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Atomistic simulations offer insights into material behavior at the atomic level. However, they can be
computationally intensive. In this paper, two deep learning models, deep symbolic optimization (DSO)
and deep neural networks (DNN), and one generative large language model, GPT-40, are employed to
construct surrogates for atomistic simulations. Specifically, atomistic simulations are first performed to
investigate the collapse of a nanovoid under hydrostatic pressure. We focus on the role of initial void
radius and material characteristics, such as intrinsic and unstable stacking fault energies and surface
energy (SE). We find that the critical pressure required for void collapse spans from 17.05 to 19.62 GPa,
with the highest values corresponding to the maximum USFE. Additionally, an intermediate SE value
(1068.13 mJ/m?) minimizes the critical pressure. Based on the simulation results, surrogate models based
on DSO, DNN, and GPT-40 are constructed, concluding that the SE affects the critical pressure the most.
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Atomistic simulations model materials at the atomic level, cap-
turing detailed interactions between atoms, making them pow-
erful tools for predicting material properties and mechanisms
that are challenging to observe experimentally [1]. However,
they are often slow and computationally demanding, especially
for large systems or long timescales [2]. Surrogate models help
address this limitation by approximating simulation outcomes
with significantly reduced computational costs [3]. Machine
learning (ML) approaches, such as neural networks (NNs) and
Gaussian processes, are commonly used to build these sur-
rogates [4]. For example, Kadupitiya et al. [5] developed NN
models as surrogates for atomistic simulations of soft materials,
while Ruiz et al. [6] employed multivariate Gaussian process
regression as surrogates to predict basic structural parameters in
non-dilute random alloys. Despite the growing number of sur-
rogate models for atomistic simulations, new research remains
valuable. For instance, while highly effective and easy to imple-
ment, shallow learning models were recently found to underper-
form in extrapolation on materials datasets compared to deep
learning models [7].

In this paper, two deep learning techniques are utilized: deep
symbolic optimization (DSO) and deep neural networks (DNN).
DSO is an advanced technique that uncovers mathematical
expressions from data using deep learning methods [8]. It gen-
erates potential mathematical expressions, which are then evalu-
ated based on their fit to the given dataset. The DSO method
optimizes these expressions through a novel risk-seeking policy
gradient algorithm, enhancing the best-performing expressions
[9]. This method surpasses traditional symbolic regression tools,
like the Eureqa algorithm, by efficiently navigating the search
space of potential expressions [10]. The flexibility and accuracy
of DSO make it a powerful tool for identifying interpretable and
precise mathematical models from complex datasets [11]. On
the other hand, an NN is an artificial intelligence (AI) method
that processes data inspired by the human brain, using artificial
neurons that work together [12]. NNs learn by adjusting con-
nection weights through backpropagation, minimizing the loss
function and improving performance. Equipped with multiple
layers of neurons, DNNs outperform traditional ML methods in
terms of generalization and accuracy [13]. The most important
difference between DSO and DNN is output representation in
that the former generates interpretable mathematical expres-
sions or symbolic formulas that explicitly describe the relation-
ships within the data while the latter produces outputs based
on learned patterns within the network, typically resulting in a
“black box” model that lacks explicit interpretability [14].

Another emerging Al tool is the generative large language
models (LLMs), which originate in the subfield of natural lan-
guage process (NLP). They are pre-trained on massive amount
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of text data using the transformer architecture [15]. With addi-
tional supervised fine-tuning and reinforcement learning from
human feedback, the resulting LLMs have shown impressive
capabilities in language understanding and generation. Since
the advent of ChatGPT in November 2022 [16], generative LLMs
have attracted wide attention from many fields due to their user-
friendly interfaces and ability to respond reasonably to a variety
of questions. Materials scientists have applied generative LLMs
to tasks such as extracting data from unstructured text in sci-
entific literature [17, 18]. In addition to NLP tasks, generative
LLMs have also been used to answer materials questions to assist
scientific discoveries in materials science owing to their ability
to understand human language and generate relevant responses
[19, 20]. More recently, Hao et al. [21] used LLMs as surrogate
models in evolutionary algorithms. To our best knowledge,
however, there hasn’t been any work where LLMs were used
as surrogate models for atomistic simulations. Here, a popular
LLM, GPT-4o, will be applied to atomistic datasets to assess its
performance.

