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Atomistic simulations offer insights into material behavior at the atomic level. However, they can be 
computationally intensive. In this paper, two deep learning models, deep symbolic optimization (DSO) 
and deep neural networks (DNN), and one generative large language model, GPT-4o, are employed to 
construct surrogates for atomistic simulations. Specifically, atomistic simulations are first performed to 
investigate the collapse of a nanovoid under hydrostatic pressure. We focus on the role of initial void 
radius and material characteristics, such as intrinsic and unstable stacking fault energies and surface 
energy (SE). We find that the critical pressure required for void collapse spans from 17.05 to 19.62 GPa, 
with the highest values corresponding to the maximum USFE. Additionally, an intermediate SE value 
(1068.13 mJ/m

2 ) minimizes the critical pressure. Based on the simulation results, surrogate models based 
on DSO, DNN, and GPT-4o are constructed, concluding that the SE affects the critical pressure the most.
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Introduction
Atomistic simulations model materials at the atomic level, cap-
turing detailed interactions between atoms, making them pow-
erful tools for predicting material properties and mechanisms 
that are challenging to observe experimentally [1]. However, 
they are often slow and computationally demanding, especially 
for large systems or long timescales [2]. Surrogate models help 
address this limitation by approximating simulation outcomes 
with significantly reduced computational costs [3]. Machine 
learning (ML) approaches, such as neural networks (NNs) and 
Gaussian processes, are commonly used to build these sur-
rogates [4]. For example, Kadupitiya et al. [5] developed NN 
models as surrogates for atomistic simulations of soft materials, 
while Ruiz et al. [6] employed multivariate Gaussian process 
regression as surrogates to predict basic structural parameters in 
non-dilute random alloys. Despite the growing number of sur-
rogate models for atomistic simulations, new research remains 
valuable. For instance, while highly effective and easy to imple-
ment, shallow learning models were recently found to underper-
form in extrapolation on materials datasets compared to deep 
learning models [7].

In this paper, two deep learning techniques are utilized: deep 
symbolic optimization (DSO) and deep neural networks (DNN). 
DSO is an advanced technique that uncovers mathematical 
expressions from data using deep learning methods [8]. It gen-
erates potential mathematical expressions, which are then evalu-
ated based on their fit to the given dataset. The DSO method 
optimizes these expressions through a novel risk-seeking policy 
gradient algorithm, enhancing the best-performing expressions 
[9]. This method surpasses traditional symbolic regression tools, 
like the Eureqa algorithm, by efficiently navigating the search 
space of potential expressions [10]. The flexibility and accuracy 
of DSO make it a powerful tool for identifying interpretable and 
precise mathematical models from complex datasets [11]. On 
the other hand, an NN is an artificial intelligence (AI) method 
that processes data inspired by the human brain, using artificial 
neurons that work together [12]. NNs learn by adjusting con-
nection weights through backpropagation, minimizing the loss 
function and improving performance. Equipped with multiple 
layers of neurons, DNNs outperform traditional ML methods in 
terms of generalization and accuracy [13]. The most important 
difference between DSO and DNN is output representation in 
that the former generates interpretable mathematical expres-
sions or symbolic formulas that explicitly describe the relation-
ships within the data while the latter produces outputs based 
on learned patterns within the network, typically resulting in a 
“black box” model that lacks explicit interpretability [14].

Another emerging AI tool is the generative large language 
models (LLMs), which originate in the subfield of natural lan-
guage process (NLP). They are pre-trained on massive amount 

of text data using the transformer architecture [15]. With addi-
tional supervised fine-tuning and reinforcement learning from 
human feedback, the resulting LLMs have shown impressive 
capabilities in language understanding and generation. Since 
the advent of ChatGPT in November 2022 [16], generative LLMs 
have attracted wide attention from many fields due to their user-
friendly interfaces and ability to respond reasonably to a variety 
of questions. Materials scientists have applied generative LLMs 
to tasks such as extracting data from unstructured text in sci-
entific literature [17, 18]. In addition to NLP tasks, generative 
LLMs have also been used to answer materials questions to assist 
scientific discoveries in materials science owing to their ability 
to understand human language and generate relevant responses 
[19, 20]. More recently, Hao et al. [21] used LLMs as surrogate 
models in evolutionary algorithms. To our best knowledge, 
however, there hasn’t been any work where LLMs were used 
as surrogate models for atomistic simulations. Here, a popular 
LLM, GPT-4o, will be applied to atomistic datasets to assess its 
performance.

