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Electron diffraction(ED) often used to solve for unknown structures or refine existing ones. Existing
methods for automated ED analysis often struggle with challenges such as computational expense
and experimental noise. This study introduces a deep learning framework to accelerate and improve
crystal structure determination from diffraction patterns. The methodology treats each diffraction
pattern as a relational graph of Bragg spots. Spot features are encoded using a 1D convolutional
network, from which a relational attention aggregator constructs an orientation-agnostic graph. This
graph is processed by a Graphormer encoder enhanced with Mixture-of-Experts layers, allowing the
model to learn complex crystallographic relationships efficiently. Trained and tested on a large dataset
of simulated diffraction patterns, the model achieved a crystal system classification accuracy of
89.2%and a space group accuracy of 70.2% from single patterns, significantly outperforming a state-
of-the-art random forest baseline (74.2%and57.8%, respectively). By aggregating predictions across
multiple zone axes, these accuracies improved to 96.5% and 79.5%. The model also demonstrated
robust performance on experimental data of gold nanoparticles, producing plausible classifications
consistent with known orientation degeneracies. By unifying relational graph reasoning with
specialized expert networks, this work presents a robust and automated framework for high-
throughput materials characterization.

Material properties such as magnetism, conductivity, and mechanical
strength are intrinsically governed by crystal structure1,2. While traditional
techniques like X-ray diffraction3 and electron backscatter diffraction4 have
long been used to probe crystal structure, they often face limitations in
spatial resolution and the ability to characterize local heterogeneity.

Four-dimensional scanning transmission electron microscopy (4D-
STEM)5 is a powerful technique where a focused electron probe is scanned
across a sample, and a complete diffraction pattern is recorded at each probe
position. While this method yields rich, spatially-resolved information
about the local crystal structure, it also generates terabyte-scale datasets that
pose a significant analysis bottleneck. The complexity of these datasets is
compounded by experimental factors, such as noise and multiple electron
scattering, which render manual interpretation impractical and demand
automated analysis pipelines6–10.

In classical template matching, crystal orientation is assigned by
maximizing the cross-correlation between the experimental spot
pattern and precomputed theoretical templates, leveraging sparse

reflection sets and simple intensity estimates for fast, robust
indexing11. Automated crystal orientation mapping12 in 4D-STEM is
commonly carried out through template matching of diffraction
pattern libraries, where experimental patterns are compared to
simulated ones to assign orientations. This approach has been widely
applied in ED studies to improve the interpretability of diffraction
patterns. More recently, a sparse correlation framework13 has been
introduced to speed up orientation mapping by restricting template
comparisons to populated radial bands of the reciprocal lattice and by
directly sampling the first two Euler angles before resolving the in-
plane rotation via FFT correlation. This method reduces the search
space, allows efficient analysis of polycrystalline nanostructures. These
template-based methods struggle as chemical compositions become
novel, specimens grow thicker (introducing dynamical scattering), or
detector noise increases. Furthermore, exhaustive searches over all
possible orientations can become prohibitively slow, especially in
high-throughput experiments14–17.
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Machine learning alternatives18–26 address some of these bottlenecks.
Unsupervised clustering and dimensionality reduction27 group millions of
patterns into orientation or phase domains but leave clusters unlabeled.
Variational autoencoders (VAEs)28 learn smooth latent spaces correlated
with thickness or strain, yet do not output symmetry directly. Supervised
convolutional neural networks (CNNs)29 can map sub-pixel strain and
predict crystal symmetry under known orientations, but fail under arbitrary
tilts, and majority voting reduces throughput. Multiview opinion fusion
frameworks19 extract symmetry information through a multi-step process
by simulating multiple views and aggregating their predictions. While
powerful, their complexity makes them difficult to adapt to novel or
unconventional crystal systems.

A recent benchmark model, the Hierarchical Random Forest20,
demonstrated that classic ensemble methods can offer transparent
uncertainty estimates. Trained on a dataset of 3.6 million diffraction
patterns generated from Bloch-wave simulations6 spanning 100 unique
orientations, the model encodes each pattern as a fixed complex radial
basis function and predicts crystal system, space group, and lattice con-
stants in a cascading fashion. Aggregating votes across 10 patterns raised
crystal system accuracy to around 75%, but performance degraded for
low-symmetry systems and for lattices whose large parameters pushed
spot spacings beyond the radial bin resolution, a limitation of the static,
hand-engineered feature space.