The specific materials problem to be studied in this work
concerns the collapse of a void subject to hydrostatic compres-
sion of a Cu single crystal. In metals, voids are ubiquitous. They
can be formed during melting and solidification processes due
to shrinkage and gas entrapment [22, 23] or as a result of stress
concentration [24] at heterogeneities such as inclusions, pre-
cipitates, and grain boundaries [25]. When the metal undergoes
plastic deformation, voids can grow and coalesce, ultimately
resulting in crack propagation and failure of the material [26].
The voids may also collapse, leading to local densification and
altering the mechanical properties of the metal [27]. Therefore,
it is crucial to understand the deformation of void-containing
metals to predict their behavior under stress and to develop
alloys that are more resilient to deformation [28-33]. The
mechanical response of metals is influenced by the change in
void geometry. A smaller void inhibits dislocation motion more
effectively, requiring a higher resolved shear stress for disloca-
tions to bypass it compared to a larger void [33, 34]. Factors
such as void ellipticity and orientation can also influence stress
distribution and defect nucleation patterns [35]. Recently, Chen
et al. [36] developed a convolutional NN model that automati-
cally detects voids in Cu-Sn solder joints. Combining this model
with finite element analyses helped identify stress concentration
zones in solder joints. Similarly, Kong et al. [37] used ML algo-
rithms along with hybrid metrology techniques to identify voids
in copper lines, while Saleh et al. [38] used a combination of ML
and computational simulations to improve traditional models
for predicting void nucleation and growth.

Atomistic simulations have been applied to nanovoids in
single crystals to analyze ductile fracture [39-43]. A single crys-

talline face-centered cubic (FCC) metallic material containing
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spherical voids exhibits dislocation emission during yield, which
is caused by the absence of alternative nucleation sites [39, 44].
It was revealed that the loading mode influences void growth
and coalescence [45, 46] and that variations in specimen size
altered dislocation patterns, void aspect ratios, and stress—strain
responses [41, 47]. The interactions between nanovoids and
neighboring voids frequently lead to coalescence or collapse
of the nanovoids, which can eventually lead to the formation
of cracks or shear bands [48]. The emission of dislocation is
the primary mechanism driving the growth of voids in single
crystals using discrete dislocation dynamics modeling technique
[47]. It was determined that the elastic moduli of materials with
spherical voids are linearly related to the void volume fraction,
while the atomic stress concentration factor is affected by the
void geometry [49].

Much work has been devoted to gaining valuable insights
into the physics of void growth and collapse influenced by
porous structures (e.g., void shape/size/porosity) [50-53], prop-
erties of matrix materials (e.g., Young’s modulus) [54], plastic
anisotropy [55], non-local effects that incorporate material size
scales [56], strain rate [57], and crystallographic orientations
[58-61]. Among material properties are intrinsic stacking fault
energy (ISFE) and unstable stacking fault energy (USFE), which
are essential in defining the mechanisms of plastic deformation
in metals, particularly those of FCC materials. USFE is the high-
est energy obstacle that must be overcome for the leading partial
dislocation to form a stacking fault [62]. ISFE affects dislocation
nucleation, which is essential for understanding the mechanical
properties of these materials [63]. In addition, the surface energy
(SE) of a metal can influence the stability and evolution of voids,
thereby affecting the yield strength. It has been demonstrated
that variations in SE resulting from lattice orientation can result
in voids exhibiting faceted morphologies with rounded corners
in both single crystals and nanocrystalline structures, demon-
strating the critical role that SE plays in void evolution across
grain orientations [64].

Most previous work on void-containing metals and alloys
focused on either varying porous structures (e.g., initial void
size and shape) within the same material or on different material
properties (e.g., ISFE and SE) across different metals. However,
there is a lack of systematic studies of both sets of factors in a
unified manner. This task is difficult because different materials
usually differ in dozens of properties. In this work, we utilize
a set of eleven interatomic potentials that differ only in ISFE,
USFE, and SE while all other properties are those of Cu. This
way, our work analyzes different factors within a single frame-
work. Atomistic simulations using these potentials are carried
out to investigate the plastic deformation process of a void-
containing Cu single crystal under hydrostatic compression.
Despite that real materials frequently contain multiple voids and

other defects, we focus on the case of a single void to isolate and
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understand the fundamental mechanisms that govern the void
collapse process. Another reason to choose a relatively simple
atomistic system is that at least half of this paper is focused on
constructing surrogate models. Based on the simulation data,
we build surrogate models to establish the linkage among initial
void radius, ISFE, USFE, SE, and critical pressure. All surrogate
models conclude that SE is the most important factor affecting
the critical pressure. This piece of information would allow us
to design stronger, more reliable materials that are less likely to

fail due to voids.

