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ABSTRACT

This study employs four machine learning (ML) models—random forest (RF), XGBoost, graph convolutional networks (GCN), and graph
attention networks (GAT)—to predict vacancy formation energies (VFEs) in refractory non-dilute random alloys including pure metals,
binary, ternary, quaternary, and quinary systems based on Mo, Nb, Ta, V, and W. Training data are generated from density functional
theory calculations. Among all elements, W has the highest VFE on average (2.866 ! 3.517 eV from pure metal to ternary), while Ta is the
only element whose VFE rises monotonically (2.841 ! 3.262 eV from pure metal to quinary). In tree-based tabular models (RF, XGBoost),
each chemical composition is encoded as a five-dimensional vector of elemental fractions on the Mo–Nb–Ta–V–W basis, augmented with a
categorical indicator of the specific element in a certain alloy for which the vacancy is created, and features are standardized to balance
input scales during training. In graph models (GCN, GAT), each composition is represented as a small graph whose nodes carry per-
element descriptors (fraction, atomic number, and Magpie features), while edges summarize simple pairwise chemistry (such as fraction
interactions and differences in atomic number, electronegativity, covalent radius, and Mendeleev number). All four models achieve high
accuracy in predicting VFEs across alloy orders, with graph-based approaches capturing chemistry-aware trends beyond fixed tabular
descriptors. Among the four, GCN attains the highest accuracy with R2 ¼ 0:972, root mean squared error ¼ 0:051 eV, and mean absolute
error ¼ 0:042 eV, outperforming GAT and the tabular baselines. These results underscore the promise of graph-based ML for rapid, reliable
prediction of VFEs in the refractory alloy design.

© 2026 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0304829

I. INTRODUCTION

Traditional alloy design has long centered on a single domi-
nant metal forming the matrix, with small amounts of other ele-
ments added primarily to improve specific properties such as
strength, corrosion resistance, and ductility.1,2 Non-dilute random
alloys (NDRAs) represent a breakthrough in alloy design where at
least two principal elements are combined in near-equiatomic or
substantial concentrations.3,4 This fundamentally different
approach creates a high degree of chemical complexity and

atomic-level disorder, which profoundly affects the material’s
structural characteristics and physical properties.5 We remark that
the concept of NDRAs differs slightly from multi-principal
element alloys (three or more principal elements) and high-
entropy alloys (five or more principal elements).6 The importance
of NDRAs is underscored by their unique combination of desir-
able properties, often surpassing those of traditional alloys. They
exhibit enhanced mechanical strength, ductility, thermal stability,
corrosion resistance, and irradiation tolerance, making them
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promising candidates for critical structural applications in aero-
space, nuclear energy, and other extreme environments.7–9 For
example, refractory NDRAs (RNDRAs) containing elements like
Mo, Nb, Ta, V, and W combine the high melting points and
strength of refractory metals, potentially overcoming traditional
limitations such as room-temperature brittleness and oxidation
susceptibility.10,11

Like pure-metals and dilute alloys, the properties of NDRAs
are greatly impacted by various defects within their structure.
Among these defects, vacancies are the simplest and most fre-
quently encountered.12,13 The vacancy formation energy (VFE)
measures the amount of energy needed to create such a vacancy by
removing an atom from its regular lattice site and placing it in iso-
lation.14,15 VFE is critical because it directly influences the equilib-
rium concentration of vacancies, thereby affecting various physical
and mechanical phenomena such as self-diffusion, creep, phase
transformations, radiation tolerance, and thermal expansion.16–19

Equilibrium vacancy concentrations at elevated temperatures signif-
icantly impact deformation mechanisms and diffusion processes,
thus altering the material’s performance and stability.20–22

Therefore, calculating VFEs in RNDRAs is important for under-
standing thermophysical properties such as thermal conductivity,
specific heat, and diffusion behavior.13

VFEs are typically determined through computational
methods because of the technical challenges and inherent complex-
ities in experimental measurement.23 Classical atomistic simulation
methods have commonly been utilized due to their lower computa-
tional cost and capacity for high-throughput modeling.24,25

However, these methods rely on fitted interatomic potentials,
which can lead to errors when predicting defect energies, especially
in alloys with complex chemistry.26,27 On the other hand, density
functional theory (DFT), a quantum mechanical method, is widely
regarded as a more accurate approach for calculating VFEs because
it explicitly accounts for electronic structure and the distribution of
electron density.28 DFT inherently accounts for electronic charge
redistribution and bonding interactions occurring during defect
formation, making it particularly reliable for accurately predicting
VFEs in RNDRAs.17,18,29 Notably, Lin-Vines et al.30 performed
DFT calculations to explore defect energetics in MoNbTaVW,
revealing significantly elevated VFEs compared to the constituent
pure metals and highlighting the complex interplay of atomic-scale
interactions in disordered environments. Their work provided
foundational insights into how elemental mixing affects defect
energetics but was limited in scope to a single quinary system.

