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Abstract

Atomistic simulationmethods are appropriate tools for investigating the dynam-
ics of dislocations and their interactions with obstacles in metallic materials. In
particular, molecular dynamics (MD) simulations have been widely employed
on these two topics in the past several decades. However, even for the same
type of simulation, the results can vary. While some of the quantitative differ-
ences may be due to the choices of interatomic potential and simulation cell
size, they could similarly be attributed to choice of model settings, which have
also differed substantially to date. In this paper, we carry out systematic MD
simulations to study the effects of a few key model settings on the dynamics of
an edge dislocation and its interaction with a void in copper. For a �xed inter-
atomic potential, three modeling parameters, including applied loading mode,
boundary conditions, and thermostat, are considered and their in�uences on the
stress–strain response, the dislocation velocity, and the critical stress for a dislo-
cation to bypass a void are compared. For a few select cases, we further examine
the in�uence of temperature, strain rate, and simulation cell size. The results
show that (i) compared with �exible boundary conditions, rigid boundary con-
ditions result in greater stress oscillations in simulation cells of certain sizes;
(ii) compared with the cases of no thermostat and a full thermostat, a partial
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thermostat provides better temperature control and lower friction on the dislo-
cation core, respectively; and (iii) for dislocation–void interactions, the critical
dislocation bypassing stress in shear loading can be appropriately determined
with either a constant applied strain rate or a constant applied stress although
the strain rate cannot be controlled in the latter. This analysis reveals that these
three settings greatly in�uence the accuracy and interpretation of the results for
the same type of simulation.

Keywords: loading mode, boundary condition, thermostat, dislocation dynam-
ics, dislocation–void interaction, atomistic simulations

(Some �gures may appear in colour only in the online journal)

1. Introduction

Dislocations are themain carriers of plasticity in metals [1]. To examine dislocations in motion,
scientists have developed several in situ experimentalmethods [2, 3], such as transmission elec-
tron microscopy [4] and x-ray topographic characterization [5]. Through these experimental
techniques, the movement of dislocations can be observed directly or characterized indirectly.
However, it is still dif�cult to acquire certain data in experiments, such as driving force and
dislocation velocity, as well as the effects of obstacle sizes and density on dislocation motion.
As a complement to direct observation, considerable insight into these quantities have been
obtained via atomic-level calculations [6, 7]. Molecular dynamics (MD) simulation method is
one such approach.

MD simulations have been utilized widely to identify the role of dislocation motion, inter-
actions, and reactions in basic processes, such as the grain boundary (GB) migration [8–12],
twinning [13–15], and dislocation nucleation from GBs [16–19] and voids [20, 21]. In partic-
ular, MD simulations are indispensable for our understanding of the dynamics of a dislocation
[22, 23], providing insights into phonon scattering [24] and energy radiation [25] caused by
the glide of dislocations in a lattice. Via MD simulations, researchers measured dislocation
mobility in face-centered cubic (FCC) [26–32], body-centered cubic (BCC) [25, 33–36] and
hexagonal close-packed (HCP) [37–39] metals. MD simulations are also carried out to explain
the interactions between dislocations and different obstacles, such as dislocation–void inter-
action [40–43], dislocation–precipitate interaction [44–47] and dislocation–GB interaction
[48–51].

In many of the MD simulations mentioned above, researchers utilized various model
settings, choices usually driven by technical development or particular research goals. For
example, over the years, newer formulations of interatomic potentials for copper have been
tested via investigations of dislocation dynamics [43, 52–55]. Among these interatomic poten-
tials, the intrinsic stacking fault energy varies, leading to discrepancies associated with dissoci-
ated core width, mobility, and reactions involving dislocations. Simulation cell size is another
important factor. Due to the rapid improvements in the computational capacity, the size effect
on dislocation dynamics has been frequently examined [29, 56]. Other model settings, includ-
ing loading mode, boundary condition (BC), and thermostat, can also greatly differ among
MD studies. To drive dislocation motion, for example, there are two main loading modes,
differing in whether the applied strain rate or the applied stress is kept constant [22, 57].
The former mode has been used primarily to study dislocation–obstacle interactions [58–60],
while the latter is adopted to measure dislocation mobility [26, 29, 31]. For shear loading
with constant applied strain rate, four BCs were mainly employed, i.e., rigid, linear-rigid,
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semi-rigid and �exible BCs [22, 57, 61]. For shear loading with constant applied stress, the
super-particle-rigid BC is usually applied [22, 57]. Besides the loading mode and BC, another
important parameter choice is whether or not a thermostat is applied and if so, which type.
Cho et al [31] and Dang et al [62] considered that any thermostat may introduce artifact fric-
tional forces to atoms in the dislocation core region, and hence interfere dislocation dynamics.
However, a thermostat is still widely used in the literature [29, 55]. Like the �rst two fac-
tors (interatomic potential and simulation cell size), these three model settings could affect
predictions on dislocation dynamics and dislocation–void interactions. For example, Rodney
[61] found that the stress peak-to-peak amplitudes for a dislocation gliding in a lattice are
300 MPa and 100 MPa when the non-�exible and the �exible BCs, respectively, are used. To
the best of our knowledge, the effects of these model settings have yet to be systematically
quanti�ed.

