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ABSTRACT
Refractory non-dilute random alloys consist of two or more principal refractory metals with complex interactions that modify their basic
structural properties such as lattice parameters and elastic constants. Atomistic simulations (ASs) are an effective method to compute such
basic structural parameters. However, accurate predictions from ASs are computationally expensive due to the size and number of atomistic
structures required. To reduce the computational burden, multivariate Gaussian process regression (MVGPR) is proposed as a surrogate
model that only requires computing a small number of configurations for training. The elemental atom percentage in the hyper-spherical
coordinates is demonstrated to be an effective feature for surrogate modeling. An additive approximation of the full MVGPR model is also
proposed to further reduce computations. To improve surrogate accuracy, active learning is used to select a small number of alloys to sim-
ulate. Numerical studies based on AS data show the accuracy of the surrogate methodology and the additive approximation, as well as the
effectiveness and robustness of the active learning for selecting new alloy designs to simulate.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0186045

I. INTRODUCTION

In a dilute random alloy, one or more elements (the solutes)
are randomly present in much smaller proportions (usually less than
10%) compared to the primary metal or base (i.e., the solvent).1
Properties of the dilute alloy are often dominated by the base metal,
with the solute making only minor modifications to those proper-
ties.2 However, non-dilute random alloys (NDRAs) consist of two or
more principal elements with equal- or near-equal molar ratios that
are randomly located at simple lattice sites.3 Because of the complex
interactions among elements, properties of NDRAs are not mere
interpolations of those of their constituent elements.4

Among the alloy properties, basic structural properties, includ-
ing lattice parameters and elastic constants, play a key role in
controlling alloy structures and properties.5 The lattice parameters
define the unit cell of an alloy; by knowing them, one can iden-
tify the crystal system and the specific crystal structure. The elastic
constants give insights into an alloy’s stiffness, toughness, strength,

and phase stability under different loading conditions.6 In addition,
all structural properties can change due to the presence of lattice
defects and/or thermal expansion.7 Thus, monitoring changes in
them can provide information on internal defect structures and/or
thermal properties such as specific heat capacity and melting point.
Understanding basic structural parameters aids in predicting and
tailoring an alloy’s properties, ensuring optimal performance in
target applications.8

Atomistic simulations (ASs) are an effective method to com-
pute the basic structural parameters. ASs create a representation
of atomic configuration within an alloy and then use interatomic
potentials to evaluate the interactions among atoms.9 However,
direct, accurate computation of basic structural parameters of even a
single random alloy necessitates carrying out ASs of either a small set
of large structures or a large set of small structures,10 both of which
can be computationally intensive.

To reduce the computational burden when studying the prop-
erties of alloys, machine learning (ML) is an attractive alternative for
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surrogate modeling due to its flexibility, low computational cost, and
relatively low complexity of use. In the literature, several regression
models have been proposed as surrogates for the prediction of key
alloy properties.11 For example, Mohanty et al.12 proposed boosted
regression trees to design alloys with good plastic properties for
high-temperature applications; Wang et al.13 use neural networks to
predict tensile strength and electrical conductivity of copper alloys;
Linton and Aidhy14 use linear, gradient-boosted, and random for-
est regression to predict elastic properties of multi-principal element
alloys (MPEAs). For the prediction of general material proper-
ties, deep learning methods have successfully predicted the material
properties based on composition and structural features.15,16

However, most of these studies rely on a large number of
samples, i.e., alloys, to construct and train the relatively complex
surrogate models. Since our objective is to limit the number of simu-
lations as much as possible, multivariate Gaussian process regression
(MVGPR) is proposed to construct the surrogate model for basic
structural properties. GPR is a popular ML methodology for sur-
rogate modeling of smooth functions,17 making them ideal for the
prediction of materials properties.18 In addition, Gaussian pro-
cesses are the underlying statistical methodology used in Bayesian
optimization, which has been successfully utilized for alloy design
optimization of mechanical or structural properties by sequentially
exploring the design space.19–22 Different from such methodolo-
gies for alloy design, active learning17 will be employed to reduce
the overall prediction uncertainty of the surrogate by sequentially
choosing new alloy configurations to simulate.

The rest of this paper is organized as follows: Sec. II intro-
duces the MVGPR methodology for surrogate modeling of average
structural properties and active learning for the sequential design of
experiments to improve the surrogate accuracy. Section III demon-
strates the prediction accuracy and robustness of the MVGPR
with active learning for selecting the next alloy design to simu-
late. Section IV summarizes this work and discusses future research
directions.