However, DFT calculations are exceedingly time-consuming,
making them unsuitable for high-throughput materials discovery
work flows, particularly within closed-loop synthesis pipelines that
demand efficient computational tools.31 In recent years, machine
learning (ML) surrogate models have become essential in materials
science by significantly reducing computational costs.32–34 To date,
ML models have been applied to predict a variety of material prop-
erties, including bandgaps and elastic moduli across a wide range
of systems.35,36 A particularly important target is the prediction of
defect formation energies. For instance, Sharma et al.37 applied a
random forest (RF) model using elemental and structural descrip-
tors to estimate cation defect formation energies in perovskite
oxides. Similarly, Arrigoni and Madsen38 used a Gaussian process

metamodel with an evolutionary algorithm to search for low-
energy point-defect configurations in semiconductors and oxides,
incorporating uncertainty estimates to guide exploration. In
another study, Baldassarri et al.39 built a large DFT dataset of
oxygen VFEs across diverse oxides and trained RF and kernel ridge
regression models with site-specific features. For complex alloys,
Manzoor et al.40 proposed a regression framework using neighbor-
based and bond-length descriptors to predict both VF and migra-
tion energies in NDRAs. Later, Mannodi-Kanakkithodi et al.41

curated over 2500 DFT-calculated oxygen VFEs for nearly 1000
materials and evaluated several regressors, finding that an RF
model with engineered features yielded the best performance. More
recently, Tan et al.42 developed an interpretable ML framework
that combines high-throughput atomistic simulations with
physics-informed local atomic environment descriptors to predict
VFEs in CoNiCrFeMn, highlighting the dominant role of the
first-nearest-neighbor shell and bond-strength competition in con-
trolling VFEs with R2 ¼ 0:98.

ML has been widely applied to materials modeling tasks involv-
ing compositional complexity and property prediction. Gaussian
process regression has been used to model transformation tempera-
tures in NiTi-based shape memory alloys, capturing structure-
sensitive trends relevant to alloy design.43 Least-squares boosting has
demonstrated effectiveness in predicting solubility behavior of super-
critical CO2 in ionic liquids, a task requiring accurate treatment of
chemical interactions.44 Support vector regression has been applied
to estimate lattice parameters in spinel compounds, highlighting its
utility in structure–property relationships.45 Regression trees have
been used to model the critical temperature of disordered MgB2
superconductors, showing their suitability for disordered and
defect-rich systems.46 These methods provide context for our use of
both tree-based tabular and graph-based ML approaches to predict
VFEs in chemically complex random alloys.

Tree-based ensembles such as RFs and extreme gradient
boosting (XGBoost) are standard baselines in materials informatics,
particularly when the inputs are tabular, hand-engineered composi-
tion descriptors.47 Standard tree-based models require fixed-size,
precomputed descriptors and do not learn features directly from
raw atomic structures.48 They can capture local-environment effects
only if such local descriptors are provided (and then pooled),
unlike message-passing neural networks that learn them
end-to-end.49 As a result, they will underperform on properties
governed by many-body or topology-dependent interactions if
those interactions are not captured in the feature set; conversely,
with informative local/graph-aware descriptors, they can perform
strongly despite not learning representations end-to-end. For
example, Ward et al.50 introduced the Magpie descriptor library
and showed that tree-based ensembles such as RFs can predict a
range of materials properties using composition statistics alone.

Graph-based models such as the graph neural networks
(GNNs) excel at predicting VFEs because they operate directly on a
material’s atomic graph, capturing the local bonding environments
that govern defect energetics.51 Unlike fixed descriptors, GNNs
take atoms as nodes and bonds as edges, learning atom-level repre-
sentations through message passing and convolutions.52,53 Two
forms of GNNs have been applied to materials science problems,
including graph convolutional networks (GCNs) and graph
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attention networks (GATs). Xie and Grossman48 showed that a
crystal GCN directly learns material properties from the connection
of atoms in the crystal and can even extract the contributions from
local chemical environments to global properties. Graph convolu-
tions and attention mechanisms allow GCN/GAT to naturally
capture complex short-range interactions. Each convolutional layer
aggregates information from neighboring atoms, and attention
weights let the model focus on the most chemically relevant neigh-
bors. In this way, the models adaptively emphasize the local fea-
tures that determine vacancy stability. It is shown by Lee et al.54

that composition-only approaches often miss key variability in dis-
ordered alloys. Goodall and Lee47 note that message-passing NNs
can capture effects like inter-element interactions, which are
obscured by traditional hand-engineered composition descriptors.
Schmidt et al.55 introduced crystal GATs and showed accurate,
high-throughput prediction of thermodynamic stability, highlight-
ing the benefit of attention over local neighborhoods in crystal
graphs. Prior studies demonstrate that, after proper tuning, GATs
rank among the top models on common materials datasets such as
formation energies, adsorption energies, and band gaps.56,57

Despite these advances, two challenges remain. First, existing
ML frameworks for predicting VFEs across chemically complex
NDRAs remain scarce.40 Most ML models either rely on hand-
crafted descriptors that do not account for the many-body and
topological interactions inherent in disordered systems,48,50 or they
are constrained to specific alloy types, thereby limiting generaliz-
ability. Second, ML-driven efforts to predict VFEs across varying
alloy orders—from binaries to quinary—are lacking. A comprehen-
sive, physically grounded surrogate model for VFE prediction that
spans the full alloy complexity space is yet to be developed. In this
study, we employ GCN and GAT models to predict the VFEs in
RNDRAs and compare them with RF and XGBoost models. Our
approach spans a broad range of alloy complexities from pure
metals to quinary and leverages a DFT dataset consisting of 1530
calculations across 80 distinct host-element combinations. This
comprehensive dataset enables quantitative mapping of how
chemical complexity influences vacancy energetics. We also find
that compared with XGBoost and RF, GCN and GAT perform
better, suggesting that graph-based models hold strong potential
as a general framework for accelerating the discovery and design
of complex alloys where traditional descriptor-based ML methods
may fall short. In particular, GCN best captures the complex com-
positional dependencies present in RNDRAs, indicating its advan-
tage for VFE prediction in these complex alloys. Taken together,
these contributions establish a new foundation for understanding
and designing defect behavior in complex refractory alloys, high-
lighting the advantage of graph architectures for capturing
composition-dependent, local bonding effects in defect energetics.