Pressure-dilatation response

We first investigate the dilatation-pressure responses. Figure 1
shows some representative cases, including the minimum ISFE
(i.e., the Cul potential), maximum ISFE (i.e., Cu7), minimum
USFE (i.e., Cu31), and maximum USFE (i.e., Cu34). Note that
Cu7 and Cu31, respectively, also lead to the minimum and maxi-
mum SEs. In all cases, when the dilatation is small, the pressure
increases smoothly (but not linearly). However, when the dila-
tation is sufficiently large, the pressure experiences a significant
drop. At that point, the void collapses completely and the corre-
sponding pressure is termed the critical pressure. It is consistent
with the findings in Ref. [46], where similar trends in void collapse
were identified under different loading conditions. The portion of
the dilatation-pressure curve prior to the yield point is approxi-
mately the same for different void radii for the same potential.
Across potentials, Fig. 1(e) and (f) demonstrate that the initial
portion of the dilatation-pressure curve does not change much
as the ISFE varies (i.e., from Cul to Cu7) while its slope increases
with the USFE (i.e., from Cu31 to Cu34). There is evidence to sup-
port this behavior in Ref. [65], which showed that an increase in
USEE can affect dislocation motion. We also observe that, the crit-
ical pressure occurs at approximately the same dilatation in Cul to
Cu7 which have differing ISFE. For example, when R = 2.316 nm,
the critical dilatation is 0.1815 for Cul, while it is at 0.1932 for
Cu7. Our finding that the ISFE variations did not significantly
affect the collapse thresholds is in line with Ref. [39]. In contrast, a
significant difference in the critical dilatation is observed between
Cu31 and Cu34. For example, when R = 0.772 nm, the critical
dilatation is 0.2427 for Cu31, whereas it is at 0.1628 for Cu34.
Our findings are in accordance with Ref. [64] which indicated that
the SE is related to the stabilization of the void structure, thereby
affecting the critical pressures.

Porosity-dilatation response

We then analyze the porosity-dilatation responses. Figure 2
presents results for two different initial void sizes with all

eleven interatomic potentials. It is observed that the porosity
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Pressure-dilatation curves based on different interatomic potentials and/or different initial void radius R.

experiences two sharp drops. The first drop occurs ate ~ 0.08,
corresponding to the yield point where dislocations are nucle-
ated from the void surface. The second drop occurs ate ~ 0.18,

corresponding to the complete closure of the void, which is also

© The Author(s) 2025.

where the critical pressure occurs. From Cul to Cu7, a larger
ISFE is found to delay the void closure, in line with a higher
critical pressure [Fig. 1(e)]. From Cu31 to Cu34, dislocations

start to nucleate at an increasingly larger dilation while the void
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Figure 2: Porosity-dilatation curves for (a, b) R = 0.772 nm and (¢, d) R = 2.316 nm based on eleven interatomic potentials.

collapses at an increasingly smaller dilatation, the latter of which
is aligned with smaller critical dilatation in Fig. 1(f). The same
trends are found for different initial void sizes.

Selected atomistic structures for the evolution of void with
R = 2.316 nm are presented in Fig. 3. It is shown that the void
is first transformed into a stacking fault tetrahedra (SFT), which
is in agreement with a previous finding in Cu [66], followed by
that the SFT is completely closed while more dislocations are

emitted into the system.

Critical pressure

Figure 4 visualizes the relationship among void size, ISFE, USFE,
SE, and critical pressure. Qualitatively, it is shown that the critical
pressure increases as the ISFE increases or the USFE decreases
which aligns with observations in Ref. [67]. Additionally, there
exists an intermediate SE that corresponds to the minimum

©The Author(s) 2025.

critical pressure. To provide a more quantitative understanding, we

employ several surrogate models in the remainder of this section.

DsO

In what follows, we define the normalized initial void radius as
the X), the three normalized energies as X5, X3, and X4, while the
normalized critical pressure as . The normalization process is
described in Sect. “DSO”.

Our DSO regression finds that the following equation estab-
lishes the relationship between X and , with the help of five con-
stants (C; to Cs), i.e.,

Jpso =Ci log(%)) — 0.08%37° + C&}H7° 4 G307 0
1

205 _ ~0.25 ~—0.25
— X7 — X7+ Cyx| +Cs

These five constants are related to the three energy terms, i.e.,
normalized ISFE, normalized USFE, and normalized SE, as

follows,
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E
c 1 Cs =/X4 (6) é
' X3 @ This way, the porous structure (i.e., void radius) is separated §
from the material properties (i.e., ISFE, USFE, and SE) in Eq. 1.
C; = 0.23%, + 0.29%3 + 1.17%4 — 0.91 (3) In the final model, the mean squared error (MSE) and R-squared S
2 - . ~ - score are calculated as 0.17 and 0.85, respectively, as shown in E
Cs = 8.68%5 — 5.64%,x3 + 44.81%,%4 — 40.25%, — 14.425%2 Table 1 g
able 1. =
— 14.05X3x4 + 37.18%3 + 56.35522 — 102.83x4 + 36.62 _
) E
Cy = 0.28%; + 0.58%5%3 — 0.36X5%4 — 1.25%3 DNN <
— 0.105,32 — 1.61%%3%4 Each performance metric is averaged over 10 folds to provide g
. " s B a reliable estimate of model performance. It is found that the 2
—0.02x2x3 — 0.31xx3 + 0.63x2X4 + 1.21x,
average MSE and average R-squared score are 0.124 and 0.956,
—3.23%3 + 3.43%3%, + 3.38%2 - - L -
49X3 SEOA3 A4 -J0X3 respectively, as shown in Table 1, indicating that it makes more
— 4.83563562 — 2.18x%3%4 + 0.86X3 accurate predictions than the DSO model. Specifically after 100
(5)