The specific materials problem to be studied in this work 
concerns the collapse of a void subject to hydrostatic compres-
sion of a Cu single crystal. In metals, voids are ubiquitous. They 
can be formed during melting and solidification processes due 
to shrinkage and gas entrapment [22, 23] or as a result of stress 
concentration [24] at heterogeneities such as inclusions, pre-
cipitates, and grain boundaries [25]. When the metal undergoes 
plastic deformation, voids can grow and coalesce, ultimately 
resulting in crack propagation and failure of the material [26]. 
The voids may also collapse, leading to local densification and 
altering the mechanical properties of the metal [27]. Therefore, 
it is crucial to understand the deformation of void-containing 
metals to predict their behavior under stress and to develop 
alloys that are more resilient to deformation [28–33]. The 
mechanical response of metals is influenced by the change in 
void geometry. A smaller void inhibits dislocation motion more 
effectively, requiring a higher resolved shear stress for disloca-
tions to bypass it compared to a larger void [33, 34]. Factors 
such as void ellipticity and orientation can also influence stress 
distribution and defect nucleation patterns [35]. Recently, Chen 
et al. [36] developed a convolutional NN model that automati-
cally detects voids in Cu-Sn solder joints. Combining this model 
with finite element analyses helped identify stress concentration 
zones in solder joints. Similarly, Kong et al. [37] used ML algo-
rithms along with hybrid metrology techniques to identify voids 
in copper lines, while Saleh et al. [38] used a combination of ML 
and computational simulations to improve traditional models 
for predicting void nucleation and growth.

Atomistic simulations have been applied to nanovoids in 
single crystals to analyze ductile fracture [39–43]. A single crys-
talline face-centered cubic (FCC) metallic material containing 
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spherical voids exhibits dislocation emission during yield, which 
is caused by the absence of alternative nucleation sites [39, 44]. 
It was revealed that the loading mode influences void growth 
and coalescence [45, 46] and that variations in specimen size 
altered dislocation patterns, void aspect ratios, and stress–strain 
responses [41, 47]. The interactions between nanovoids and 
neighboring voids frequently lead to coalescence or collapse 
of the nanovoids, which can eventually lead to the formation 
of cracks or shear bands [48]. The emission of dislocation is 
the primary mechanism driving the growth of voids in single 
crystals using discrete dislocation dynamics modeling technique 
[47]. It was determined that the elastic moduli of materials with 
spherical voids are linearly related to the void volume fraction, 
while the atomic stress concentration factor is affected by the 
void geometry [49].

Much work has been devoted to gaining valuable insights 
into the physics of void growth and collapse influenced by 
porous structures (e.g., void shape/size/porosity) [50–53], prop-
erties of matrix materials (e.g., Young’s modulus) [54], plastic 
anisotropy [55], non-local effects that incorporate material size 
scales [56], strain rate [57], and crystallographic orientations 
[58–61]. Among material properties are intrinsic stacking fault 
energy (ISFE) and unstable stacking fault energy (USFE), which 
are essential in defining the mechanisms of plastic deformation 
in metals, particularly those of FCC materials. USFE is the high-
est energy obstacle that must be overcome for the leading partial 
dislocation to form a stacking fault [62]. ISFE affects dislocation 
nucleation, which is essential for understanding the mechanical 
properties of these materials [63]. In addition, the surface energy 
(SE) of a metal can influence the stability and evolution of voids, 
thereby affecting the yield strength. It has been demonstrated 
that variations in SE resulting from lattice orientation can result 
in voids exhibiting faceted morphologies with rounded corners 
in both single crystals and nanocrystalline structures, demon-
strating the critical role that SE plays in void evolution across 
grain orientations [64].

Most previous work on void-containing metals and alloys 
focused on either varying porous structures (e.g., initial void 
size and shape) within the same material or on different material 
properties (e.g., ISFE and SE) across different metals. However, 
there is a lack of systematic studies of both sets of factors in a 
unified manner. This task is difficult because different materials 
usually differ in dozens of properties. In this work, we utilize 
a set of eleven interatomic potentials that differ only in ISFE, 
USFE, and SE while all other properties are those of Cu. This 
way, our work analyzes different factors within a single frame-
work. Atomistic simulations using these potentials are carried 
out to investigate the plastic deformation process of a void-
containing Cu single crystal under hydrostatic compression. 
Despite that real materials frequently contain multiple voids and 
other defects, we focus on the case of a single void to isolate and 

understand the fundamental mechanisms that govern the void 
collapse process. Another reason to choose a relatively simple 
atomistic system is that at least half of this paper is focused on 
constructing surrogate models. Based on the simulation data, 
we build surrogate models to establish the linkage among initial 
void radius, ISFE, USFE, SE, and critical pressure. All surrogate 
models conclude that SE is the most important factor affecting 
the critical pressure. This piece of information would allow us 
to design stronger, more reliable materials that are less likely to 
fail due to voids.