In this work, we leverage graph neural networks (GNN)30–36 and
attention mechanisms37 to determine crystal structure from diffraction
patterns. Self-attention37 and graph transformers34 offer several advan-
tages over more commonly used convolutional encoders and VAEs38,39

in the context of diffraction analysis. CNNs are powerful local feature
extractors that treat diffraction patterns as dense images on a regular
grid. Their inductive bias is toward local, translationally equivariant
features, so long-range correlations between diffraction spots remain
hard to infer. VAEs, in turn, are optimized to reconstruct images and
produce smooth latent spaces, but they are not explicitly designed to
encode pairwise relations between diffraction. In contrast, GNNs and
graph transformers represent each diffraction spot as a node and
explicitly model the symmetry and relative intensities of diffraction
spots via attention over edges, enabling the network to reason about
variable sized, sparse sets of diffraction patterns in a permutation-
invariant manner. Self-attention layers can directly capture long-range
dependencies between distant diffraction spots, while relational
encodings injected into the attention mechanism allow the model to
incorporate crystallographic priors that are difficult to express in stan-
dard CNN or VAE architectures.

We design an attention based GNN to infer crystal structure directly
from diffraction patterns. Each diffraction spot is represented as a node
whose coordinates and intensity are embedded by a 1D convolutional
network. A Relational Attention Aggregator40 then infers pairwise weights
and constructs a weighted graph, seeding crystallographic priors directly
into the attentionmatrix. The coreof themodel is aGraphormer encoder34,
selected for its ability topropagate long-rangedependencies, and each feed-
forward block is replaced by a parameter-efficient shared Mixture-of-
Experts41 (see https://ai.meta.com/blog/llama-4-multimodal-intelligence/,
accessed 11 June 2025). This design allows different experts to specialize in
distinct symmetry regimes whilemaintaining a shared representation. The
end-to-end differentiability enables the model to learn subtle intensity
correlations while remaining agnostic to the crystal’s orientation. We
trained our model on the same 3.6 million diffraction pattern dataset used
for the random forest (RF) baseline, ensuring a head-to-head comparison.
We further validated the trained network on a held-out test set as well as on
experimental 4D-STEM scans of gold nanoparticles, recorded on a con-
ventional 200 kV instrument. Our GNN model with an attention
mechanism, Pointlist Encoder—Attention Graph - Graphormer Mixture
of Experts (PE-AG-GMoE) significantly improved crystal system predic-
tion accuracy, reducing classification error by over 10% compared to the
random forest model.

Results
PE-AG-GMoE performance overview
Our proposed PE-AG-GMoE model achieves a test accuracy of 89.2% on
single zone axis diffraction patterns from the dataset described in Section
“Dataset” (2,765,943 training and 921,888 test patterns at 20 nm thickness).
On the same dataset, the RF baseline20 reaches 74.2% accuracy. Multiview
opinion fusionmachine learning (MVOF-ML)19, developed for a simulated
dataset of 119,000 training and 329,000 test patterns, reports an overall
accuracy of 0.55 using single zone axis diffraction patterns. Together, these
results highlight the substantial performance gain of PE-AG-GMoE over
both RF and MVOF-ML (Table 1), despite the increased dataset size and
structural diversity.

Crystal system accuracy
Our model outperforms the RF baseline20 by a wide margin, achieving an
overall crystal systemclassification accuracy of 89.2%on 921,888 diffraction
patterns from 9170 unique materials (baseline RF: 74.2%). Class-level
accuracies range from 97.8% for cubic and 93.0% for hexagonal down to
64.5% for triclinic, with mid-symmetry systems also performing strongly
(orthorhombic: 92.3%, tetragonal: 93.3%, monoclinic: 84.9%, and trigo-
nal: 84.6%).

We also report per crystal system precision, recall (accuracy), and
F1-scores together with the number of test patterns, unique materials, and
distinct space groups. As summarized in Table 2, precision and F1 remain
high for the higher-symmetry systems (cubic, tetragonal, and orthorhom-
bic) despite differences in the number of materials and space groups
represented in the test set.

Crystal system accuracy of aggregate predictions
Evaluating predictions after pooling ten randomly selected zone axis pat-
terns per material sharpens the performance of both models. However, the
performancegapbetween the learnedgraphmodeland thedescriptor-based
baseline widens further (Table 3 and Fig. 1).

The majority-vote scheme raises the overall accuracy of our
PE-AG-GMoEmodel to 96.5% on 9170 materials, a gain of 7% over its
single-pattern score (Table 3). The RF model also benefits, improving
to 85.5%.