II. METHODS

A. DFT calculations

31 materials are considered in this work, including one
quinary, five quaternaries, ten ternaries, ten binaries, and five pure
elements (Mo, Nb, Ta, V, and W), as summarized in Table I.
Special quasi-random structures (SQSs)58 are employed to generate
supercells of the alloys. Each cell contains n ¼ 54 atoms for pure

metals, binaries, ternaries, and quinary, while n ¼ 72 atoms for
quaternaries. The adequacy of this simulation size has been vali-
dated by Lin-Vines et al.30

To determine the VFEs, a vacancy is introduced into each
relaxed SQS after removing a single atom. This process is repeated
for all n unique atomic sites. The VFE (Evac) is computed using the
following relation:19

Evac ¼ Edefective þ Eatom � Eperfect, (1)

where Edefective is the total energy of the supercell containing a
single vacancy, Eatom is the energy of an isolated atom of the corre-
sponding element, and Eperfect is the total energy of the relaxed,
defect-free supercell. As a result, provided that Eatom is known,
nþ 1 VASP calculations are required for each material. For
instance, in MoNbTaV, 73 VASP calculations lead to one Eperfect
for this quaternary and 72 VFE values for the four constituent
elements (Mo, Nb, Ta, and V); for each element, there are 18 VFE
values, and their average is taken as the final VFE for it in this par-
ticular alloy. In total, our study involves 1530 VASP simulations,
with 80 VFEs derived across all cases.

First-principles calculations based on DFT are performed
using VASP.28,59 The simulations are conducted under constant
pressure, permitting full relaxation of atomic positions, lattice
shape, and volume. To treat partial occupancies, Methfessel–Paxton
smearing60 with a width of 0.05 eV is applied. A kinetic energy
cutoff of 520 eV is used for the plane wave basis set, and Brillouin
zone sampling is carried out using a 3� 3� 3 Monkhorst–Pack
k-point grid.61 Exchange-correlation effects are described using the
generalized gradient approximation in the Perdew–Burke–
Ernzerhof formulation.62 Projector-augmented wave pseudopoten-
tials63,64 provided with VASP version 6.4.0 are employed through-
out. The convergence threshold for electronic self-consistency is set
to 10�4 eV, and atomic relaxation was continued until the
maximum force on atoms fell below 0.02 eV/Å. Upon relaxation,
the defective configurations show localized vacancy defects without
evidence of split vacancies or significant structural rearrangements.

TABLE I. All RNDRAs studied in this work, including pure metals, binaries, terna-
ries, quaternaries, and quinary. All alloy compositions are equiatomic.

Five pure
metals

Ten
binaries

Ten
ternaries

Five
quaternaries One quinary

Mo, Nb, Ta, MoNb,
MoTa,

MoNbTa,
MoNbV,

MoNbTaV, MoNbTaVW

V, W MoV,
MoW,

MoNbW,
MoTaV,

MoNbTaW,

NbTa,
NbV,

MoTaW,
MoVW,

MoNbVW,

NbW,
TaV,

NbTaV,
NbTaW,

MoTaVW,

TaW,
VW

NbVW,
TaVW

NbTaVW
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B. Development of the ML models

Based on the DFT calculation data presented earlier, we
developed ML models to predict the VFEs of NRDRAs and pure
metals. We convert each alloy’s chemical formula into a fixed-
length numerical representation in order to make it usable in
ML pipelines. The elemental fractions are expressed on a prede-
fined basis of five refractory elements [Mo, Nb, Ta, V, W],
ensuring that every composition can be written as a vector of
length five.50,65 All input features are normalized using z-score
standardization,

xnorm ¼ x � μ

σ
, (2)

where μ and σ denote the mean and standard deviation (SD),
respectively, computed exclusively from the training split to
prevent data leakage. We exclude pure-element VFEs from the
inputs like our previous model,34 avoiding target leakage and
DFT priors, and enabling fully DFT-free screening.

We first implemented two tree-based models: RF and
XGBoost. Both models used the same fixed-length feature
representation, which combined elemental fractions on the
Mo–Nb–Ta–V–W basis, a categorical encoding of the element that
was removed to form the vacancy, and 132 Magpie descriptors50

generated with matminer’s ElementProperty featurizer66 to generate
a comprehensive set of physically meaningful features for each
alloy composition. These Magpie descriptors incorporate summa-
ries of a wide range of elemental properties, such as the atomic
size, electronegativity, and electronic structure for the constituent

elements. This approach provides a robust and consistent input
representation, allowing the ML models to effectively learn the rela-
tionship between alloy composition and VFE. Inputs and output of
the RF and XGBoost models are summarized in Table II. Figure 1
summarizes the workflow of the RF and XGBoost surrogates, from
DFT calculations and feature extraction through normalization and
tabular feature construction to hyperparameter-tuned RF/XGBoost
models that output the predicted VFE.

Hyperparameters for both models were tuned via randomized
fivefold cross-validation, optimizing the negated root mean squared
error (RMSE) as the metric. Model performance was assessed on a
held-out 20% test split using RMSE, mean absolute error (MAE),
relative root mean squared error (RRMSE), and R2. For the RF
model, the best configuration consisted of 800 estimators, a
maximum depth of 10, minimum samples split of 2, minimum
samples per leaf of 1, and feature sampling with square-root. For
the XGBoost model, the best configuration was a maximum depth
of 6, learning rate of 0.2, subsample ratio of 0.8, column sampling
ratio of 1, minimum child weight of 1, and gamma of 0. The final
model was retrained with squared-error loss for up to 1000 boost-
ing rounds, with early stopping (30-round patience) applied on a
validation set to prevent overfitting.