+ 2.425%; + 0.03%% — 0.03%4 + 1.61
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epochs, the R-squared scores for training data, validation data,
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Figure 4: Critical pressure as a function of initial void radius and one material property (ISFE or USFE or SE). In each subfigure, different values of

material property are colored differently.

TABLE 1: MSE and R-squared score in DSO, DNN, and three GPT-40 mod-
els. Outputs (in GPa) of the reference point x; = 2.6248 nm, x; = 44.1,
X3 = 232.01, x4 = 1169.61 mJ/m? from the five models are presented
in the last row. The atomistic simulation-based value for that reference
pointis 13.75 GPa.

GPT-40-orig-  GPT-40-ge- GPT-

DSO DNN inal neric 4o-random
MSE 0.17 0.124 0.441 0.903 0.788
R-squared 0.85 0.956 0.872 0.738 0.771
Output 13.62 13.73 13.63 13.62 13.78

and testing data are 0.94, 0.91, and 0.8652, respectively, as shown
in Fig. 5(a). The parity plots of DNN predictions are shown in
Fig. 5(b).

©The Author(s) 2025.

GPT-40

As shown in Table 1, the GPT-40-original model demon-
strates the highest performance among the three fine-tuned
GPT models, achieving an MSE of 0.441 and an R-squared
score of 0.872. It is also the fine-tuned GPT model that most
closely matches DNN predictions. This indicates that GPT-
40-original, equipped with full contextual information, can
effectively capture the relationships among variables. The high
R-squared score suggests a strong explanatory power that the
model is able to take advantage of the labels and units of the
domain-specific variables to understand complex dependen-
cies within the data. The relatively low MSE value also shows
that GPT-40-original is beneficial in retaining explicit contex-

tual cues in the data.
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critical pressures.

Among the three fine-tuned GPT-40 models, the GPT-
40-generic model performs the worst, with a high MSE of
0.903 and a low R-squared score of 0.738. The lack of explicit
variable names and units limits the model’s ability to capture
the full complexity of the data. GPT-40-generic only can rely
on numerical relationships by using variables 1-4 instead of
domain-specific labels. This suggests that while the model can
still learn patterns in the absence of explicit context, the loss of
descriptive variable labels reduces performance.

The last model, GPT-40-random, shows an intermediate
level of performance, with an MSE of 0.788 and an R-squared
score of 0.771. The variable names in GPT-40-random are
completely random strings, with no inherent order or mean-
ing. This extreme abstraction requires the model to explore
relationships between numerical values, without being misled
by generic labels like “variable 1” However, the lack of seman-
tic information probably prevents it from fully optimizing its
prediction.

A comparison among the five surrogate models

Based on the MSE and R-squared score, the performance among
the five surrogate models is ranked as: DNN > DSO > GPT-
4o-original > GPT-40-random > GPT-40-generic. Their relative
performance can also be assessed by predicting output based
on inputs at a reference point, i.e., 2.6248 nm, 44.1, 232.01,
1169.61 mJ/m?, for which the atomistic simulation output is
13.75 GPa. Results, summarized in the last row of Table 1, con-
firm that the DNN model has the best performance.

©The Author(s) 2025.

Factors affecting the critical pressure

To assess how each input (initial void radius R, ISFE, USFE, and
SE) affects the output (critical pressure), we apply a perturbation
method, i.e., we individually change each input by £10%. As
shown in Fig. 6, the predicted critical pressure either decreases
or increases due to the perturbation. The average changes in the
critical pressure from the three models (whereas only the mean
value of the three fine-tuned GPT-40 models are shown) are
summarized in Table 2. The most accurate model, DNN, shows
that SE has the greatest impact on the critical pressure, followed
by USFE and ISFE, while R has the least impact on the critical
pressure. The importance of the four input parameters is ranked
the same according to DSO, but not GPT-4o. For example, the
three fine-tuned GPT-40 models, on average, predict USFE as
the least important input parameter. Nevertheless, all models
highlight the primary role of SE in determining the critical pres-
sure. The finding is physically intuitive because the critical pres-
sure corresponds to the complete collapse of the voids, which is
strongly associated with the SE. Specifically, a void with a high
SE requires a large energy penalty to close, while a void with a
small SE requires a higher pressure for the dislocation nuclea-

tion, postponing the yield event and delaying the void collapse.