II. MVGPR FOR SURROGATE MODELING
A. Univariate surrogate model

GPR is a popular non-parametric ML technique that assumes
the value of an output function y follows a Gaussian distribution
with correlation given by the distance of the predictors that belong
to a possibly multi-dimensional space 𝒳.23 Therefore, for a given set
X of N predictor points, the distribution of the output y is

y ∼ 𝒩(μ,Σ), (1)

where μ is the mean function evaluated at X and Σ is an N ×N
variance-covariance matrix. In general, the mean function is mod-
eled as μ(x) = bT(x)β for a vector of basis functions b, and a vector
of coefficients β. The special case with b(x) = 1 indicates a constant
mean function with a value of β. The elements Σij are calculated
as σ2κ(xi, xj∣θ), where σ is the standard deviation parameter, κ is
a kernel function parameterized by θ that measures the correlation
between points xi, xj in the input space 𝒳. In practice, κ is often
chosen to be stationary such that it is only a function of the dis-
tance between predictors. This assumption reduces the number of

parameters to estimate and improves computational efficiency at the
expense of modeling flexibility.

Given an estimate of the parameters β, σ, and θ, the prediction
of y∗ and Σ∗ on a new set of locations X∗ are given by the following
universal Kriging equations:24

y∗ = μ̂∗ + RTK−1(y − μ̂),

Σ∗ = σ̂ 2[K̂ ∗ − R̂ TK̂ −1R̂ + (B∗ − R̂ TK̂ −1B)T

× (BTK̂ −1B)−1(B∗ − R̂ TK̂ −1B)] (2)

where μ̂∗ and μ̂ are the mean of the new and old predictors, respec-
tively, computed using β̂; K̂ is the correlation between points in X;
K̂ ∗ is the correlation between points in X∗; and R̂ is the correlation
matrix between X and X∗, all computed with θ̂.

For the prediction of structural properties in refractory
NDRAs, the simplest input predictor is the concentration of each
atom in the alloy x̃ ∈ [0, 1]m, where m is the number of possible
elements considered; this feature is also known as the elemental
atom percentage.12 However, the direct use of this representation
can lead to numerical instability due to rank deficiency of X̃ since the
total concentration of all elements has to add up to one. To reduce
the numerical instability of ML regression models, the elemen-
tal atom percentage is transformed to the (m − 1) hyper-spherical
coordinates using the following equation:

xi = tan−1(
√

x̃i+1 + x̃i+1, . . . + x̃m

x̃i
), i = 1, . . . , m − 2,

xm−1 = 2 tan−1( x̃m

x̃m−1 +
√

x̃m−1 + x̃m
). (3)

B. Multivariate GPR and parameter estimation
The AS for each alloy configuration outputs an n-dimensional

vector of basic structural properties y ∈ Rn. To predict this vector,
a constant mean is assumed for each basic structural property such
that, for each configuration, μ = Inβ, where In is the n-dimensional
identity matrix and β ∈ Rn. For a set of alloy configurations, the
covariance matrix will be given by Σ = K ⊗Ω, where Ω is the
variance-covariance matrix between structural properties and ⊗ is
the standard Kronecker product. This is equivalent to a separable
correlation structure, where K represents the common correlation
across alloy configurations, whileΩ represents the correlation across
basic structural properties.

The training dataset has N distinct simulated alloy configura-
tions. Let 1N be the N-dimensional vector of ones. Then, B = 1N ⊗ In
and the parameters of the model can be estimated by minimizing the
scaled profiled negative log-likelihood,

min
LΩ ,θ

log (2π∣Σ∣) + (y − Bβ̂)T
Σ−1(y − Bβ̂),

β̂ = [BTΣ̂−1 B]−1
BTΣ̂−1y,

Σ = K(X, θ)⊗ LΩLT
Ω,

(4)

where LΩ is the Cholesky factor of Ω. The Cholesky factor parame-
terization improves the numerical stability of optimization methods
commonly used for parameter estimation of Gaussian processes.23,25
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C. GPR approximation as an additive model
The GPR model for a single structural property j can be

rewritten as an additive model of the following form:

yi = βj + ηj(X) + ε, (5)

where η is a mean zero GP with covariance kernel κ. If we define
the matrix AK as the decomposition AK AT

k = K (such as a Cholesky
decomposition), the GPR problem can be transformed into a linear
regression model of the following form:25

yi = βj + AK(X, θ)α + ε, (6)

where α is a vector of random effects with mean zero and variance
σ2

j . Note that this model still has the same statistical distribution as
standard one-dimensional GPR, but is expressed as a hierarchical
model, see Chapter 4.4 of Wikle et al.26 for more details.