Results and discussion
Pressure‑dilatation response

We first investigate the dilatation-pressure responses. Figure 1 
shows some representative cases, including the minimum ISFE 
(i.e., the Cu1 potential), maximum ISFE (i.e., Cu7), minimum 
USFE (i.e., Cu31), and maximum USFE (i.e., Cu34). Note that 
Cu7 and Cu31, respectively, also lead to the minimum and maxi-
mum SEs. In all cases, when the dilatation is small, the pressure 
increases smoothly (but not linearly). However, when the dila-
tation is sufficiently large, the pressure experiences a significant 
drop. At that point, the void collapses completely and the corre-
sponding pressure is termed the critical pressure. It is consistent 
with the findings in Ref. [46], where similar trends in void collapse 
were identified under different loading conditions. The portion of 
the dilatation-pressure curve prior to the yield point is approxi-
mately the same for different void radii for the same potential. 
Across potentials, Fig. 1(e) and (f) demonstrate that the initial 
portion of the dilatation-pressure curve does not change much 
as the ISFE varies (i.e., from Cu1 to Cu7) while its slope increases 
with the USFE (i.e., from Cu31 to Cu34). There is evidence to sup-
port this behavior in Ref. [65], which showed that an increase in 
USFE can affect dislocation motion. We also observe that, the crit-
ical pressure occurs at approximately the same dilatation in Cu1 to 
Cu7 which have differing ISFE. For example, when R = 2.316 nm, 
the critical dilatation is 0.1815 for Cu1, while it is at 0.1932 for 
Cu7. Our finding that the ISFE variations did not significantly 
affect the collapse thresholds is in line with Ref. [39]. In contrast, a 
significant difference in the critical dilatation is observed between 
Cu31 and Cu34. For example, when R = 0.772 nm, the critical 
dilatation is 0.2427 for Cu31, whereas it is at 0.1628 for Cu34. 
Our findings are in accordance with Ref. [64] which indicated that 
the SE is related to the stabilization of the void structure, thereby 
affecting the critical pressures.

Porosity‑dilatation response

We then analyze the porosity-dilatation responses. Figure 2 
presents results for two different initial void sizes with all 
eleven interatomic potentials. It is observed that the porosity 
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experiences two sharp drops. The first drop occurs at e ≈ 0.08 , 
corresponding to the yield point where dislocations are nucle-
ated from the void surface. The second drop occurs at e ≈ 0.18 , 
corresponding to the complete closure of the void, which is also 

where the critical pressure occurs. From Cu1 to Cu7, a larger 
ISFE is found to delay the void closure, in line with a higher 
critical pressure [Fig. 1(e)]. From Cu31 to Cu34, dislocations 
start to nucleate at an increasingly larger dilation while the void 

Figure 1:   Pressure-dilatation curves based on different interatomic potentials and/or different initial void radius R. 



 
 J

ou
rn

al
 o

f M
at

er
ia

ls
 R

es
ea

rc
h 

 
 V

ol
um

e 
41

  
 I

ss
ue

 1
 

 J
an

ua
ry

 2
02

6 
 w

w
w

.m
rs

.o
rg

/jm
r

Article

© The Author(s) 2025. 184

collapses at an increasingly smaller dilatation, the latter of which 
is aligned with smaller critical dilatation in Fig. 1(f). The same 
trends are found for different initial void sizes.

Selected atomistic structures for the evolution of void with 
R = 2.316 nm are presented in Fig. 3. It is shown that the void 
is first transformed into a stacking fault tetrahedra (SFT), which 
is in agreement with a previous finding in Cu [66], followed by 
that the SFT is completely closed while more dislocations are 
emitted into the system.

Critical pressure

Figure 4 visualizes the relationship among void size, ISFE, USFE, 
SE, and critical pressure. Qualitatively, it is shown that the critical 
pressure increases as the ISFE increases or the USFE decreases 
which aligns with observations in Ref. [67]. Additionally, there 
exists an intermediate SE that corresponds to the minimum 

critical pressure. To provide a more quantitative understanding, we 
employ several surrogate models in the remainder of this section.

DSO

In what follows, we define the normalized initial void radius as 
the x̃1 , the three normalized energies as x̃2 , x̃3 , and x̃4 , while the 
normalized critical pressure as ỹ . The normalization process is 
described in Sect. “DSO”.

Our DSO regression finds that the following equation estab-
lishes the relationship between x̃1 and ỹ , with the help of five con-
stants ( C1 to C5 ), i.e.,

These five constants are related to the three energy terms, i.e., 
normalized ISFE, normalized USFE, and normalized SE, as 
follows,

(1)
ỹDSO =C1 log(x̃1)− 0.08x̃2.751 + C2x̃

1.75
1 + C3x̃

0.75
1

− x̃0.51 − x̃0.251 + C4x̃
−0.25
1 + C5

Figure 2:   Porosity-dilatation curves for (a, b) R = 0.772 nm and (c, d) R = 2.316 nm based on eleven interatomic potentials.
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(2)C1 =
1√
x̃3

(3)C2 = 0.23x̃2 + 0.29x̃3 + 1.17x̃4 − 0.91

(4)

C3 = 8.68x̃
2

2 − 5.64x̃2x3 + 44.81x̃2x̃4 − 40.25x̃2 − 14.42x̃
2

3

− 14.05x̃3x̃4 + 37.18x̃3 + 56.35x̃
2

4 − 102.83x̃4 + 36.62

(5)

C4 = 0.28x̃
3

2 + 0.58x̃
2

2 x̃3 − 0.36x̃
2

2 x̃4 − 1.25x̃
2

2

− 0.10x̃2x̃
2

3 − 1.61x̃2x̃3x̃4

− 0.02x̃2x̃3 − 0.31x̃2x̃
2

4 + 0.63x̃2x̃4 + 1.21x̃2

− 3.23x̃
3

3 + 3.43x̃
2

3 x̃4 + 3.38x̃
2

3

− 4.83x̃3x̃
2

4 − 2.18x̃3x̃4 + 0.86x̃3

+ 2.42x̃
3

4 + 0.03x̃
2

4 − 0.03x̃4 + 1.61

This way, the porous structure (i.e., void radius) is separated 
from the material properties (i.e., ISFE, USFE, and SE) in Eq. 1. 
In the final model, the mean squared error (MSE) and R-squared 
score are calculated as 0.17 and 0.85, respectively, as shown in 
Table 1.