In this paper, a combined atomistic simulation and surro-
gate model approach is employed to investigate the effects of

porous structure and material properties in a void-containing
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Figure 6: Red dots represent actual data points projected on 2D graphs. Blue, green, and orange lines indicate predictions by DSO, DNN, and GPT-40
models, respectively, when each input parameter (normalized initial void radius, normalized ISFE, normalized USFE, and normalized SE) is perturbed by
+10%. The shaded region indicates the standard deviation around three fine-tuned GPT-40 models.

TABLE 2: Average change in the critical pressure (in GPa) as a result of
adding a +10% perturbation to each factor — initial void radius R, ISFE,
USFE, and SE—with respect to the reference point: 2.6248 nm, 44.1,
232.01, 1169.61 mJ/m?. GPT-40 data are average among three fine-tuned
models.

Model R (£10%) ISFE (+10%) USFE (£10%)  SE (£10%)
DSO 0.008 0.048 1.222 6.141
DNN 0.093 0.25 0.598 2.29
GPT-40 0.219 0.17 0.164 0.467

Cu single crystal. By systematically varying the initial void
radius, ISFE, USFE, and SE by over one order of magnitude,
atomistic simulations provide 352 sets of data. Subsequently,
two deep learning models (DSO and DNN) and one generative
LLM (GPT-4o0) are applied to provide a quantitative analysis of
the data. It is found that (i) a higher ISFE and/or a lower USFE
lead to a higher critical pressure corresponding to complete
void closure, (ii) there exists an SE (1068.13 mJ/m?) that is
associated with the minimum critical pressure (13.25 GPa),
and (iii) among the four factors (i.e., initial void radius, ISFE,

USFE, and SE), SE is the most important factor in determining

©The Author(s) 2025.

the critical pressure. We also found that the DNN model out-
performs DSO and GPT-4o0, with an MSE of 0.124 and an
R-squared score of 0.956, suggesting that DNN is able to cap-
ture complex, nonlinear relationships among input parameters
used in our atomistic simulations. The novelty of our work lies
in systematically combining atomistic simulations with sur-
rogate models to elucidate the role of multiple factors on void
behavior, demonstrating the significant impact of integrating
physics-based and data-driven approaches.

The current work is not without limitations. First, it is
important to note that the use of quasi-static simulations at
0 K neglects the influence of thermal vibrations and dynamic
effects on the behavior of voids under real-world conditions.
Second, the controlled variation of only ISFE, USFE, and SE,
while maintaining other material properties constant, may not
be sufficient to capture the full complexity of real materials
where multiple properties vary simultaneously. Third, the semi-
empirical interatomic potentials employed here, while serving
the purpose of isolating certain material properties, may not
be sufficiently accurate compared with ML-based interatomic
potentials. These limitations may be addressed in future research
by incorporating dynamic simulations to model multiple voids,
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and by expanding the variation of material properties based on

more accurate interatomic potentials to enhance generalizability.

Atomistic simulations

Atomistic simulations based on the molecular statics (MS)
method [68] are employed here. MS is advantageous to molec-
ular dynamics (MD) that was used in some void-related work
because it can minimize the energy of the voided structure at

each strain [69]. Thus, MS results provide critical atomic-scale

insights into the mechanisms driving void evolution and how
it affects the critical pressure, without reaching any overdriven
state which is common in MD modeling [70]. The open-source
software package LAMMPS [71] is used. All atomic configura-
tions are visualized using OVITO [72]. The adaptive common
neighbor analysis method [73] is used to highlight defects in the
atomistic structure.

Figure 7(a) illustrates a cubic simulation cell of an FCC sin-
gle crystal containing a nanovoid. The crystallographic orienta-
tions are x[100], [010], and z[001], with periodic boundary
conditions applied in all directions. Ly, Lyo, and Lo, which all
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Figure 7: (a) Simulation cell of a Cu single crystal containing a spherical nanovoid subject to hydrostatic compression. (b, ¢) Pressure-dilatation curves

for various scaling factors in two simulation cells with the Cu3 potential.
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equal Lo, are the initial edge lengths of the cell along the x, y, and
z directions, respectively. Within the cell, a spherical void is cre-
ated by removing all atoms within a specified radius (R) from the
centroid. A series of 32 cells are created, with Ly varying from L,
2L,..., to 32L, where L = 1.456 nm. In each cell, the initial void

radius R is set such that the initial porosity stays the same, i.e.,

1
L3 x 0.005 \°*
R= 22 7)
3 X T

where an initial porosity of 0.5% is chosen as a typical value in
Cu because Kumar et al. [74] found that as-built Cu has a poros-
ity ranging from 0.26 to 1.29%, while heat-treated Cu possesses
areduced porosity of 0.09-0.1%. In another work, Prithivirajan
et al. [75] found that a porosity of 1% would likely lead to the
formation of fatigue cracks. As a result of the 0.5% initial poros-
ity in this work, the initial void radius R ranged from 0.1544 to
4.9408 nm.