Table1 |Comparisonof crystal systemclassificationaccuracy
for MVOF-ML, a RF baseline, and the proposed PE-AG-
GMoE model

Method Dataset size (train/test) Test accuracy

MVOF-ML19 119,000/329,000 0.55

RF20 2,765,943/921,888 0.742

PE-AG-GMoE (ours) 2,765,943/921,888 0.892

Table 2 | Per crystal systemprecision and F1-score for PE-AG-
GMoE on the test set

CS Samples Mats SGs Prec. Rec. F1

Cubic 104,009 1034 21 96.3 97.8 97.1

Hexagonal 112,170 1110 15 87.8 93.0 90.4

Trigonal 65,379 644 21 88.8 84.6 86.6

Tetragonal 145,910 1449 58 90.2 93.3 91.7

Orthorhombic 237,604 2369 52 89.4 92.3 90.8

Monoclinic 195,643 1954 13 86.7 84.9 85.8

Triclinic 61,173 610 2 83.0 64.5 72.6

CS crystal system, Mats unique materials, SGs space groups, Prec. precision, Rec. recall,
F1 F1-score (all in %).
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Space group accuracy
The distribution of space groups is highly imbalanced and long-tailed, as
discussed in Section “Dataset” and shown inFig. 4,whichmakes space group
prediction a significantly harder task than crystal system classification.

Despite this challenge, the PE-AG-GMoE model achieves a space
group classification accuracy of 70.2% on single zone axis patterns, out-
performing thedescriptor-basedRFmodel by 12%(Table 4).Aswith crystal
systems, cubic lattices are the most distinguishable (86.0%), followed by
hexagonal (77.5%) and tetragonal (70.2%).

Experimental data analysis
To assess ourmodel’s performance on real data, we applied it to a 4D-STEM
scan of gold nanoparticles (Au NPs). Probe positions with fewer than five
diffraction spots were removed, and a 5 × 5 median filter was applied to
smooth the predictions. Finally, pixels with a confidence score below 0.005
were excluded to ensure reliable results20.

As shown in Fig. 2c, 48% of probe positions are classified as cubic, 44%
as hexagonal, and 8% as tetragonal. This distribution aligns with the known
orientation degeneracy in FCCAu: specifically, the [111] zone axis produces
diffraction patterns that are often indistinguishable from those of hexagonal
structures42.

Discussion
The PE-AG-GMoE architecture is specifically designed to process multiple
scattering in electron diffraction and to recover crystal systems reliably.
Accuracy (Table 3) declines steadily as symmetry decreases, consistent with
the increasing structural diversity represented by each label. For cubic
crystals, the model achieves near-ideal precision-recall balance (F1 ≈ 97%;
Table 2), indicating that in the highest-symmetry case the learned graph
representation closely tracks the symmetry even in the presence of dyna-
mical scattering. Tetragonal and orthorhombic systems showonly amodest
degradation in F1 (still in the low 90% range), with precision and recall
remaining well matched, suggesting that the network continues to exploit
the characteristic multiplicities of Bragg reflections as symmetry is lowered.
Taken together, these high and mid symmetry classes show that the joint
behavior of precision, recall, and F1 is consistent with the underlying dif-
fraction complexity. Labels are rarely assigned in directions incompatible
with the expected symmetry, and most genuine instances are recovered
despite intensity variations arising from multiple scattering effects.

In contrast, the steepest degradation appears for triclinic patterns,
where recall drops to 64.5% and F1 to 72.6% despite a relatively high pre-
cision of 83.0%; this combination suggests that, while predicted triclinic
labels are usually correct when they occur, a substantial fraction of true
triclinic instances are still being absorbed into neighboring symmetry
classes. Because triclinic lattices have no right angles and unequal axes, their
2D Bragg spot geometry lacks simple inter-spot angles, making single-
projection indexing more sensitive to noise and dynamical effects. Given
that the dataset contains nearly asmany triclinic as trigonal samples (Fig. 3),
class imbalance is an unlikely explanation. Instead, many triclinic crystals
are only slightly distorted from monoclinic lattices, with diffraction spots

Table3 |Comparisonof crystal systemclassificationaccuracy
between PE-AG-GMoE and RF Models

Crystal System PE-
AG-GMoE

RF PE-AG-
GMoE (Agg.)

RF (Agg.)

Cubic 97.8 92 98.9 94

Hexagonal 93.0 78 97.1 93

Trigonal 84.6 86 91.8 98

Tetragonal 93.3 70 98.1 85

Orthorhombic 92.3 57 99.0 71

Monoclinic 84.9 62 96.2 72

Triclinic 64.5 – 83.8 –

Accuracy (avg.) 89.2 74.2 96.5 85.5

Aggregated accuracy includes ensemble predictions across zone axes. Bold values indicate the
overall average performance across crystal systems.