To reduce the computational cost of estimating θ or intro-
duce the knowledge of the covariance of the output,26 the matrix AK
can be approximated using basis functions expansion as AK ≈ Ψ(X)
with each row i as a basis expansion for alloy configuration i. This
regression problem can be efficiently solved using penalized least
squares27 of the following form:

min
σ2

j ,βj ,αj

∣yj − βj −Ψαj ∣2 + σ2
jα

T
j Sαj , (7)

where S is a penalty matrix constructed based on the complex-
ity of the basis functions. To construct the basis functions ψ, the
Kronecker product of univariate basis is used such that27

ψ(x) = vec(ψ(1)(x1)⊗ ⋅ ⋅ ⋅ ⊗ ψ(m−1)(xm−1)), (8)

where vec is the vector form of a matrix. Note that such construc-
tion allows for automatic modeling of non-stationary patterns26 in
the data that require more complex kernel functions in the standard
GPR. The predictive mean and standard error can be computed as
follows:28

y∗j = β̂j +Ψ(X∗)α̂j ,

Σ∗j j = σ2
j Vjj ,

(9)

where V jj is the Bayesian posterior covariance of the parameter esti-
mates of βj and αj. Such estimates are readily available in the R
package mgcv.27

There are several advantages of the GPR additive approxima-
tion (GPRAA) model: (1) it reduces the number of parameters to
be estimated; (2) there are several implementations of such models
reducing the adoption barriers for practitioners; (3) the computa-
tional cost increases based on the number of basis functions rather
than the number of data points (i.e., inverting Σ−1); and (4) it is eas-
ier to encode expert knowledge in the choice of basis functions than
in the construction of custom covariance kernel functions. However,
the main drawback is that information is not shared between struc-
tural properties since the σ2

j is equivalent to imposing a diagonal
structure to Ω in the full MVGPR model.

D. Active learning to minimize prediction uncertainty
Active learning with surrogate models refers to the sequen-

tial design of experiments (DOE) to reduce the prediction error
and/or uncertainty. The sequential design allows for the reduction
of the total number of alloys to simulate.29 The simplest criterion
for sequential DOE is to find the design that maximizes the uncer-
tainty of the current surrogate model, i.e., the predictive variance
for the univariate case or the determinant of the predictive variance-
covariance matrix ∣Σ∣∗ for the multivariate case.17 However, this
criterion is not well suited for prediction with multiple structural
properties with different scales, even orders of magnitude, since the
design will be dominated by uncertainty of the structural property
with the largest scale. Therefore, sequential design is carried out in
this paper by maximizing the scaled determinant of the predictive
covariance as

xN+1 = arg max
x∈𝒳
∣M(x)TΣ∗(x)M(x)∣ (10)

where M is a diagonal matrix with entries 1/y∗ at x. This deter-
minant is equivalent to the squared coefficient of variation for the
univariate case. This nonlinear optimization problem can be solved
using numerical search methods or by maximizing the predictive
uncertainty on a set of candidate alloys. Note thatΣ∗ and y∗ are com-
puted as in Eq. (2) for the full MVGPR model and as in Eq. (9) for the
GPRAA.

III. NUMERICAL STUDY
There are six body-centered cubic (BCC) refractory metals in

total: Cr, Mo, Nb, Ta, V, and W. However, only the last five are
used to construct refractory NDRAs because ASs do not consider
Cr’s anti-ferromagnetism, which is key for computing basic struc-
tural parameters of magnetic alloys.30 We emphasize that the five
elements considered here—Mo, Nb, Ta, V, and W—have complete
mutual solubility with respect to each other,31–35 meaning that any
percentile of any of the five pure metals in any alloy that is based on
them is possible.