The material considered in this paper is Cu, which is mod-
eled using eleven embedded-atom method interatomic potentials
[77]. The first seven potentials, denoted as Cul, Cu2,..., Cu7, pos-
sess differing ISFE and SE while the USFE remains approximately
constant at 230 mJ/m? [78]. The last four potentials, denoted as
Cu31, Cu32, Cu33, and Cu34, were built to predict different
USFE and SE while ISFE is constant at about 44 mJ/m? [67].
Detailed values of the ISFEs, USFEs, and SEs for these potentials
are presented in Table 3. Prior density functional theory calcu-
lations in Cu found that its ISFE, USFE [79], and mean SE [80]
values are 41.83, 160.52, and 1456.67 mJ/m?, respectively. This
suggests that the Cu31 potential is the best in terms of ISFE and
USEFE, while no potential is associated with a good mean SE.

All other material properties, such as lattice parameters,
elastic constants, and vacancy migration/formation energies,
are about the same among the eleven potentials. For example,
a uniform lattice parameter ap = 3.639 A is used to build the
atomistic structures. In total, 32 void/cell sizes and eleven poten-
tials are considered, resulting in 352 simulations. In all surrogate
models employed in this paper, the initial void radius R, ISFE,
USFE, and SE are treated as input parameters xj, x2, x3, and
x4, respectively, while the critical pressure is the only output
parameter y.

After creating the void by removing atoms within a specified
sphere, the remaining atomic structure may experience local
stresses due to the sudden absence of neighboring atoms. To sta-
bilize the structure, we apply the conjugate gradient algorithm to
minimize the system’s energy. As a result, the atoms surrounding
the void can adjust their positions before any external deforma-
tion is applied. No structural collapse was observed in any case
at this time. It follows that, in each simulation, a hydrostatic
compressive loading is applied to the cell. A constant scaling
factor § is used such that the three edge lengths are multiplied

©The Author(s) 2025.

TABLE 3: ISFE, USFE, and SE calculated by eleven interatomic potentials.
Values of ISFE and USFE were taken from Ref. [76] while those of SE were
mean values among {100}, {110}, and {111} planes [67].

Potentials ISFE (mJ/m?) USFE (mJ/m?) SE (mJ/m?)
cul 14.63 2358 1228.35
Cu2 24.89 235.14 1212.33
Cu3 441 232.01 1169.61
Cu4 61.54 229.17 1121.54
Cu5 94.41 225.84 1030.75
Cu6 149,61 223.66 907.91
cu7 185.55 231.83 822.46
Cu31 4443 159.96 1292.44
Cu32 44.27 197.87 1223.01
Cu33 44.04 266.78 1142.9
Cu34 43.96 302.18 1068.13

by & at each MS step, followed by energy minimization using
the conjugate gradient algorithm. As § is closer to 1, the change
to the simulation cell will be smaller between simulation steps,
thereby minimizing the artifacts associated with the discrete
nature of the simulation. However, a small § will also result in a
high computational cost. To select an appropriate §, we applied
multiple values individually, from 0.999 to 0.9999999, to two
cells containing a void with R = 0.1544 nm and R = 4.632 nm,
respectively, with the Cu3 potential. Results, shown in Fig. 7(b)
and (c), illustrate that the dilatation-pressure curve converges
as1l > § > 0.999999. Thus, that threshold § value is adopted in
the remainder of this paper.

At each MS step, the three normal strains (e, €, €;) along
the three orthogonal directions are calculated by:

€ = Lz _LZO 8
z Lo (8)

Ly — LxO
, €

_Ly=Ly
Lyo 4 Lyo

€x =

where Ly, Ly, and L, denote the current edge length of the com-
pressed simulation cell.

The three normal strains are related to the dilatation e,
which is the change in the volume of a material, by

e=¢€xt+¢€ +¢€ 9)

As the dilatation e increases, the void size (and porosity) will
decrease until the void collapses completely. To measure the
porosity at any given e, we need to quantify the void volume
from the corresponding atomistic structure. To that end, the
simulation cell is divided into many cubic voxels with an edge
length of 3.4657 A, which is between the first nearest neighbor
distance (i.e., ag/+/2) and the second nearest neighbor distance
(i.e., ap). A voxel is considered part of the void if it is empty, i.e.,
there is no atom within it [81]. The porosity is then calculated
as the fraction of empty voxels among the total number of vox-
els. Since some partially filled voxels will be considered as non-
empty voxels, the estimated porosity will be smaller than the the
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actual value. As shown in Sect. “Porosity-dilatation response’,
the estimated initial porosity, around 0.46%, is smaller than the
actual value, 0.5%. To keep the error consistent, the voxel size

will decrease as the simulation cell is compressed.