Fig. 1 | Confusion matrix and confidence analysis
for crystal system classification using the PE-AG-
GMoEmodel. aAconfusionmatrix from individual
diffraction pattern predictions reveals the distribu-
tion of class assignments across symmetry groups,
b aggregated predictions across multiple zone axes
show a more consolidated assignment pattern with
reduced inter-class confusion, c confidence scores
for individual predictions reflect varying levels of
certainty across different symmetry types, and
d aggregated confidence scores demonstrate
enhanced prediction consistency after multi-view
integration.
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that differ by subtle reciprocal lattice tilts that are difficult to resolve in a
single 2D projection. Consequently, the model most often misclassifies
triclinic samples as monoclinic, reflecting their physical proximity in reci-
procal space. These trends are clearly visible in the single-pattern confusion
matrix and confidence distributions (Fig. 1a and c), where triclinic predic-
tions showboth enhanced leakage and lower confidence relative to the high-
symmetry classes. These types of confusion are consistent with known
challenges in crystal system classification. For instance, the previous work
using random forest classifiers also excluded triclinic labels due to their
frequent confusion with monoclinic patterns. In our case, we retain all
crystals but acknowledge that model accuracy for low-symmetry systems
may be improved further. A smaller but related confusion exists between
trigonal and hexagonal systems (Fig. 1a and c), whose six-fold zone axis
patterns differmainly by inversion symmetry.One promising direction is to
incorporate multiple views of reciprocal space during training or inference,
enabling the model to distinguish subtle symmetry-breaking features that
are otherwise ambiguous in a single projection. In particular, adding

Fig. 2 | Application of the crystal-systempredictionmodel on experimental AuNP data. aDark-field image, b Pixel-wise predictions (red = cubic, blue = hexagonal, green
= tetragonal; black = probe absent), c Overall distribution of predicted crystal systems (percentages computed over probe positions).

Table 4 | Comparison of space group classification accuracy
grouped by crystal systems between PE-AG-GMoE and
RF Models

Crystal System PE-
AG-GMoE

RF PE-AG-
GMoE (Agg.)

RF (Agg.)

Cubic 86.1 86 91.6 90

Hexagonal 77.5 65 85 80

Trigonal 67.2 71 76.1 85

Tetragonal 70.3 54 81.2 71

Orthorhombic 63.5 40 71.8 40

Monoclinic 67 31 76.6 45

Triclinic 68.5 – 86.9 –

Accuracy (avg.) 70.2 57.8 79.5 68.5

Aggregated accuracy is computed over predictions from multiple zone axes. Bold values indicate
the overall average performance across crystal systems.
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MicroED43 tilt-series provides the true 3D reciprocal-space coverage (each
frame captures a wedge), which reduces projection and pseudo-symmetry
ambiguities undernoise anddynamical scattering. This challenge is partially
addressed in our approach by aggregating predictions across multiple
zone axes.

To quantify the benefits of the PE-AG-GMoEmodel, we compare our
model performance metrics against the RF model trained on handcrafted
static descriptors. The RF achieves an overall accuracy of 74.2%, and per-
formance on systems of lower symmetry, only 62% formonoclinic and 57%
for orthorhombic (Table 3). It approaches parity only on trigonal systems
(86% vs. 84.6%), suggesting that static descriptors may capture some rota-
tionalmotifs but fail to represent the symmetry and diversity learned by our
model.Overall, these results demonstrate that amodel architecturedesigned
around specific aspects of electron scattering provides a significant
improvement for classifying crystal systems. This is especially true for low-
symmetry systems, where elements such as expert ensembles may identify
the subtle distinctions necessary for accurate classification.

Evaluating predictions after pooling ten randomly selected zone axis
patterns per material sharpens the performance of both models, but the
performancegapbetween the learnedgraphmodeland thedescriptor-based
baseline widens further (Table 3, Fig. 1b and d). At the class level, every
crystal system except triclinic now exceeds 90% accuracy. Orthorhombic
accuracy jumps from 92.3 to 99.0%, and monoclinic from 84.9 to 96.2%.
These gains affirm that the relational attention aggregator and mixture-of-
experts blocks capture robust, symmetry-specific features that becomemore
evident when stochastic orientation effects are removed.

The aggregated confusionmatrix and confidence distributions (Fig. 1b
and d) show that nearly all off-diagonal mass collapses onto the main
diagonal and that prediction confidences become more sharply peaked
compared with the single-pattern case (Fig. 1a and c). The triclinic-to-
monoclinic leakage observed in single-pattern analysis is reduced to below

1%, and the misclassification between hexagonal and trigonal systems is
virtually eliminated. In the row-normalized view (Fig. 1d), every class except
triclinic achieves recall above 90%, while triclinic itself retains a strong
83.8%. These patterns are consistent with the high precision and F1 values
reported for most crystal systems (Table 2), and the remaining errors are
concentrated in the most structurally ambiguous regimes. In contrast, the
RF model performs unevenly across classes. While it exceeds 90% only on
trigonal and cubic systems, it hovers near 70% for monoclinic and
orthorhombic patterns (Table 3). These results indicate that the simple
angular and distance-based descriptors used by RF cannot distinguish the
patterns that define mid-symmetry systems, even when multiple patterns
are available. Overall, aggregating diffraction evidence at the material level
magnifies the strengths of the graph-based architecture, its ability to form
robust relational embeddings, and benefits from expert specialization while
exposing the limitations of static features. The remaining classification
errors are confined almost entirely to the lowest-symmetry class and tri-
gonal materials, reinforcing the conclusion that further gains will likely
require richer 3D structural information rather than additional in-plane
modeling capacity.