Next, we focus on graph-based models, whereas VFE data
from DFT are converted to features and normalized, after which
each alloy is mapped to a graph (nodes, edges, and graph-level fea-
tures), processed by GAT/GCN with edge attributes/weights, glob-
ally pooled (mean/max), fused with graph features, and passed to a
final regressor to predict VFE.

Both graph models represent each alloy (and each pure metal)
as a small composition graph. Figure 2 compares the input repre-
sentations of graph-based model in this study vs our prior single-
node one without internal edges.34 In this work, nodes correspond
to the distinct elements present and carry standardized features
(atomic fraction and pure-element Magpie descriptors). For every
unordered element pair {i, j} with fractions xi, xj, atomic numbers
Zi, Zj, electronegativities χi, χj,

67 covalent radii rcovi , rcovj ,68 and
Mendeleev numbers Mi, Mj,

69 we define a six-dimensional edge-
attribute vector eij containing (i) a composition interaction term

TABLE II. Inputs and output used in the RF and XGBoost surrogates for VFE
prediction.

Input Output

Atomic fractions xi, Magpie composition descriptors,
and the element removed to form the vacancy VFE

FIG. 1. Schematic representation of
the RF and XGBoost surrogate models
used for VFE prediction.
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and (ii) five chemistry/size mismatch terms,

eij ¼ xixj, jxi � xjj, jZi � Zjj, jχi � χjj, jrcovi � rcovj j, jMi �Mjj
h i

,

(3)

where i and j are two different elements present in the same com-
position. The vector is six-dimensional because we include exactly
six physically motivated pairwise terms; adding fewer would omit
useful chemistry/size contrasts, and adding more would duplicate
information in this setting. The pairwise mismatch features used as
edge attributes in the graph network are designed to encode physi-
cally meaningful differences between neighboring elements, rather
than arbitrary numerical distances.70 For example, differences in
atomic radius quantify the local size mismatch, which is directly
related to lattice distortion and the elastic strain field around a
defect.71 In a graph-based ML model, encoding these pairwise mis-
matches lets the network sense how severe local strain or charge
transfer effects will be around a site. In practice, features like
atomic-size difference and mixing enthalpy strongly correlate with
stability and defect behavior, especially in NDRAs.72 Edges are con-
structed once for all unordered pairs and then mirrored to both
directions for message passing; pure-metal graphs (single node) are
handled by inserting a safe self-loop with zero edge features. At the
graph level, we concatenate composition-level Magpie descriptors
with a five-way host one-hot vector (the element removed to
form the vacancy) and two simple physics terms δsize and Δχ
summarizing composition-weighted spreads in covalent radius
and electronegativity. Each unordered chemical pair among
{Mo, Nb, Ta, V, W} is also assigned a pair type with a learnable

scalar gate, allowing the model to modulate element–element inter-
actions. All node, edge, and graph features, as well as the target, are
standardized with z-scores; consistent with our code, scalers are fit
on the full dataset prior to the 80/20 split, and predictions are
inverse-transformed to physical units for reporting. In both GCN
and GAT models, inputs and output are summarized in Table III,
while Fig. 3 illustrates how the features are constructed from the
DFT data and processed by the GAT/GCN workflow, including
graph construction, message passing, global pooling, and fusion, to
yield the final VFE prediction.

In the GCN model, two GCNConv layers (hidden width 256)
are employed in lieu of two attention layers to isolate the effect of
attention. Because GCNConv does not consume rich edge attri-
butes, the 10 pair-type gates (one per unordered Mo/Nb/Ta/V/W
pair) are mapped to scalar edge_weights that modulate degree-

FIG. 2. Different input representations of the GAT and GCN models used for VFE prediction. (a) In this work, an undirected composition graph with per-element node fea-
tures and a global graph feature labeled (g). (b) In our previous graph-based models,34 each alloy sample is a single node (circle) whose features are the per-sample com-
position fractions; since the graph has only one node, there are no edges. Note that all parts of this diagram are new and are not taken from any previous work.

TABLE III. Inputs and output used in the GAT and GCN surrogate models for VFE
prediction.

Input Output

Node features: atomic fraction xi, Magpie elemental
descriptors;

VFE

Edge features: weights per Eq. (3): xi xj, |xi− xj|, |Zi− Zj|,
|χi− χj|,
jrcovi � rcovj j, |Mi−Mj|;
Graph-level features: Magpie composition descriptors,
element that was removed to form the vacancy,
physics terms δsize and Δχ.

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 139, 025107 (2026); doi: 10.1063/5.0304829 139, 025107-5

© Author(s) 2026

 12 January 2026 13:43:23

https://pubs.aip.org/aip/jap


normalized aggregation; self-loops are added by the convolution.
After the two GCN layers, we apply batch normalization, exponen-
tial linear unit (ELU), dropout, dual global pooling (mean and
max), a linear projection of the graph-level features, and the same
fusion head (pooled nodes, projected graph features, and their
element-wise product) to regress VFE.