DSO

To avoid issues with units in the complex expressions, we first
normalize the input and output variables by dividing each by
their respective maximum values from the original data. This
normalization ensures that all variables are between 0 and
1, simplifying the mathematical expressions. The maximum
values for void radius, ISFE, USFE, SE, and critical pressure
are 4.9408 nm, 185.55, 302.18, 1292.44 m]/mz, and 19.62 GPa,
respectively. As a result, a data set with values 0.1544 nm,
44.43,159.96, 1292.44 mJ/m?2, and 19.62 GPa would be nor-
malized to 0.031, 0.239, 0.529, 1.0, and 1.0, respectively.
DSO leverages deep learning, specifically a recurrent NN
(RNN), to generate and optimize mathematical expressions.

The process can be broken down into the following steps:

1. Expression representation. Mathematical expressions are
represented as trees where internal nodes are operators
(e.g.+,
ables. These trees can be linearized into sequences of tokens

—, X, =) and leaf nodes are either constants or vari-

using pre-order traversal.

2. RNN-based generation. An RNN generates expressions by
emitting a sequence of tokens. Each token is sampled from a
categorical distribution conditioned on the previously gen-
erated tokens. This process allows the RNN to construct a
diverse set of candidate expressions.

3. Fitness evaluation. Each generated expression is instantiated
and evaluated based on its fitness, which is the MSE, which
measures the average squared difference between actual and
predicted values. Formally, the fitness F of an expression f

is defined as

230

i=1

E(f) = —fxn)? (10)

where N is the number of data points, X; is the i-th input,
and y; is the corresponding output.

4. Policy gradient optimization. The RNN is trained using a
risk-seeking policy gradient algorithm, which optimizes for
best-case performance rather than expected performance.

The policy gradient update can be expressed as

VoI ©) = Ep,r) [F() Vo log po (/)] (11)
where 6 represents the parameters of the RNN, py (f) is
the probability of generating expression f, and J(0) is the

objective function.

©The Author(s) 2025.

5. Sampling and training. During training, expressions are
sampled from the RNN’s distribution, evaluated, and used
to update the RNN’s parameters. Over time, the RNN
adjusts the probabilities to favor expressions with higher fit-
ness scores, thus converging to an optimal or near-optimal

solution.

The training process of DSO involves iteratively generating,
evaluating, and refining mathematical expressions. Here are
the detailed steps:

Initialization: Initialize the RNN with random parameters.

2. Expression sampling: Generate a batch of expressions by
sampling from the RNN.

3. Fitness calculation: Evaluate the fitness of each sampled
expression using the dataset.

4. Policy update: Update the RNN parameters using the risk-
seeking policy gradient method to maximize the fitness.

5. Iteration: Repeat the process of sampling, evaluating, and
updating until convergence or a predefined stopping crite-

rion is met.

Regarding parameter settings, the task type was set to regres-
sion, aiming to derive mathematical expressions that best fit
the given dataset. The function_set was configured to include
basic arithmetic operations and other mathematical functions,
poly,
log, const]. The optimization process included a polyno-

specifically: [add, sub, mul, div, sqrt,
mial optimizer, activated because the poly function was part of
the function_set. The polynomial degree was capped at 3, with a
coefficient tolerance of 107°, using the dso_least squares
regressor for fitting the data. This selection provides a diverse
set of building blocks for constructing the symbolic expressions.
The primary metric for the reward function was the inverse
normalized root MSE (inv_nrmse), which optimizes the expres-
sions by minimizing the error between the predicted and actual val-
ues. The metric parameters were set to [1.0]. Training hyperparam-
eters were crucial for effective model learning. A large sample size
0f 2,000,000 was used, with a batch size of 1000, and the € parameter
was set to 0.05 to balance exploration and exploitation. The compu-
tations were performed using a single core (n_cores_batch set to 1),
although utilizing more cores is recommended for enhanced per-
formance, especially when the const token is included. The policy
optimizer’s learning rate was 0.0005, with an entropy weight of 0.03
and an entropy decay factor (entropy_gamma) of 0.7. These set-
tings help maintain a balance between exploring new expressions
and refining the best-performing ones, ensuring that the resulting
symbolic expressions were both accurate and interpretable, provid-
ing meaningful insights into the relationship between void radius
and critical pressure, as influenced by material parameters. Two

performance metrics are used: MSE and R-squared score, the latter
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of which indicates the proportion of variance in the dependent vari-
able predictable from the independent variables.