The distribution of space groups is highly imbalanced and long-tailed
(Fig. 4), whichmakes space group prediction a significantly harder task than
crystal system classification. The model performance shows a clear depen-
dence on the number of space group labels within each crystal system. For
example, triclinic crystals have only two space groups. Once themodel learns
their distinct spot splitting patterns, it achieves 70.2% accuracy, increasing to
79.5% when predictions are aggregated across ten randomly selected zone
axis patterns per material. In contrast, orthorhombic crystals span nearly 60
space groups. This higher label entropymakes themmore difficult to classify,
themodel starts at 63.5% and improves to 71.8%with aggregation. The same
trend holds for other systems (i.e., hexagonal, tetragonal, and monoclinic),
where aggregation consistently boosts performance.

Fig. 3 | Percentage of diffraction patterns con-
tributed by each crystal system. The distribution
reflects the relative abundance of experimentally
observed structures in the materials project.

Fig. 4 | Log-scaled distribution of space groups in
the test dataset. Space groups are sorted in des-
cending frequency and grouped by crystal system,
highlighting the long-tailed nature of the label
distribution.
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Aggregating predictions across ten orientations raises the overall space
group accuracy of the PE-AG-GMoE model to 79.5%. The RF model also
improves with aggregation but reaches only 68.5%. These gains suggest that
viewing each material from multiple directions helps expose additional
extinction features. Both the Relational Attention Aggregator and the expert
sub-networks benefit from this extra information, with monoclinic accuracy
rising to 76.6% and cubic reaching 91.6%. In contrast to the RF baseline,
which requires a separate model for each crystal system, our approach per-
forms the joint prediction of both crystal systems and space groups within a
single model. The shared Mixture-of-Experts block allows the network to
capture common structural patterns across symmetry types without
increasing model size. Most remaining errors occur in monoclinic and
orthorhombic systems,where the number of possible space groups is highest.
It suggests that further improvement may depend on models that explicitly
incorporate hierarchical structure, where space group predictions are con-
ditioned on crystal system predictions. Such models could better reflect the
nested nature of crystallographic symmetry and improve interpretability.

On experimental Aunanoparticle data (Fig. 2), themodel’s predictions
reflect both its strengths and remaining limitations. The observed 48%
cubic, 44% hexagonal, and 8% tetragonal fractions align with the known
orientation degeneracy in FCC Au, where the [111] zone axis can mimic
hexagonal diffraction patterns42. Many misclassifications can be attributed
to multiply-twinned particles, whose overlapping diffraction signals were
not represented in the training data. When compared with a baseline ran-
dom forest model, which yielded a roughly 40%–40%–20% split between
cubic, hexagonal, and tetragonal classifications, our graph-based model
significantly reduces the tetragonal predictions. This suggests that themodel
is learning to exploit symmetry features present in the training data, even
under limited zone axis views. While twinning artifacts remain a challenge,
these improvements indicate better discrimination between true symmetry
classes and spurious symmetry artifacts. The model relies on Bragg peak
coordinates as input. Therefore, errors or inaccuracies in peak detection can
propagate and adversely affect the downstreamprediction of crystal systems
and space groups. Incorporating simulated patterns of twinned and poly-
crystalline structures in future training data should further enhance
robustness under experimental conditions. Another potential solution to
these ambiguities is to construct physics-informed crystal-symmetry-aware
neural networks and train them on datasets with multiple sample thick-
nesses. This strategy may enable the model to learn 3D structural context
that is otherwise inaccessible in the current training dataset.

From a hardware perspective, our current implementation processes
10,000 diffraction patterns in approximately 120 s on a single 16 GB
NVIDIA RTX A4000 GPU with a batch size of 4, and larger batch sizes or
multi-GPUparallelism can further improve throughput. In contrast, the RF
baseline is evaluated on CPUs and is effectively constrained to a single host,
making it harder to exploit modern accelerator hardware. As a result, the
PE-AG-GMoEmodel is not onlymore accurate but also better aligned with
real-time or near-real-time 4D-STEM5 data streams in practical electron
diffraction experiments.

