find that the misfit dislocation in the SITB

significantly affects the CRSS. Figure 8 presents the

CRSS for all cases, by plotting the changes in the

CRSS with increasing ISFE (and fixed USFE) or with

increasing USFE (and fixed ISFE). The resistance to

Figure 7 Snapshots of the key processes in the Cu6plane2 case.

The dislocation at a strain of a 0, b 0.0107, c 0.01212, and d

0.02805. In (a), the edge dislocation is on plane 2. In (b), the

dislocation spreads downwards to plane 3. As shown in the right

panel, the spreading starts from the left SITB, moves toward the

right, and stops at where the arrow indicates. Between (b) and (c),

as the strain increases, the dislocation spreading continues toward

the right. In (c), the spreading reaches the right SITB. In (d), as

shown in the right panel, the left half of the dislocation is on plane

3 while the right half on plane 2, with the jog denoted by an arrow.
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CLS depends on the glide plane with respect to the

misfit dislocation. Plane 2 where the misfit disloca-

tion extends a fault presents the highest resistance to

CLS. The gliding dislocation directly intersects the

misfits. Although not as direct, moving dislocations

on the other two planes still interact with the misfit

via elastic interactions. The CRSS to move the edge

dislocation in either plane 1 or plane 3 is similar, with

plane 3 being slightly more resistant. When the

interface is coherent, containing no misfits, the CRSS

is similar among the three planes. Therefore, the

misfit network gives rise to spatial heterogeneity in

CLS, suggesting that the dislocations would prefer to

glide in plane 1.

The results in Fig. 8 also imply that the SFEs can

affect the CRSS via their effect on the dislocation

structure (e.g., the SFW). Previous studies for dislo-

cations in FCC single crystals show that the disloca-

tion slip resistance scales inversely with the SFW

[57–59]. For the same potential, the largest SFW is

achieved in plane 1. This corresponds to that the

CRSS in plane 1 is smaller than that in plane 3.

Figure 8(a) presents the variation in CRSS with

ISFE. The CRSS for CLS on all three planes maximizes

at the ISFE of 44:1 mJ=m2. When ISFE is larger than

44:1 mJ=m2, the CRSS drops steadily. There is no

expected role of ISFE on the CRSS for CLS and the

outcome is likely the result of a combination of fac-

tors. As we have shown earlier, ISFE affects the SFW,

interface energy, and interface structure. For very low

ISFE, the dislocation is wide, which lowers its barrier

for glide. As ISFE increases, the misfit dislocation

extension reduces in size, which reduces their resis-

tive interaction with the gliding dislocation. The

lowest CRSS is achieved for the coherent interface,

which has the same CRSS for all three planes. To

emphasize the role of interface in CLS, we include in

Fig. 8a the CRSS values for the same laminate using

the Zhang potential [46], which has the same ISFE as

the Cu3 potential, but substantially lower USFE and

interface energy (Table 1). The CRSS values are

clearly significantly lower, suggesting that USFE and

interface energy may underlie any apparent influence

of the ISFE.

Results in Fig. 8b indicate that the CRSS scales with

the USFE. The USFE varies by up to 143 mJ=m2,

while the ISFE varies by 0.5% about 44 mJ=m2. The

positive trend can be expected since the USFE is a

local maximum that can be related to the energetic

barrier to the Shockley partial motion. While antici-

pated, it is interesting that the strong influence of the

USFE still emerges despite the other coupled effects

of the GSFE surface on the gliding dislocation and

nanolaminate properties.

Considering all cases together, Fig. 9 shows the

variation in CRSS with the ISFE/USFE ratio. Apart

from very low ratios, below 0.12, the CRSS decreases

with increasing ISFE/USFE. This effect on the CRSS

best conveys the main effect of the SFEs found in this

work. Smaller USFE will decrease the barrier for

Shockley partial glide, while at the same time, larger

ISFE reduces the misfit dislocation extensions, both

factors that lower the CRSS.

Figure 8 CRSS plotted with respect to a ISFE and b USFE. The

case where the dislocation partially spreads to an adjacent slip

plane is marked by an arrow. In (a), results from Ref. [23] using

the Zhang potential [46] are denoted by three large symbols.
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As we have alluded to earlier, the interaction of the

dislocation with the interface and the energy of the

interface can affect the critical stress for CLS. The

glide of dislocation via CLS deforms the boundaries,

and it has been proposed that lower energy interfaces

pose less resistance to CLS [18]. In agreement, Fig. 10

shows that the resistance to CLS generally reduces as

the interface energy reduces. The spread in the CRSS

for the same interface is due to the resisting effect of

the misfits in the interface. This is an important result

of this work. A similar conclusion was reported in a

study of incoherent and coherent interfaces in Mg/

Nb nanolaminates [60]. Further, these results could

explain why general bi-phase metals, which have

higher interface energies, are generally stronger than

nanotwinned materials [61].

Conclusions

In this paper, we conduct atomistic simulations to

study the effect of SFEs on CLS of an edge dislocation

in nanolaminated Cu. The boundaries are {112}

interface and spaced 5.4 nm apart. We utilize eleven

interatomic potentials developed by Borovikov et al.

[32], where either the ISFE or the USFE is varied by

up to one order of magnitude. The interface intersects

with a repeating pattern of three glide planes, distinct

in their location with respect to the misfit dislocation.

The main findings of this study are as follows:

• The SFW of the dislocation between two interfaces

decreases with an increasing ISFE. In the mean-

time, the SFW does not vary much with the USFE.

• The interface energy generally increases with the

ISFE but is not correlated with the USFE.

• In all cases, the dislocation glide mode is jerky and

unaffected by variations in fault energies.

• With a fixed USFE, there exists an optimal ISFE

corresponding to the maximum CRSS for CLS.

With a fixed ISFE, the CRSS increases with an

increasing USFE. When the ISFE-to-USFE ratio is

larger than 0.12, the CRSS decreases with an

increasing ratio.

• A larger interface energy can lead to greater CRSS.

The current work made use of a model system and

studied the motion of a single dislocation. This would

model the case of no pre-strain, where the initial

dislocation is sufficiently small that the dislocations

can be considered isolated. Prestraining near or

beyond the yield point would likely pre-populate the

layers with dislocations. Dislocation–dislocation

interactions would become important through their

individual CLS [24]. We also show that CLS occurs in

jerky motion, with frequent stop/starts. Although

temperature effects were not studied here, we can

anticipate that CLS is a thermally activated mecha-

nism. The additional thermal energy with increases

in temperature would facilitate dislocation motion. It

has also been suggested that as temperature increa-

ses, the transfer of dislocation across the interface

becomes easier and thus the layer thickness range

over which CLS becomes important reduces [16].

Last, the size effects of layer thickness on CLS were

not studied. In our recent work in nanolaminated Nb

[24], the increase in CLS resistance is related to

Figure 9 CRSS plotted with respect to the ratio between ISFE

and USFE. The dashed vertical line is at ISFE/USFE ¼ 0:12.

Figure 10 CRSS plotted with respect to the interface energy.

Results from Ref. [23] using the Zhang potential [46] are denoted

by three large symbols near the left bottom corner.
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reduced layer thickness, as expected from line ten-

sion arguments [62, 63]. For the same reasons, we

expect that the critical stress for CLS decreases with

increasing layer thickness. However, in Nb, the glide

mechanism transitioned as the layer reduced, a result

that may be particular to the compact core and

interface structure of the body-centered cubic

nanolaminate and not transferable to an FCC one.
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