DNN

For data preprocessing, normalization was applied, and the input
data and target output are separated. To approximate the func-
tion y = f(x1, x2, X3, X4), the following layers are used: an input
layer with 4 neurons corresponding to the inputs from the data-
set, a first hidden layer with 50 neurons, a second hidden layer
with 40 neurons, and an output layer with 1 neuron correspond-
ing to the output y. The forward pass computations for each
layer are as follows: the first hidden layer activations are given by
a; = 0 (W;x + by), the second hidden layer activations are given
bya, = o(W;a; + b,), and the output layer activations are given
by y = ¢(Wsay + bsz), wherex = [x1, x2, X3, x4] T isthe input vec-
tor, Wi, W, W3 are the weight matrices for the respective layers,
b1, by, by are the bias vectors for the respective layers, o is the acti-
vation function for the hidden layers, and ¢ is the linear activation
function for the output layer [82].

The backpropagation algorithm is utilized to update the net-
work’s weights and biases, minimizing the loss function, which is
the MSE, i.e.,

Ny a2
MSE =~ (i — 1) (12)

i=1

where y; is the actual output, y; is the predicted output by the
network, and » is the number of training samples. The back-
propagation steps are as follows. The gradient of the loss with
respect to the predicted output is computed as:

dMSE

Boutput = T}A} =2y _)A’) (13)

The error is then propagated backward through the network as:
& = 8output : ¢/(W3a2 +bs3) (14)

81 = (5W3) - o' (Wix +by) (15)
With the gradient descent method, the MSE is reduced by
updating the weights and bias in the descent direction. The
weights and biases of the output and hidden layers are updated

using the following equations:

W3 i= W3 — 11 - Soutpurdy (16)
b3 :=b3 — 1 - Soutput (17)
Wy =Wy, —n- (SzalT (18)

by :=by—1n-6; (19)
Wii= Wi —n-8ix" (20)

©The Author(s) 2025.

by :=b1 —75-d (21
where 7 is the learning rate which controls how much the
weights of an NN change during each iteration. Here, = 0.01
by which the model learns accurately to help the optimization
process converge. o’ and ¢’ are the derivatives of the activa-
tion functions. To evaluate the model’s generalization capability,
10-fold cross-validation is employed. The dataset is partitioned
into 10 subsets, and the model is trained and validated 10 times,
each time using a different subset for validation and the remain-
ing subsets for training. The DNN model is trained using 80%
of the data for training, 10% for validation and 10% for testing.
Similar to the DSO model, the DNN model’s performance is
assessed on unseen dataset using the two metrics: MSE, shown
in Eq. 12, and R-squared score.

GPT-40

A popular generative LLM, GPT-4o, is employed. A recent
study found that LLMs” mathematical reasoning capability may
be affected by trivial changes such as those in variable names
[83]. Hence, we consider three datasets, differing only in how
each type of data is named. In the first dataset, each data type is
associated with an index name (e.g., critical pressure) and units
(e.g., GPa). This enables the model to interpret and learn rela-
tionships among variables in a contextually rich setting. In the
second dataset, each type of input data is anonymized by assign-
ing generic names, i.e., “variable 1” through “variable 4,” while
the output (i.e., critical pressure) is renamed as “result,” with
all units removed. By eliminating specific contextual clues, this
setting intends to assess the model’s adaptability to decontextu-
alized inputs and to challenge it to identify relationships among
variables without relying on units or domain-specific indices. In
the third dataset, each type of data is represented by an arbitrary
alphanumeric string with symbols, such as “#aL@5p!Qx” and
“G &3*1"QjZ, with units similarly removed. This highest level
of anonymization presents the model with minimal interpreta-
tive context. As such, the model needs to learn the numerical
relationships between input and output. The goal is to push the
model to its abstraction limits, where both naming conventions
and units are stripped.

With each of these three datasets, we fine-tune a GPT-40
model, specifically gpt-40-2024-08-06. As a result, three
distinct models are obtained: GPT-40-original, GPT-40-generic,
and GPT-4o0-random. Similar to DSO and DNN models, the
fine-tuned GPT-40 models’ performances are assessed using
MSE and R-squared score. OpenAT’s auto-configured param-
eter settings are utilized throughout the fine-tuning process.
Take the second model as an example, its dialogue examples are

constructed as follows:
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"messages": [
{"role": "system",
result."},
{"role": "user",
variable 1 of 0.1544,
3 of 159.96,
7"},
{"role":

]

"assistant",

"content":

machine that identifies relationships between variables and
"content":
the variable 2 of 44.43,

the variable 4 of 1292.44,

"content":

"You are a predictive

"Given the value of
the variable

what is the result

"19.61759145"}
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