DNN

Each performance metric is averaged over 10 folds to provide 
a reliable estimate of model performance. It is found that the 
average MSE and average R-squared score are 0.124 and 0.956, 
respectively, as shown in Table 1, indicating that it makes more 
accurate predictions than the DSO model. Specifically after 100 
epochs, the R-squared scores for training data, validation data, 

(6)C5 =
√

x̃4

Figure 3:   Evolution of the void ( R = 0.772 nm) as a function of the dilatation e based on the (a–c) Cu1 and (a’–c’) Cu34 potentials, respectively. Top row: 
FCC and body-centered cubic atoms are deleted, while hexagonal close-packed atoms indicate dislocations. Bottom row shows the change in void 
shape and size.
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and testing data are 0.94, 0.91, and 0.8652, respectively, as shown 
in Fig. 5(a). The parity plots of DNN predictions are shown in 
Fig. 5(b).

GPT‑4o

As shown in Table  1, the GPT-4o-original model demon-
strates the highest performance among the three fine-tuned 
GPT models, achieving an MSE of 0.441 and an R-squared 
score of 0.872. It is also the fine-tuned GPT model that most 
closely matches DNN predictions. This indicates that GPT-
4o-original, equipped with full contextual information, can 
effectively capture the relationships among variables. The high 
R-squared score suggests a strong explanatory power that the 
model is able to take advantage of the labels and units of the 
domain-specific variables to understand complex dependen-
cies within the data. The relatively low MSE value also shows 
that GPT-4o-original is beneficial in retaining explicit contex-
tual cues in the data.

Figure 4:   Critical pressure as a function of initial void radius and one material property (ISFE or USFE or SE). In each subfigure, different values of 
material property are colored differently.

TABLE 1:   MSE and R-squared score in DSO, DNN, and three GPT-4o mod-
els. Outputs (in GPa) of the reference point x1 = 2.6248  nm, x2 = 44.1 , 
x3 = 232.01 , x4 = 1169.61 mJ/m

2 from the five models are presented 
in the last row. The atomistic simulation-based value for that reference 
point is 13.75 GPa.

DSO DNN
GPT-4o-orig-

inal
GPT-4o-ge-

neric
GPT-

4o-random

MSE 0.17 0.124 0.441 0.903 0.788

R-squared 0.85 0.956 0.872 0.738 0.771

Output 13.62 13.73 13.63 13.62 13.78
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Among the three fine-tuned GPT-4o models, the GPT-
4o-generic model performs the worst, with a high MSE of 
0.903 and a low R-squared score of 0.738. The lack of explicit 
variable names and units limits the model’s ability to capture 
the full complexity of the data. GPT-4o-generic only can rely 
on numerical relationships by using variables 1–4 instead of 
domain-specific labels. This suggests that while the model can 
still learn patterns in the absence of explicit context, the loss of 
descriptive variable labels reduces performance.

The last model, GPT-4o-random, shows an intermediate 
level of performance, with an MSE of 0.788 and an R-squared 
score of 0.771. The variable names in GPT-4o-random are 
completely random strings, with no inherent order or mean-
ing. This extreme abstraction requires the model to explore 
relationships between numerical values, without being misled 
by generic labels like “variable 1.” However, the lack of seman-
tic information probably prevents it from fully optimizing its 
prediction.

A comparison among the five surrogate models

Based on the MSE and R-squared score, the performance among 
the five surrogate models is ranked as: DNN > DSO > GPT-
4o-original > GPT-4o-random > GPT-4o-generic. Their relative 
performance can also be assessed by predicting output based 
on inputs at a reference point, i.e., 2.6248 nm, 44.1, 232.01, 
1169.61 mJ/m2 , for which the atomistic simulation output is 
13.75 GPa. Results, summarized in the last row of Table 1, con-
firm that the DNN model has the best performance.