In the GAT model, we adopt a graph attention architecture53

to capture chemistry-aware, anisotropic interactions beyond tabular
descriptors. In this architecture, attention coefficients are
edge-aware: the numeric edge attributes eij [Eq. (3)] directly influ-
ence the attention weights, and the pair-type gates further modu-
late these attributes before attention is computed. In many cases,
high attention correlates with known descriptors such as atomic
size or electronegativity mismatch, revealing how the model is
effectively learning to emphasize the same factors that control
VFEs in disordered alloys.73 The network comprises a first multi-
head attention layer (four heads, hidden width 256, concatenated)
followed by a single-head attention layer (hidden 256), each with
batch normalization, ELU, and dropout (p ¼ 0:05). A linear skip
projection aligns dimensions for a residual add into the second
layer, and a squeeze–excitation block is applied afterward. Node
embeddings are aggregated via global mean and max pooling; in
parallel, graph-level features are linearly projected. The pooled
node features, projected graph vector, and their element-wise inter-
actions are fused and passed to a small multilayer perceptron
(MLP) to predict VFE. Training uses an 80/20 split (seed 42), mini-
batches of 16 graphs, AdamW (learning rate 10�3, weight decay
10�4), a ReduceLROnPlateau scheduler (factor 0.5, patience 30,
floor 10�5), and early stopping with a patience of 60 epochs; pure-
metal cases are handled with the same safe self-loop.

For RF and XGBoost, the training time includes hyperpara-
meter search plus the final fit. For GAT and GCN, it refers to the
training loop only. We report throughput and average per-sample
latency. For context, we adopt a DFT baseline of 2 h per VFE
(7200 s) and report speed-up as 7200 s=tML,per-sample.

III. RESULTS AND DISCUSSION

A. DFT calculation results

Figure 4(a) shows how VFE changes as we add more element
types to the material. The overall trend is that VFEs increase
sharply from pure to binary and rise further into ternary; beyond
three components, VFEs start to decrease, although changes are
modest with only small element-dependent shifts. Mo, W, and V
peak at ternary and soften slightly at quaternary and quinary,
whereas Nb peaks at quaternary and then decreases at quinary, and
Ta continues to creep upward into quaternary/quinary. The SD in
VFEs, calculated among all host materials with the same number of
elements, is the largest for binaries/ternaries and smaller for quater-
naries; the quinary shows no SD because only one composition was
sampled. With the same number of elements, the gap between
W-based and V-based sets is as large as (and sometimes larger
than) the jump from ternary to quaternary. Thus, beyond three ele-
ments, which elements are chosen matter more than adding
another one. As shown in Fig. 4(b), the mean VFEs taken across all
host materials (regardless of the number of elements) that contain
a specific element are ranked as follows: W > Mo > Ta > Nb > V,
indicating that W-based alloys exhibit the highest VFEs while
V-based alloys are the lowest.21,74 Because W, Mo, and often Ta
create stronger, stiffer local bonding, removing an atom costs more
energy, while Nb, and to a lesser extent V, yield comparatively
softer local environments and a lower vacancy cost.75 Taken
together, our results demonstrate that both the removed element
and the host material exert a stronger influence on VFE.

Figure 5 shows how the VFEs are distributed for all five ele-
ments in selected alloys. For each element, we compare the distri-
bution of VFEs in a binary, ternary, quaternary, and quinary.
Figure 5(a) concerns the VFE of Mo, for which MoNb shows a rel-
atively narrow VFE distribution centered at higher energies, while
adding Ta and V broadens the distribution and slightly shifts part
of it to lower VFEs; the quinary’s VFE distribution covers almost

FIG. 3. Schematic representation of
the GAT and GCN model workflow.
Each graph is built from nodes corre-
sponding to the chemical species in an
alloy and edges representing pairwise
interactions between species,
described by mismatch features.
Graph-level features summarize the
overall composition. Green-highlighted
boxes indicate components that differ
from our previous graph-based
model.34 Note that all parts of this
diagram are new and are not taken
from any previous work.
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the full range of the other three, showing that many different local
environments are present. In Fig. 5(b), which is for Nb, the binary
NbTa has VFEs around 2.8–3 eV, whereas NbTaV shifts the distri-
bution to noticeably lower energies; when W and then Mo are
added (i.e., NbTaVW and MoNbTaVW), the distributions become
wider and extend toward higher VFEs, again indicating more varia-
tion in local bonding in the quinary. In Fig. 5(c) which is for
Ta-based alloys, TaV has the lowest VFEs among the four, concen-
trated below about 2.5 eV. As can be observed in Fig. 5(d), where
all alloys contain the element V, VW and MoVW mostly lie at rela-
tively high VFEs, whereas the quaternary MoNbTaV shows a much
broader spread that reaches down to lower energies. In the last set,
based on W, as shown in Fig. 5(e), MoW has a narrow distribution
at the lowest VFEs, while adding Nb and later Ta (i.e., MoNbW
and MoNbTaW) shifts the distributions upward and makes the dis-
tributions wider.

Table IV provides more quantitative data by presenting the
VFEs of each element in each type of material, reporting both the
mean (μ) and SD (σ). It highlights that μ increases most from pure
to binary, rises modestly to ternary, and changes little thereafter,
while the element ranking remains broadly consistent:
W . Mo . Ta . Nb . V. The element with the highest μ is W for
pure metals (2.866 eV), binaries (3.410 eV), and ternaries (3.517 eV).
For quaternaries, the element with the top spot shifts narrowly to Mo
(3.469 eV, only 0.007 eV above W), and at quinary, W again leads
(3.301 eV). Ta is the only element whose mean VFEs increase mono-
tonically from pure to quinary (2.841 ! 3.262 eV). Among all ele-
ments, the largest increasing step in VFE is universally pure !
binary, with gains of þ0.603 (V), þ0.544 (W), þ0.415 (Mo), þ0.276
(Ta), and þ0.221 eV (Nb). The binary ! ternary increment in VFE
is smaller but still positive: þ0.324 (V), þ0.256 (Mo), þ0.107 (W),
þ0.076 (Nb), and þ0.032 eV (Ta). Changes in VFE beyond ternary

are modest and element-/host-material-dependent, ternary ! quater-
nary: �0.019 (Mo), þ0.081 (Nb), þ0.088 (Ta), �0.114 (V), and
�0.055 eV (W); quaternary ! quinary: �0.211 (Mo), �0.064 (Nb),
þ0.025 (Ta), �0.051 (V), and �0.161 eV (W).