As a conclusion, in this study we introduced a hierarchical attention-
graph transformer, PE-AG-GMoE, that models diffraction patterns as
relational graphs and leverages conditional experts to specialize in distinct
symmetry regimes. Compared with a state-of-the-art random-forest pipe-
line trained on identical Bloch-wave simulations, the proposed network
achieves substantially higher accuracy for both crystal systems (89.2% vs.
74.2%) and space groups (70.2% vs. 57.8%) on single zone axis. It further
improves to 96.5% (crystal systems) and 79.5% (space groups) when pre-
dictions from ten zone axis views per material are aggregated. It is also
compatible with high-throughput 4D-STEM workflows.

Methods
Dataset
We use a simulated electron diffraction dataset originally introduced in
Gleason et al.20, which was constructed from experimentally observed
structures in the Materials Project44. After filtering for physically realistic

unit cell volumes and simulating 100 unique zone-axis patterns per struc-
ture, the dataset contains over 3.6 million diffraction patterns across
approximately 36,000 materials.

For this work, we use the 20-nm thickness simulations and split the
dataset into 75% for training and 25% for testing. The dataset was ran-
domly split at the material level, ensuring no material appears in both
training and test sets. In total, the training split contains 2,765,943 dif-
fraction patterns from 27,511 unique materials, while the held-out test
split contains 921,888 diffraction patterns from9170 uniquematerials. All
seven crystal systems are represented, though the distribution is naturally
imbalanced due to their frequency in real materials, as summarized in
Table 5. The percentage of patterns from each system is shown in Fig. 3,
with orthorhombic and monoclinic systems being the most common,
followed by tetragonal and hexagonal. Trigonal and triclinic crystals
account for smaller portions of the dataset.

Out of the 230 crystallographic space groups, 197 are represented in the
full diffraction dataset. The held-out test set contains 182 of these space
groups; the remaining, extremely rare groups occur only in the training split.
The long-tailed nature of this distribution is illustrated in Fig. 4.

Model Architecture
Our PE-AG-GMoEmodel maps a raw diffraction pattern to crystal system
and space group predictions by encoding Bragg spots into pointwise
embeddings, assembling them into an attention-weighted graph, and pro-
cessing this graph with a graphormer mixture-of-experts backbone; a
schematic of this end-to-end workflow is shown in Fig. 5.

Each diffraction pattern is represented as a collection of Bragg spots,
with each spot described by its cartesian coordinates (qx, qy) and intensity I.

Each spot is transformed to polar coordinates, with radial distance r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q
and angle θ ¼ arctan 2ðqy; qxÞ. These features are concatenated

to form the input vector:

f i ¼ ½r; θ; I�i

For each spot i, the features are then normalized across each channel to
promote stable learning dynamics.

These normalized vectors are passed through a series of pointwise
linear transformations and nonlinear activations (Fig. 6), resulting in a
learned feature embedding for each spot.

Specifically, the encoded representation is given by:

hi ¼ Conv3!64ðf iÞ ! Conv64!64 ! ReLU ! � � � ! Conv128!d ! ReLU

ð1Þ
where d denotes the final feature dimension. The resulting set of learned
embeddings provides a rich representation of the diffraction pattern.

Table 5 | Summary of the 20 nm diffraction dataset training
split by crystal system

Crystal System sample
count

unique
materials

space
groups

percentage
(%)

Cubic 313,546 3118 23 11.34

Hexagonal 324,933 3214 19 11.75

Trigonal 214,673 2115 24 7.76

Tetragonal 433,503 4304 61 15.67

Orthorhombic 698,193 6961 55 25.24

Monoclinic 600,761 6001 13 21.72

Triclinic 180,334 1798 2 6.52

Total 2,765,943 27,511 197 100.00

Sample count denotes the number of diffraction patterns, unique materials the number of distinct
structures, and space groups the number of distinct space groups observed within each crystal
system.
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To enhance the representational capacity and enable conditional
computation, we incorporate a Mixture-of-Experts (MoE) design inspired
by LLaMA 4’s shared expert routing architecture (see https://ai.meta.com/
blog/llama-4-multimodal-intelligence/, accessed 11 June 2025). block as a
replacement for the conventional feed-forward network. Each input
embedding xi is routed through a set of K local experts, with a gating
mechanism dynamically selecting the most appropriate experts for
each token.

The gating logits are computed as:

gi ¼ Wgatexi; ð2Þ

whereWgate is the learnable gatingmatrix and gi contains the unnormalized
routing scores for the K experts.

The routing probabilities are then obtained via softmax normalization:

pi ¼ softmaxðgiÞ: ð3Þ

For each input, the top-k experts are selected based on the highest
routing probabilities. Each expert is parameterized by a set of weight
matrices and implements a SwiGLU transformation. For expert k, the
output for a given token is:

yðkÞi ¼ WðkÞ
2 ½SiLUðWðkÞ

1 xiÞ � ðWðkÞ
3 xiÞ�; ð4Þ

whereWðkÞ
1 ;WðkÞ

2 ;WðkÞ
3 are the expert-specific parameters, SiLU( ⋅ ) denotes

the sigmoid-weighted linear unit activation, and ⊙ is elementwise
multiplication.