Factors affecting the critical pressure

To assess how each input (initial void radius R, ISFE, USFE, and 
SE) affects the output (critical pressure), we apply a perturbation 
method, i.e., we individually change each input by ±10 %. As 
shown in Fig. 6, the predicted critical pressure either decreases 
or increases due to the perturbation. The average changes in the 
critical pressure from the three models (whereas only the mean 
value of the three fine-tuned GPT-4o models are shown) are 
summarized in Table 2. The most accurate model, DNN, shows 
that SE has the greatest impact on the critical pressure, followed 
by USFE and ISFE, while R has the least impact on the critical 
pressure. The importance of the four input parameters is ranked 
the same according to DSO, but not GPT-4o. For example, the 
three fine-tuned GPT-4o models, on average, predict USFE as 
the least important input parameter. Nevertheless, all models 
highlight the primary role of SE in determining the critical pres-
sure. The finding is physically intuitive because the critical pres-
sure corresponds to the complete collapse of the voids, which is 
strongly associated with the SE. Specifically, a void with a high 
SE requires a large energy penalty to close, while a void with a 
small SE requires a higher pressure for the dislocation nuclea-
tion, postponing the yield event and delaying the void collapse.

Conclusion
In this paper, a combined atomistic simulation and surro-
gate model approach is employed to investigate the effects of 
porous structure and material properties in a void-containing 

Figure 5:   (a) Average R-squared scores for different datasets as a function of epoch. (b) Parity plots of the DNN predictions versus actual data for the 
critical pressures.
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Cu single crystal. By systematically varying the initial void 
radius, ISFE, USFE, and SE by over one order of magnitude, 
atomistic simulations provide 352 sets of data. Subsequently, 
two deep learning models (DSO and DNN) and one generative 
LLM (GPT-4o) are applied to provide a quantitative analysis of 
the data. It is found that (i) a higher ISFE and/or a lower USFE 
lead to a higher critical pressure corresponding to complete 
void closure, (ii) there exists an SE (1068.13 mJ/m2 ) that is 
associated with the minimum critical pressure (13.25 GPa), 
and (iii) among the four factors (i.e., initial void radius, ISFE, 
USFE, and SE), SE is the most important factor in determining 

the critical pressure. We also found that the DNN model out-
performs DSO and GPT-4o, with an MSE of 0.124 and an 
R-squared score of 0.956, suggesting that DNN is able to cap-
ture complex, nonlinear relationships among input parameters 
used in our atomistic simulations. The novelty of our work lies 
in systematically combining atomistic simulations with sur-
rogate models to elucidate the role of multiple factors on void 
behavior, demonstrating the significant impact of integrating 
physics-based and data-driven approaches.

The current work is not without limitations. First, it is 
important to note that the use of quasi-static simulations at 
0 K neglects the influence of thermal vibrations and dynamic 
effects on the behavior of voids under real-world conditions. 
Second, the controlled variation of only ISFE, USFE, and SE, 
while maintaining other material properties constant, may not 
be sufficient to capture the full complexity of real materials 
where multiple properties vary simultaneously. Third, the semi-
empirical interatomic potentials employed here, while serving 
the purpose of isolating certain material properties, may not 
be sufficiently accurate compared with ML-based interatomic 
potentials. These limitations may be addressed in future research 
by incorporating dynamic simulations to model multiple voids, 

Figure 6:   Red dots represent actual data points projected on 2D graphs. Blue, green, and orange lines indicate predictions by DSO, DNN, and GPT-4o 
models, respectively, when each input parameter (normalized initial void radius, normalized ISFE, normalized USFE, and normalized SE) is perturbed by 
±10 %. The shaded region indicates the standard deviation around three fine-tuned GPT-4o models.

TABLE 2:   Average change in the critical pressure (in GPa) as a result of 
adding a ±10 % perturbation to each factor — initial void radius R, ISFE, 
USFE, and SE—with respect to the reference point: 2.6248  nm, 44.1, 
232.01, 1169.61 mJ/m

2 . GPT-4o data are average among three fine-tuned 
models.

Model R ( ±10%) ISFE ( ±10%) USFE ( ±10%) SE ( ±10%)

DSO 0.008 0.048 1.222 6.141

DNN 0.093 0.25 0.598 2.29

GPT-4o 0.219 0.17 0.164 0.467
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and by expanding the variation of material properties based on 
more accurate interatomic potentials to enhance generalizability.

Materials and methods
Atomistic simulations

Atomistic simulations based on the molecular statics (MS) 
method [68] are employed here. MS is advantageous to molec-
ular dynamics (MD) that was used in some void-related work 
because it can minimize the energy of the voided structure at 
each strain [69]. Thus, MS results provide critical atomic-scale 

insights into the mechanisms driving void evolution and how 
it affects the critical pressure, without reaching any overdriven 
state which is common in MD modeling [70]. The open-source 
software package LAMMPS [71] is used. All atomic configura-
tions are visualized using OVITO [72]. The adaptive common 
neighbor analysis method [73] is used to highlight defects in the 
atomistic structure.