A. Generated dataset
The dataset of basic structural properties was compiled from

three sources: (1) the study by Xu et al.10 for 16 equal-molar MPEAs,
i.e., an equal proportion of every principal element in a ternary, a
quaternary, or a quinary; (2) the study by Mamun et al.36 that inves-
tigated equal- or unequal-molar Mo-W, Nb-W, and Ta-W random
binary alloys; (3) the remaining seven sets of random binaries are
newly calculated in this paper. The new calculations largely follow
Mamun et al.10 As a result, the dataset for this study contains the
computations for 5 pure metals, 90 binaries, 10 ternaries, 5 quater-
naries, and 1 quinary, for a total of 111 unique metallic materials.
For each alloy, ASs are used to compute the lattice parameter a0

and the effective BCC elastic constants C†
11, C†

12, and C†
44 based on

the stiffness tensor C.37 We remark that all atomistic simulations,
old or new, use the same interatomic potential,10 making the data
self-consistent.

Figure 1 shows the computed structural properties for all ten
types of binary alloys. The difficulty of creating surrogate models for
the structural properties with a few data points increases with the
complexity and heterogeneity of the property profile as a function
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FIG. 1. Computed structural properties for binary alloys combining two of the five refractory metals: Mo, Nb, Ta, V, and W. The x axis shows the concentration of the first
metal in each set of binary alloys. Points in blue are used for the initial training dataset.

of element concentration. From the figure, the model for a0 should
be the simplest since most profiles seem to follow a linear relation-
ship while the model for C†

12 is the most complex due to the different
levels of smoothness of the functions. For C†

11, the addition of V,

which has the smallest a0 and C†
12 among all pure metals, to the

alloy seems to cause a reduction in structural properties below to
any of the two pure metals, while for other alloys, this value is always
between that of the two pure constituents. Due to the heterogeneity

FIG. 2. Predicted value of the basic structural properties of Ta-V binaries and their 95% confidence interval using the MVGPR surrogate. The 0.9 Ta-0.1 V binary was added
to the training set in the second iteration of the active learning.
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of the functional profiles, a negative transfer of knowledge between
basic structural properties may occur in the surrogate models.

B. Surrogate model training and prediction results
The data for the computed structural properties were par-

titioned into training and testing sets. The training set contains
the basic structural properties for pure metals, equal-molar binary
alloys, and the equal-molar MoTaV, NbTaW, NbVW, MoNbW,
MoNbVW, and MoNbTaW alloys that provide information for the
three types of W-based binaries studied by Mamun et al.36 In addi-
tion, a random sample of 20% of the remaining alloys was added
to the initial training set for a total of 37 alloys and 5 pure metals.
The points included in the initial training set are shown in blue in
Fig. 1. The initial training set was expanded through active learning
by sequentially selecting five more alloy designs from the test dataset
based on the current working model. In each iteration, the datasets
were modified by removing the selected point from the test and
adding it to the training set before re-training the surrogate model.

The full MVGPR model is constructed using the separable
Matérn kernel function between points xi and xi′ parameterized as

κ(xi, xi′) =
m−1

∏
j=1

exp(−dj

θj
)(1 + dj

θj
+ 5

3
d2

j

θ2
j
), (11)

where d j =
√
(xi j − xi′ j)2 is the distance and θj is the length-

scale parameter in the jth dimension. Due to their capability to
approximate any function, the GPRAA model is constructed using

four cubic b-spline basis functions27 for each spherical coordi-
nate. The penalized regression problem is solved using generalized
cross-validation.

For illustration purposes, Fig. 2 shows the prediction and
uncertainty for the structural properties of Ta-V binary alloys using
the full MVGPR surrogate model. The uncertainty is measured
by the point-wise confidence interval based on the posterior stan-
dard deviation of the basic structural properties. Around the 90%
Ta region, the initial prediction is quite biased due to negative
knowledge transfer between basic structural properties and has high
uncertainty due to lack of data. Consequently, that point is selected
for simulation during the first iteration of the active learning algo-
rithm, and the local prediction accuracy improves and uncertainty is
reduced by the second iteration. Since the active learning algorithm
seeks to improve the global accuracy of the surrogate model, addi-
tional points to simulate are selected in regions of the design space
far away from the Ta-V binary, resulting in no further improve-
ment to the prediction accuracy of the Ta-V binaries in subsequent
iterations. Figure 3 shows the equivalent results using the GPRAA
surrogate. The predictions based on the initial training set have a
fairly piece-wise linear pattern due to the lack of data points in
this region of the design space. As more data points are added,
the complexity of the prediction pattern increases. The main dif-
ference between the two surrogate models is the higher uncertainty
on the full MVGPR model, which allows it to cover most of the
true property values within its confidence interval while the additive
approximation has severe coverage issues in the 0%–50% Ta region
for all structural properties.