It is also found that the range in the mean VFE value across
different elements that were removed to form the vacancy,
maxi μi �mini μi, decreases from (2:866� 2:303 ¼ 0:563 eV) in
the pure metals to (3:301� 3:065 ¼ 0:236 eV) in the quinary.
Thus, increasing the number of elements in the material homoge-
nizes vacancy energetics even as the absolute VFEs remain above
the pure-metal baseline.

As a result, the entire dataset spans a wide range of VFEs. While
V typically lowers VFE, the V-based ternary TaVW reaches 4.07 eV,
the highest VFE among all data points, because W and often Ta can
dominate the local bonding and offset V’s softening effect. In general,
higher VFE is achieved by increasing W/Ta fractions76 and reducing
V, whereas lowering it is achieved by increasing the V content, with
NbV emerging as a particularly effective route to low VFE.77 Indeed,
the binary NbV alloy shows the smallest VFE (2.28 eV).

Finally, we discuss the SD in VFE. We find that it is the
largest for binaries/ternaries and smallest for quaternaries. Among
all chemical elements, the smallest SD is associated with Mo in
binaries (σ ¼ 0:334 eV), and with W in ternaries (σ ¼ 0:295 eV)
and quaternaries (σ ¼ 0:189 eV); the largest SD is associated with
Ta in binaries (σ ¼ 0:518 eV) and quaternaries (σ ¼ 0:288 eV),
and with V in ternaries (σ ¼ 0:534 eV).

B. ML models

1. Performance

Table V illustrates the ML model performance results. First, we
analyze the RF baseline. With enhanced tabular features (atomic

FIG. 4. (a) VFE (in eV) vs number of elements in the material (1–5 for pure, binary, ternary, quaternary, and quinary). Each curve corresponds to an element (Mo, Nb, Ta,
V, W). Markers are the mean VFEs; vertical bars show SD across materials of that order containing that element. (b) VFE for each element. Mean values and SDs are
based on all materials that contain each element, regardless of the number of elements.
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FIG. 5. Probability-density distributions of VFEs in selected refractory alloys. (a) Mo-based sets. (b) Nb-based sets. (c) Ta-based sets (d) V-based sets.
(e) W-based sets.
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fractions, the element that was removed to form the vacancy, and
132 Magpie descriptors), the RF baseline achieves R2 ¼ 0:905,
RMSE ¼ 0:0952 eV, MAE ¼ 0:076 eV, and RRMSE ¼ 0:0294 on
the 20% held-out test set. Figure 6(a) shows that errors are the
largest near the lowest and highest VFEs because the model tends
to pull extreme values back toward the average (a regression-
to-the-mean effect), indicating that a tree-based tabular model
captures global trends but struggles with composition-specific
interactions.

Second, we evaluate XGBoost. Under the same features and
split, XGBoost improves to R2 ¼ 0:943, RMSE ¼ 0:0698 eV,
MAE ¼ 0:0594 eV, and RRMSE ¼ 0:0212. This is a 26.7% reduc-
tion in RMSE and 21.8% reduction in MAE vs RF. This reflects
boosting’s ability to reduce bias by fitting residuals stage-by-stage.
Persisting errors at very high/low VFEs indicate the limits of this
model that only uses global/tabular descriptors. Results are shown
in Fig. 6(b).

As seen in Fig. 7, switching from tabular inputs to a
composition-graph representation yields the largest accuracy gains.
In both graph models, nodes encode present elements with per-
element Magpie descriptors and atomic fractions; edges carry
simple pairwise mismatch features and the graph stream augments
composition-level Magpie with two physics priors (δsize, Δχ). The
two-layer GAT achieves R2 ¼ 0:969, RMSE ¼ 0:0560 eV,
MAE ¼ 0:0453 eV, and RRMSE ¼ 0:017, while the matched two-
layer GCN achieves R2 ¼ 0:972, RMSE ¼ 0:051 eV,
MAE ¼ 0:042 eV, and RRMSE ¼ 0:016. The parity plots show
tight clustering around the parity line with little systematic bias
across the full VFE range; outliers at the extremes are notably
reduced compared to the two tree baselines. The residual gap
between the two graph models is modest: GCN attains a slightly
lower RMSE than GAT (about �9% reduction), indicating that
attention is not strictly necessary to reach high accuracy, even

though it can help adaptively weight chemically distinct neighbors
in other alloy systems.57 Most of the overall improvement instead
comes from representing local chemistry and explicit pairwise
element mismatches, rather than from attention alone. This is espe-
cially useful for RNDRAs, where minor shifts in composition can
cause large swings in properties.34