Figure 7(a) illustrates a cubic simulation cell of an FCC sin-
gle crystal containing a nanovoid. The crystallographic orienta-
tions are x[100], y[010], and z[001], with periodic boundary 
conditions applied in all directions. Lx0 , Ly0 , and Lz0 , which all 

Figure 7:   (a) Simulation cell of a Cu single crystal containing a spherical nanovoid subject to hydrostatic compression. (b, c) Pressure-dilatation curves 
for various scaling factors in two simulation cells with the Cu3 potential.
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equal L0 , are the initial edge lengths of the cell along the x, y, and 
z directions, respectively. Within the cell, a spherical void is cre-
ated by removing all atoms within a specified radius (R) from the 
centroid. A series of 32 cells are created, with L0 varying from L, 
2L,..., to 32L, where L = 1.456 nm. In each cell, the initial void 
radius R is set such that the initial porosity stays the same, i.e.,

where an initial porosity of 0.5% is chosen as a typical value in 
Cu because Kumar et al. [74] found that as-built Cu has a poros-
ity ranging from 0.26 to 1.29%, while heat-treated Cu possesses 
a reduced porosity of 0.09–0.1%. In another work, Prithivirajan 
et al. [75] found that a porosity of 1% would likely lead to the 
formation of fatigue cracks. As a result of the 0.5% initial poros-
ity in this work, the initial void radius R ranged from 0.1544 to 
4.9408 nm.

The material considered in this paper is Cu, which is mod-
eled using eleven embedded-atom method interatomic potentials 
[77]. The first seven potentials, denoted as Cu1, Cu2,..., Cu7, pos-
sess differing ISFE and SE while the USFE remains approximately 
constant at 230 mJ/m2 [78]. The last four potentials, denoted as 
Cu31, Cu32, Cu33, and Cu34, were built to predict different 
USFE and SE while ISFE is constant at about 44 mJ/m2 [67]. 
Detailed values of the ISFEs, USFEs, and SEs for these potentials 
are presented in Table 3. Prior density functional theory calcu-
lations in Cu found that its ISFE, USFE [79], and mean SE [80] 
values are 41.83, 160.52, and 1456.67 mJ/m2 , respectively. This 
suggests that the Cu31 potential is the best in terms of ISFE and 
USFE, while no potential is associated with a good mean SE.

All other material properties, such as lattice parameters, 
elastic constants, and vacancy migration/formation energies, 
are about the same among the eleven potentials. For example, 
a uniform lattice parameter a0 = 3.639 Å is used to build the 
atomistic structures. In total, 32 void/cell sizes and eleven poten-
tials are considered, resulting in 352 simulations. In all surrogate 
models employed in this paper, the initial void radius R, ISFE, 
USFE, and SE are treated as input parameters x1 , x2 , x3 , and 
x4 , respectively, while the critical pressure is the only output 
parameter y.

After creating the void by removing atoms within a specified 
sphere, the remaining atomic structure may experience local 
stresses due to the sudden absence of neighboring atoms. To sta-
bilize the structure, we apply the conjugate gradient algorithm to 
minimize the system’s energy. As a result, the atoms surrounding 
the void can adjust their positions before any external deforma-
tion is applied. No structural collapse was observed in any case 
at this time. It follows that, in each simulation, a hydrostatic 
compressive loading is applied to the cell. A constant scaling 
factor δ is used such that the three edge lengths are multiplied 

(7)R =
(

L
3
0
× 0.005

4

3
× π

)
1

3

by δ at each MS step, followed by energy minimization using 
the conjugate gradient algorithm. As δ is closer to 1, the change 
to the simulation cell will be smaller between simulation steps, 
thereby minimizing the artifacts associated with the discrete 
nature of the simulation. However, a small δ will also result in a 
high computational cost. To select an appropriate δ , we applied 
multiple values individually, from 0.999 to 0.9999999, to two 
cells containing a void with R = 0.1544 nm and R = 4.632 nm, 
respectively, with the Cu3 potential. Results, shown in Fig. 7(b) 
and (c), illustrate that the dilatation-pressure curve converges 
as 1 > δ ≥ 0.999999 . Thus, that threshold δ value is adopted in 
the remainder of this paper.

At each MS step, the three normal strains ( ǫx , ǫy , ǫz ) along 
the three orthogonal directions are calculated by:

where Lx , Ly , and Lz denote the current edge length of the com-
pressed simulation cell.

The three normal strains are related to the dilatation e, 
which is the change in the volume of a material, by

As the dilatation e increases, the void size (and porosity) will 
decrease until the void collapses completely. To measure the 
porosity at any given e, we need to quantify the void volume 
from the corresponding atomistic structure. To that end, the 
simulation cell is divided into many cubic voxels with an edge 
length of 3.4657 Å, which is between the first nearest neighbor 
distance (i.e., a0/

√
2 ) and the second nearest neighbor distance 

(i.e., a0 ). A voxel is considered part of the void if it is empty, i.e., 
there is no atom within it [81]. The porosity is then calculated 
as the fraction of empty voxels among the total number of vox-
els. Since some partially filled voxels will be considered as non-
empty voxels, the estimated porosity will be smaller than the the 

(8)ǫx = Lx − Lx0

Lx0
, ǫy =

Ly − Ly0

Ly0
, ǫz =

Lz − Lz0

Lz0

(9)e = ǫx + ǫy + ǫz

TABLE 3:   ISFE, USFE, and SE calculated by eleven interatomic potentials. 
Values of ISFE and USFE were taken from Ref. [76] while those of SE were 
mean values among {100}, {110}, and {111} planes [67].