FIG. 3. Predicted value of the basic structural properties of Ta-V binaries and their 95% confidence interval using the GPRAA surrogate. The 0.9 Ta-0.1 V binary was added
to the model in the second iteration of the active learning.
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FIG. 4. Prediction accuracy measured by the RMSRE on the test set after adding new points to the training set; the experiment was repeated 30 times with different training
sets.

The overall prediction accuracy for each structural property is
measured by the root mean squared relative error (RMSRE),

RMSRE =

¿
ÁÁÀ 1

L

L

∑
ℓ=1
( ŷ ℓ − yℓ

yℓ
)

2

, (12)

where y is the true value and ŷ is the estimate. The prediction uncer-
tainty is measured by the mean standard deviation for each model.
Both are evaluated on the testing set during each iteration, i.e.,
reduced set due to moving one point to the training set during each
iteration.

The active learning experiment was repeated 30 times with
a different set of initial data. Each initial set was constructed by
drawing a new sample of the 20% of remaining alloys described

at the beginning of this subsection. Figure 4 shows the boxplot of
the RMSRE for all structural properties under the full and additive
approximation surrogate models in each iteration of the active learn-
ing algorithm. The full MVGPR model performs worse for a0, while
it does better for C†

44 than the additive approximation GPRAA. This
was expected since the a0 shows a mostly linear relationship, while
C†

44 shows more complex patterns on the binary alloys (see Fig. 1),
which represent the bulk of the dataset. For C†

11 and C†
12 both mod-

els have a similar accuracy with the additive approximation being
slightly more accurate.

Figure 5 shows the model uncertainty measured by averag-
ing the point-wise standard deviation of predictions on the test
dataset. While both models reduce their uncertainty at roughly
the same pace, the additive approximation consistently shows less

FIG. 5. Prediction uncertainty measured by the mean Σ∗j j on the test set after adding new points to the training set; experiment repeated 30 times with different initial training
sets.
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uncertainty, which can lead practitioners to believe it is a better
model. However, as illustrated in Figs. 2 and 3, the 95% point-wise
confidence intervals often do not cover the true value with only a few
simulation experiments. This is caused by significant bias introduced
due to the significant difference between the monotone patterns
observed in other binary alloys and the convex pattern in the Ta-
V data, see Fig. 1. This behavior suggests that the uncertainty due
to data heterogeneous behavior is better captured in the MVGPR
model than by the additive approximation, which does not share
information across structural properties. Note that this might not
affect the active learning procedure as long as the uncertainty is
equally underestimated for all alloys, as is the case in Figs. 2 and 3.

IV. CONCLUSIONS
In this paper, we constructed two ML surrogate models to pre-

dict basic structural parameters in refractory NDRAs, which have
intricate interactions between elements and are crucial in mod-
ern alloy design. The MVGPR is introduced as a surrogate model,
offering a more efficient alternative to traditionally computationally
expensive ASs. The approach of using the elemental atom percentage
in hyper-spherical coordinates as a feature for surrogate modeling
offers enhanced computational stability and potentially improved
prediction accuracy. MVGPR represents a single model to predict all
material properties of interest. The information shared across struc-
tural properties allows for conservative uncertainty quantification
on the prediction of new alloy properties. To reduce the compu-
tational cost, the additive approximation model utilizes the basis
expansion to mimic the correlation structure of individual prop-
erties. However, the uncertainty quantification is overoptimistic.
Active learning further refines the surrogate model, ensuring that
only a few select, most informative alloy configurations need to
be simulated. The combination of physics-based and data-driven
models makes this paper a valuable resource for materials scien-
tists seeking efficient, accurate tools for the prediction of alloy basic
structural properties.

There are many exciting directions for further research. First,
the model can be extended to incorporate information on the
atomistic configuration to improve the accuracy of the surrogate
and enhance the uncertainty quantification of the prediction. Sec-
ond, transfer learning between different physic-based computation
approaches can be explored. A common transfer learning approach
is to model discrepancies between predictions of heterogeneous
sources.38,39 For example, by learning the discrepancy between ASs
and density functional theory (DFT) predictions, it is possible to uti-
lize the computationally cheapest method between AS or DFT to
compute an initial estimate of basic properties and then adjust it by
the predicted discrepancy.
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