Compared with RF and XGBoost, the two graph-based models
show outstanding performance. GAT (0.0453 eV) delivers a 40.4%
MAE reduction vs RF and 23.7% vs XGBoost, while GCN
(0.0420 eV) achieves 44.7% and 29.3% MAE reductions vs RF and
XGBoost, respectively. GAT (0.056 eV) yields a 41.2% RMSE reduc-
tion vs RF and 19.8% vs XGBoost; GCN (0.0510 eV) yields a 46.4%
RMSE reduction vs RF and 26.94% vs XGBoost. In absolute terms,
the best MAE (0.042 eV for the two-layer GCN) is only �1%�2%
of a typical VFE magnitude (3–3.5 eV), highlighting the accuracy
gains from graph-based representations. It is also found that our
improved GAT and GCN models outperform GAT-RB and
GCN-RB, which were developed in our prior work.34

To place these errors in context, we compare our results with
recent defect-prediction studies. Manzoor et al.40 developed an ML
framework for VFEs and vacancy migration energies in the
Co–Cr–Cu–Fe–Ni system using a database generated from classical
interatomic potentials. Their models achieve R2 . 0:81 and
RMSE , 0:1 eV for individual binary alloys, while predictions for
the equiatomic CoCrCuFeNi alloy yield R2 ¼ 0:6561 and
RMSE ¼ 0:13 eV. From this perspective, our normalized errors are
comparable to or smaller than those previously reported, despite
the broader alloy diversity.

2. Model robustness

To assess robustness of the ML models with respect to the
train/test partitioning, we repeated the 80/20 split 100 times with dif-
ferent random seeds and retrained all models based on the corre-
sponding 25th-percentile values for each metric; the resulting
distributions of R2, RMSE, MAE, and RRMSE are summarized in
Table VII in the Appendix. Specifically, instead of using the mean
VFE out of each host-element combination, we sort the values of
VFEs in each combination and take the value that is higher than
25% of all VFEs as the 25th-percentile value. Model performance
based on these 25th-percentile values is a bit worse than those based
on the mean values, yet it still shows good prediction accuracy.

3. Speed-up

Across all four surrogates, training and inference are fast with
large speed-ups relative to a 2 h/DFT–VFE baseline. For the tree-

TABLE IV. VFE (in eV) of different elements in different types of materials; values reported as mean ± SD (μ ± σ).

Host Pure metal Binary Ternary Quaternary Quinary

Mo 2.817 ± 0.000 3.232 ± 0.334 3.488 ± 0.363 3.469 ± 0.226 3.258 ± 0.000
Nb 2.786 ± 0.000 3.007 ± 0.468 3.083 ± 0.348 3.164 ± 0.271 3.100 ± 0.000
Ta 2.841 ± 0.000 3.117 ± 0.518 3.149 ± 0.414 3.237 ± 0.288 3.262 ± 0.000
V 2.303 ± 0.000 2.906 ± 0.501 3.230 ± 0.534 3.116 ± 0.242 3.065 ± 0.000
W 2.866 ± 0.000 3.410 ± 0.436 3.517 ± 0.295 3.462 ± 0.189 3.301 ± 0.000

TABLE V. Comparison of test-set performance of the RF, XGBoost, GAT, and GCN
models for VFE prediction. Results from our previous GAT and GCN models trained on
the same dataset, named after the first author, Richard Brinlee (RB), are also shown.

Model R2 RMSE (eV) MAE (eV) RRMSE

RF 0.905 0.0952 0.0760 0.0294
XGBoost 0.943 0.0698 0.0594 0.0212
GAT 0.969 0.0560 0.0453 0.0170
GCN 0.972 0.0510 0.0420 0.0160
GAT-RB34 0.898 0.098 0.08 0.030
GCN-RB34 0.888 0.103 0.082 0.031

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 139, 025107 (2026); doi: 10.1063/5.0304829 139, 025107-9

© Author(s) 2026

 12 January 2026 13:43:23

https://pubs.aip.org/aip/jap


FIG. 6. A comparison between actual and predicted VFEs based on the (a) RF and (b) XGBoost models.

FIG. 7. A comparison between actual and predicted VFEs based on the (a) GCN and (b) GAT models.
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based tabular models, RF required 69.071 s total training time
(67.612 s tuning + 1.459 s final fit) and achieved an inference time
of 0.091 299 s over 16 compositions (�175.2 comps/s; 5.706 ms per
composition), yielding a DFT-to-ML speed-up of 1 261 788 per
VFE. XGBoost trained in 15.305 s (15.222 s tuning + 0.083 s final
fit) and inferred in 0.000 501 s over 16 compositions
(�31 936 comps/s; 0.031 ms per composition), corresponding to a
speed-up of 2:298� 108 per VFE.

For the graph models, the two-layer GCN trained in 3.77 s
(mean 0.05 s/epoch over 78 epochs) and inferred in 0.004 s over 16
graphs, which is exactly 0.25 ms per graph (�4000 graphs/s).
The two-layer GAT trained in 3.76 s (mean 0.04 s/epoch over
86 epochs) and likewise inferred in 0.004 s over 16 graphs
(�4000 graphs/s; 0.25 ms per graph). Under the same 2 h baseline,
these inference latencies imply speed-ups of �2:88� 107 per VFE
for both GNNs. These results show that all ML surrogates deliver
high-throughput screening capability, with XGBoost giving the
highest raw inference throughput among the tested models and
both GNNs sustaining sub-millisecond per-graph latency.

4. Uncertainty quantification

It is essential to include uncertainty or confidence estimates
for ML predictions, especially in our case, where VFEs depend sen-
sitively on small energy differences and local chemical environ-
ment. In what follows, we employ model-appropriate approximate
procedures for uncertainty quantification, and comparisons across
models should rely on the calibration statistics (fractions of points
within +1σ and +2σ) rather than on the absolute magnitudes of
σ. Results of uncertainty quantification for all models are shown
in Table VI.