The expert outputs areweighted by their respective gating probabilities
and aggregated:

yi ¼
X
k2T i

pðkÞi yðkÞi ; ð5Þ

where T i is the set of top-k experts assigned to token i.
Additionally, all tokens are processed through a shared expert to

promote regularization and ensure coverage. The final output of the MoE
block is given by:

zi ¼ yi þ yðsharedÞi ; ð6Þ

where yðsharedÞi is the output from the shared expert.
This architecture enables adaptive, expert-driven transformations for

each input, significantly improving the model’s expressiveness and com-
putational efficiency.

Following the extraction of high-dimensional spot-wise feature
vectors from the pointlist encoder (Eq. (1)), we construct a relational
graph representation using a stack of attention-based transforma-
tions (Fig. 7). Each feature vector is first projected through a multi-
layer perceptron (MLP) to enhance its expressive capacity, then
normalized and processed via a multi-head self-attention (MHA)
mechanism.

The self-attention operation computes contextualized embeddings for
each spot by aggregating information across all other spots. The updated
features hi after the first attention block are given by:

hð1Þi ¼ zi þMHAðNorm1ðhiÞÞ; ð7Þ

where MHA( ⋅ ) denotes the multi-head attention block and Norm1 is the
first layer normalization.

These contextual embeddings are then passed through the MoE block
described in Eq. (6), leading to:

hð2Þi ¼ hð1Þi þMoEðNorm2ðhð1Þi ÞÞ; ð8Þ

where Norm2 is the second layer normalization.
After the second attention layer, we aggregate the pairwise attention

matrices40 from both layers to construct a weighted adjacency matrix,
encoding the emergent relational structure among all Bragg spots:

A ¼ Attnð2Þ � Attnð1Þ; ð9Þ

whereAttn(1) andAttn(2) are the attentionweightmatrices from thefirst and
second multi-head attention blocks, respectively.

Fig. 6 | Pointlist encoder for Bragg spot feature embedding. Bragg spot triplets
extracted from a diffraction pattern are featurized using stacked one-dimensional
convolutional layers with normalization, nonlinear activation, and residual
connection.

Fig. 5 | Schematic overview of the proposed PE-
AG-GMoE workflow for crystal system classifica-
tion from diffraction patterns. A raw diffraction
pattern is converted into a set of Bragg spots, which
are embedded by the Bragg spot encoder. A multi-
head attention graph aggregator then constructs an
attention-weighted graph over the spots and pro-
duces structural descriptors. The graphormer
mixture-of-experts module operates on this atten-
tion graph and outputs probabilities over crystal
systems.
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This aggregated adjacency matrix serves as a learned graph structure
that reflects both local and global interactions, facilitating relational rea-
soning among Bragg spots.

To enrich the graph representation with structural information, we
compute two key descriptors directly from the learned adjacency matrix
A (Eq. (9)): the shortest path distances and node degrees.

For a batch of graphs, the shortest path distancedijbetweeneachpair of
nodes i and j is computed by iteratively identifying newpaths that represent
increasing path lengths. From this, we construct the shortest path matrix
D ∈ ZN×N, where each element dij encodes the minimal number of edges
needed to traverse from node i to node j.

Additionally, we define a path data tensor P ∈ RN×N×L, where:

pijl ¼
1; if the shortest path length from i to j is l

0; otherwise

�

The degree of each node is computed as the sum of its connections (i.e., the
row-wise sum of the binary adjacency matrix). Formally, for node i, the
degree is defined as:

degðiÞ ¼
XN
j¼1

1Aij > 0

where 1Aij > 0 is an indicator function denoting whether an edge exists
between nodes i and j. These structural descriptors serve as the basis for the
subsequent embedding layers that encode graph topology into learnable
representations.

We make the structural descriptors learnable by encoding them using
three types of embedding layers: path encoding, degreeencoding, and spatial
encoding.

For every pair of nodes, we encode information about the shortest
path connecting them by aggregating edge features along these paths.
Given the shortest path distance matrix D and the corresponding path
feature tensor P, a learnable embedding table is applied to capture
path-specific biases for the attention mechanism. The resulting path
encoding for a node pair (i, j) is computed by projecting the edge features
along the shortest path through the embedding table and normalizing by
the path length:

eðptÞij ¼ 1
dij

Xdij
l¼1

EmbedlðPijlÞ; ð10Þ

where Embedl denotes a learnable embedding for each step along the path.