Potentials ISFE ( mJ/m
2) USFE ( mJ/m

2) SE ( mJ/m
2)

Cu1 14.63 235.8 1228.35

Cu2 24.89 235.14 1212.33

Cu3 44.1 232.01 1169.61

Cu4 61.54 229.17 1121.54

Cu5 94.41 225.84 1030.75

Cu6 149.61 223.66 907.91

Cu7 185.55 231.83 822.46

Cu31 44.43 159.96 1292.44

Cu32 44.27 197.87 1223.01

Cu33 44.04 266.78 1142.9

Cu34 43.96 302.18 1068.13
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actual value. As shown in Sect. “Porosity-dilatation response”, 
the estimated initial porosity, around 0.46%, is smaller than the 
actual value, 0.5%. To keep the error consistent, the voxel size 
will decrease as the simulation cell is compressed.

DSO

To avoid issues with units in the complex expressions, we first 
normalize the input and output variables by dividing each by 
their respective maximum values from the original data. This 
normalization ensures that all variables are between 0 and 
1, simplifying the mathematical expressions. The maximum 
values for void radius, ISFE, USFE, SE, and critical pressure 
are 4.9408 nm, 185.55, 302.18, 1292.44 mJ/m2 , and 19.62 GPa, 
respectively. As a result, a data set with values 0.1544 nm, 
44.43, 159.96, 1292.44 mJ/m2 , and 19.62 GPa would be nor-
malized to 0.031, 0.239, 0.529, 1.0, and 1.0, respectively.

DSO leverages deep learning, specifically a recurrent NN 
(RNN), to generate and optimize mathematical expressions. 
The process can be broken down into the following steps: 

1.	 Expression representation. Mathematical expressions are 
represented as trees where internal nodes are operators 
(e.g., +,−,×,÷ ) and leaf nodes are either constants or vari-
ables. These trees can be linearized into sequences of tokens 
using pre-order traversal.

2.	 RNN-based generation. An RNN generates expressions by 
emitting a sequence of tokens. Each token is sampled from a 
categorical distribution conditioned on the previously gen-
erated tokens. This process allows the RNN to construct a 
diverse set of candidate expressions.

3.	 Fitness evaluation. Each generated expression is instantiated 
and evaluated based on its fitness, which is the MSE, which 
measures the average squared difference between actual and 
predicted values. Formally, the fitness F of an expression f  
is defined as 

 where N is the number of data points, Xi is the i-th input, 
and yi is the corresponding output.

4.	 Policy gradient optimization. The RNN is trained using a 
risk-seeking policy gradient algorithm, which optimizes for 
best-case performance rather than expected performance. 
The policy gradient update can be expressed as 

 where θ represents the parameters of the RNN, pθ (f ) is 
the probability of generating expression f  , and J(θ) is the 
objective function.

(10)F(f ) = − 1

N

N
∑

i=1

(

yi − f (Xi)
)2

(11)∇θ J(θ) = Epθ (f )

[

F(f )∇θ log pθ (f )
]

5.	 Sampling and training. During training, expressions are 
sampled from the RNN’s distribution, evaluated, and used 
to update the RNN’s parameters. Over time, the RNN 
adjusts the probabilities to favor expressions with higher fit-
ness scores, thus converging to an optimal or near-optimal 
solution.

The training process of DSO involves iteratively generating, 
evaluating, and refining mathematical expressions. Here are 
the detailed steps: 

1.	 Initialization: Initialize the RNN with random parameters.
2.	 Expression sampling: Generate a batch of expressions by 

sampling from the RNN.
3.	 Fitness calculation: Evaluate the fitness of each sampled 

expression using the dataset.
4.	 Policy update: Update the RNN parameters using the risk-

seeking policy gradient method to maximize the fitness.
5.	 Iteration: Repeat the process of sampling, evaluating, and 

updating until convergence or a predefined stopping crite-
rion is met.

Regarding parameter settings, the task type was set to regres‑
sion, aiming to derive mathematical expressions that best fit 
the given dataset. The function_set was configured to include 
basic arithmetic operations and other mathematical functions, 
specifically: [add, sub, mul, div, poly, sqrt, 
log, const]. The optimization process included a polyno-
mial optimizer, activated because the poly function was part of 
the function_set. The polynomial degree was capped at 3, with a 
coefficient tolerance of 10−6 , using the dso_least_squares 
regressor for fitting the data. This selection provides a diverse 
set of building blocks for constructing the symbolic expressions.

The primary metric for the reward function was the inverse 
normalized root MSE (inv_nrmse), which optimizes the expres-
sions by minimizing the error between the predicted and actual val-
ues. The metric parameters were set to [1.0]. Training hyperparam-
eters were crucial for effective model learning. A large sample size 
of 2,000,000 was used, with a batch size of 1000, and the ǫ parameter 
was set to 0.05 to balance exploration and exploitation. The compu-
tations were performed using a single core (n_cores_batch set to 1), 
although utilizing more cores is recommended for enhanced per-
formance, especially when the const token is included. The policy 
optimizer’s learning rate was 0.0005, with an entropy weight of 0.03 
and an entropy decay factor (entropy_gamma) of 0.7. These set-
tings help maintain a balance between exploring new expressions 
and refining the best-performing ones, ensuring that the resulting 
symbolic expressions were both accurate and interpretable, provid-
ing meaningful insights into the relationship between void radius 
and critical pressure, as influenced by material parameters. Two 
performance metrics are used: MSE and R-squared score, the latter 
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of which indicates the proportion of variance in the dependent vari-
able predictable from the independent variables.