First, we quantified the predictive uncertainty of the RF
model. We used the spread of predictions across individual trees to
obtain an empirical 1σ uncertainty for each test sample. The RF
yields a mean predicted 1σ uncertainty of 0.1550 eV (median
0.1468 eV), with 75% of test points lying within +1σ and 93.8%
within +2σ. For comparison, if the errors were perfectly Gaussian,
about 68% and 95% of the points would be expected within +1σ
and +2σ, respectively, so the RF uncertainties are slightly conser-
vative but reasonably well calibrated. This indicates that the RF not
only achieves good average accuracy but also provides informative
uncertainty estimates for VFEs.

Second, for XGBoost, we formed an ensemble of models with
identical hyperparameters but different random seeds and took the
SD of their predictions as the uncertainty. Although the resulting

mean and median 1σ uncertainties are small (0.0175 and
0.0172 eV, respectively), only 12.5% and 18.8% of test points fall
within the corresponding +1σ and +2σ intervals, indicating that
this ensemble is under-dispersed and strongly underestimates the
true error.

Finally, we quantified the predictive uncertainty of the two
graph-based models using Monte Carlo (MC) dropout. For each
test composition, we performed T ¼ 50 (T is the number of
MC-dropout samples) stochastic forward passes with dropout
active and took the μ and the SD across passes as an empirical 1σ
uncertainty. For the GAT model, the mean and median predicted
1σ uncertainties are 0.0178 and 0.0161 eV, respectively. However,
only 18.8% of the test points fall within the corresponding +1σ
interval and 50.0% within +2σ, indicating that the MC-dropout
ensemble is under-dispersed and substantially underestimates the
true error. The GCN model shows a similar behavior: the mean
and median predicted 1σ uncertainties are 0.0147 and 0.0136 eV,
with 25.0% and 43.8% of test points lying within +1σ and +2σ,
respectively. Thus, while both GAT and GCN deliver accurate VFE
predictions, their MC-dropout uncertainties are small compared to
the more conservative uncertainty estimates obtained for the RF
model.

IV. CONCLUSIONS

In this paper, we first employed DFT to compute VFEs across
a targeted set of 31 refractory materials, including five pure BCC
metals, ten binaries, ten ternaries, five quaternaries, and one
quinary. It is found that VFEs increase with the number of ele-
ments in the material and with the W/Ta content, whereas V
depresses VFE. These trends rationalize the interplay between
strong-bonding species (W/Ta) and the softening role of V in dis-
ordered BCC chemistries.

We then trained four ML models based on DFT data. Among
these models, tree-based tabular baselines capture global composi-
tion trends, with XGBoost outperforming RF. Switching to compo-
sition graphs with pairwise mismatch features and two physics
priors brings the largest gains. Based on RMSE/MAE on the 20%
test set, the performance ordering is GCN * GAT > XGBoost
> RF. Thus, graph-based models substantially outperform the tree
baselines, with the two-layer GCN achieving slightly smaller errors
than the two-layer GAT. This suggests that most of the gain comes
from explicitly encoding local chemistry and pairwise element mis-
matches in a graph representation, while attention provides only a
modest additional benefit for these RNDRAs rather than being
strictly required to capture composition-dependent interactions.

To conclude, (i) the curated DFT dataset establishes consis-
tent, interpretable VFE trends across pure metals and alloys;
(ii) graph-based models, most effectively capture composition-
dependent local bonding effects; and (iii) the combined
physics-aware featurization and graph architectures provide accu-
rate, orders-of-magnitude-faster surrogates for VFE prediction.
These advances should facilitate targeted exploration of RNDRAs,
where modest shifts in composition can produce outsized changes
in defect energetics.

While our models achieved high accuracy in predicting VFEs,
they are trained on a relatively small dataset of 1530 DFT

TABLE VI. Uncertainty metrics for ML models, based on ensemble (RF, XGBoost)
or MC-dropout (GAT, GCN) estimates of the predictive SD (σ), and ε ¼ ytrue � ypred
is the prediction error.

Model σ (eV) Median σ (eV) % jεj � 1σð Þ % jεj � 2σð Þ
RF 0.1550 0.1468 75.0 93.8
XGBoost 0.0175 0.0172 12.5 18.8
GAT 0.0178 0.0161 18.8 50.0
GCN 0.0147 0.0136 25.0 43.8
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calculations. This may limit their generalizability to compositions
or structures not included in the training set. Additionally, the
models do not account for temperature effects or dynamic behav-
ior, which could influence vacancy formation in real materials. In
future work, we aim to expand the dataset to include more
complex chemistries and explore transfer learning or active learning
strategies to improve model robustness for practical relevance.
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APPENDIX: MORE ON ML MODEL ROBUSTNESS

Table VII summarizes the 25th-percentile test performance of
all four models (RF, XGBoost, GAT, and GCN) over 100 random
80/20 train–test splits. For GAT, while the R2 value based on the
mean VFE values is 0.969 (Table V), the model based on
25th-percentile VFE values achieves R2 ¼ 0:939, RMSE = 0.075 eV,
and MAE = 0.0653 eV. Similar behavior is observed for the RF,
XGBoost, and GCN models, whose 25th-percentile metrics remain
worse than, yet close to, their respective means and preserve the
same ranking of models. These results show that the reported test
accuracies are not driven by a single favorable split and that the

learned surrogates are statistically robust with respect to reasonable
variations in the train/test partition.
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