Each node’s degree, representing its number of direct neighbors, is
encoded via a learnable embedding. For a node i with degree ki, the degree
embedding is given by:

di ¼ Embeddeg ðkiÞ; ð11Þ

where Embeddeg is an embedding table indexed by node degree. This
encoding allows the model to capture local connectivity patterns and dif-
ferentiate nodes based on their structural roles.

To provide an explicit notion of geometric separation, we introduce a
spatial encoding that assigns a learnable embedding to eachpossible shortest
path distance between node pairs. For nodes i and j separated by a path of
length dij, the spatial encoding is:

eðspatialÞij ¼ EmbedspatialðdijÞ; ð12Þ

where Embedspatial is a learnable embedding table indexed by path
length. This spatial bias is added to the attention computation, enabling
the model to modulate interactions based on topological separation
within the graph.

Together, these structural encodings equip the graph transformerwith
rich, learnable representations of path structure, local connectivity, and
spatial context, thereby enhancing its ability tomodel the complex relational
patterns present in diffraction-derived graphs.

The Graphormer34 architecture (Fig. 8) processes each input graph by
first projecting node features into a latent space of dimension d and
enriching these representations with learnable degree embeddings
(Eq. (11)), yielding the updated node encodings:

h0i ¼ hi þ EmbeddegðkiÞ; ð13Þ

where hi is the original node feature vector and Embeddeg is the learnable
degree embedding.

A virtual graph-level token is then prepended to each graph’s node
embedding sequence, serving as a global summary representation. Pairwise
structural relations between nodes, including shortest path and spatial
information from Eq. (10) and Eq. (12), are encoded into the attention
mechanism via a multi-head bias tensor:

αðhÞij ¼
QðhÞ

i � ðK ðhÞ
j Þ>ffiffiffi

d
p þ bðhÞij ;

ð14Þ

whereQðhÞ
i andKðhÞ

j are the query and key vectors for head h, and bðhÞij is the
structural bias derived from path and spatial encodings.

Fig. 7 | Attention-based graph encoding from
Bragg spot embeddings. Learned Bragg spot
embeddings are processed by stacked self-attention
and mixture-of-experts blocks to model relation-
ships between spots. Attention weights from mul-
tiple layers are aggregated into an attention graph
that encodes the relational structure of the diffrac-
tion pattern.
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The resulting attention outputs are aggregated and passed through
residual connections, dropout, and a layer-normalizedMoE block (Eq. (6)):

zi ¼ h0i þMoEðLayerNormðh0iÞÞ: ð15Þ

Each node’s representation is conditionally routed through multiple
expert subnetworks. After passing through all stackedGraphormer layers,
the graph-level token is extracted as the final graph representation. This
token is further refined using a separate MoE block specialized for graph-
level tasks.

The processed graph token is then passed to task-specific linear heads.
The crystal systemheadmaps fromdimension d to 7 classes, while the space
group head maps to 230 classes. This hierarchical flow ensures that both
node-level and global relational information, along with adaptive expert-
driven transformations, are systematically integrated to achieve robust
graph classification.

Training Details
The model was trained using a supervised classification objective with a
dataset split of 75% for training and 25% for testing. Hyperparameter
tuning was performed manually, with a focus on stabilizing convergence
and avoiding overfitting. Training was conducted on eight NVIDIA
A100 GPUs with 40 GB of memory in a distributed data-parallel con-
figuration, with gradient accumulation used to manage memory usage
effectively. A single model was trained jointly for both crystal system and
space group prediction, leveraging shared architectural components to
maintain parameter efficiency. In total, the training consumed
approximately 480 GPU-hours (60 h per GPU), but the use of a MoE
architecture with only k = 2 experts active per forward pass reduced the
effective compute time to nearly k

N � 2
6 of the full cost, leading to a sub-

stantial gain in training efficiency.
The training objective comprises Eq. (16), standard cross-entropy

losses for both crystal system classification and space-group classification.
We apply equal weighting to both loss components with an auxiliary load
balancing loss inspired by the Switch Transformer architecture45. The load
balancing term encourages uniform expert utilization across tokens and is
weighted by a tunable hyperparameter α = 0.01. This loss penalizes
routing imbalance by computing the product of the fraction of tokens
assigned to each expert and the average routing probability, scaled by the

number of experts.

Ltotal ¼ Lcrystal þ Lspace group þ αLload balancing ð16Þ

Table 6 summarizes the key hyperparameters used during training.

Data availability
The diffraction dataset, trained model checkpoints, experimental data, and
test-time prediction files are available in the google drive at https://drive.
google.com/drive/folders/1q0ZtQn8rW76dRiEmV7NKzzbP9VgoBubN?
usp=sharing.

Code availability
The codebase for this study, including training and evaluation scripts for the
PE-AG-GMoE framework, is available at https://github.com/amdlou/PE-
AG-GMoE.git.
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