DNN

For data preprocessing, normalization was applied, and the input 
data and target output are separated. To approximate the func-
tion y = f (x1, x2, x3, x4) , the following layers are used: an input 
layer with 4 neurons corresponding to the inputs from the data-
set, a first hidden layer with 50 neurons, a second hidden layer 
with 40 neurons, and an output layer with 1 neuron correspond-
ing to the output y . The forward pass computations for each 
layer are as follows: the first hidden layer activations are given by 
a1 = σ(W1x + b1) , the second hidden layer activations are given 
by a2 = σ(W2a1 + b2) , and the output layer activations are given 
by y = φ(W3a2 + b3) , where x = [x1, x2, x3, x4]T is the input vec-
tor, W1,W2,W3 are the weight matrices for the respective layers, 
b1, b2, b3 are the bias vectors for the respective layers, σ is the acti-
vation function for the hidden layers, and φ is the linear activation 
function for the output layer [82].

The backpropagation algorithm is utilized to update the net-
work’s weights and biases, minimizing the loss function, which is 
the MSE, i.e.,

where yi is the actual output, ŷi is the predicted output by the 
network, and n is the number of training samples. The back-
propagation steps are as follows. The gradient of the loss with 
respect to the predicted output is computed as:

The error is then propagated backward through the network as:

With the gradient descent method, the MSE is reduced by 
updating the weights and bias in the descent direction. The 
weights and biases of the output and hidden layers are updated 
using the following equations:

(12)MSE = 1

n

n
∑

i=1

(yi − ŷi)
2

(13)δoutput =
∂MSE

∂ ŷ
= −2(y − ŷ)

(14)δ2 = δoutput · φ′(W3a2 + b3)

(15)δ1 = (δ2W
T

2 ) · σ ′(W1x + b1)

(16)W3 := W3 − η · δoutputaT2

(17)b3 := b3 − η · δoutput

(18)W2 := W2 − η · δ2aT1
(19)b2 := b2 − η · δ2

(20)W1 := W1 − η · δ1xT

where η is the learning rate which controls how much the 
weights of an NN change during each iteration. Here, η = 0.01 
by which the model learns accurately to help the optimization 
process converge. σ ′ and φ′ are the derivatives of the activa-
tion functions. To evaluate the model’s generalization capability, 
10-fold cross-validation is employed. The dataset is partitioned 
into 10 subsets, and the model is trained and validated 10 times, 
each time using a different subset for validation and the remain-
ing subsets for training. The DNN model is trained using 80% 
of the data for training, 10% for validation and 10% for testing. 
Similar to the DSO model, the DNN model’s performance is 
assessed on unseen dataset using the two metrics: MSE, shown 
in Eq. 12, and R-squared score.

GPT‑4o

A popular generative LLM, GPT-4o, is employed. A recent 
study found that LLMs’ mathematical reasoning capability may 
be affected by trivial changes such as those in variable names 
[83]. Hence, we consider three datasets, differing only in how 
each type of data is named. In the first dataset, each data type is 
associated with an index name (e.g., critical pressure) and units 
(e.g., GPa). This enables the model to interpret and learn rela-
tionships among variables in a contextually rich setting. In the 
second dataset, each type of input data is anonymized by assign-
ing generic names, i.e., “variable 1” through “variable 4,” while 
the output (i.e., critical pressure) is renamed as “result,” with 
all units removed. By eliminating specific contextual clues, this 
setting intends to assess the model’s adaptability to decontextu-
alized inputs and to challenge it to identify relationships among 
variables without relying on units or domain-specific indices. In 
the third dataset, each type of data is represented by an arbitrary 
alphanumeric string with symbols, such as “#aL@5p!Qx” and 
“G &3*l∧QjZ,” with units similarly removed. This highest level 
of anonymization presents the model with minimal interpreta-
tive context. As such, the model needs to learn the numerical 
relationships between input and output. The goal is to push the 
model to its abstraction limits, where both naming conventions 
and units are stripped.

With each of these three datasets, we fine-tune a GPT-4o 
model, specifically gpt-4o-2024-08-06. As a result, three 
distinct models are obtained: GPT-4o-original, GPT-4o-generic, 
and GPT-4o-random. Similar to DSO and DNN models, the 
fine-tuned GPT-4o models’ performances are assessed using 
MSE and R-squared score. OpenAI’s auto-configured param-
eter settings are utilized throughout the fine-tuning process. 
Take the second model as an example, its dialogue examples are 
constructed as follows:

(21)b1 := b1 − η · δ1
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