In this work, we utilize large-scale MD simulations to investigate the effects of three model
parameters—loading mode, BC, and thermostat—on the dynamics of an edge dislocation and
its interaction with a void in copper. In select cases, we also analyze the effects of the tem-
perature, strain rate, and simulation cell size. The suitability of these parameters is assessed
by the amplitude of oscillations in the stress–strain response, temperature variation with time,
dislocation motion, and critical stress for a dislocation to bypass a void. In most cases, we �nd
that a shear loading simulation with (i) constant applied strain rate, (ii) �exible BC, (iii) partial
thermostat, and (iv) strain rates lower than 107 s−1 provides the best combination of modeling
parameters. Although these factors have been individually studied in aforementioned atom-
istic simulations, it is the �rst time, to our best knowledge, to systematically investigate all
of them in the context of the same problem. In addition, some investigations in our work are
novel, including applying �exible boundary condition to dislocation–obstacle interaction and
analyzing the effect of aspect ratio on the stress–strain response of pure dislocation motion
without dislocation bow-out.

2. Methodology

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [63] is utilized
in our MD simulations. To describe the atomic interactions in copper, we choose the
embedded-atom method (EAM) potential proposed by Mishin et al [64], which has been
widely applied in MD simulations of dislocations and stacking fault formation in copper
[28, 55, 65–69].

The schematic in �gure 1 presents the model setup for simulating dislocation mobility and
dislocation–void interactions. The [110], [112] and [111] crystallographic directions in a face
centered cubic (FCC) copper single crystal are parallel to the x-, y- and z-axes, respectively.
Periodic BCs are imposed along the x- and y-axes, while non-periodic BCs are present along
the z-axis. Following references [22, 57], an edge dislocation is inserted by joining two half
crystals on the (111) plane, with the top half crystal having two more [110] atomic planes than
the bottom one. To minimize the system energy, the conjugate gradient algorithm is applied,
causing the dislocation to dissociate. Minimization iterations are terminated when one of the
following criteria is satis�ed [70, 71]: (1) the energy change between successive iterations
divided by the energy magnitude is less than or equal to 10−12 or (2) the length of the global
force vector for all atoms is less than or equal to 10−12 eV Å−1.

Next dynamic relaxation is conducted. First, we randomly assign velocities to all atoms
following a Gaussian distribution to produce an initial temperature T. Unless stated other-
wise, T = 1 K. In select cases, T = 300 K. In view of the thermal expansion at �nite tem-
perature, an NPT ensemble is applied to the whole cell. Since the NPT ensemble cannot
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Figure 1. Schematic of the MD simulation cell. The whole cell is divided into A, B1,
B2, C1, and C2 blocks, where different ensembles may be applied. Meanwhile, BCs are
imposed in C1 and C2. ‘⊥’ denotes the dissociated edge dislocation, while a void with
2 nm in diameter is on its right. For shear loading with constant applied strain rate, a
velocity along the positive x direction is applied to C1, while C2 is usually �xed. For
shear loading with constant applied stress, two equal but opposite forces along the x
direction are superimposed in atoms in C1 and C2, respectively.

be utilized with non-periodic BC, the BC along the z-axis is made periodic until relaxation
has completed. We then create two vacuum regions above the top surface and below the
bottom surface, respectively. It should be noted the vacuum regions are used only in the
relaxation step, and not in energy minimization or subsequent dynamic shear loading. For
the dislocation–void interaction simulations, a void 2 nm in diameter is additionally carved
on the right of the edge dislocation just after the energy minimization. In all dynamic simu-
lations, either dynamic relaxation or subsequent dynamic shear loading, the timestep size is
1 fs.

After achieving the equilibrium atomic con�guration via dynamic relaxation, the two vac-
uum regions are removed and the BC along the z direction is changed back to non-periodic.
In preparation for the subsequent dynamic shear loading, we divide the entire simulation
cell into �ve regions, i.e., A, B1, B2, C1 and C2, as illustrated in �gure 1. Different BCs
may be applied to C1 and C2, while different thermostats may be used in A, B1, and B2.
The thicknesses of C1 and C2 along the z direction are the same and denoted as LC. Sim-
ilarly, the thicknesses of B1 and B2 are equal and referred to as LB. Note that LC should
exceed the cutoff distance of the interatomic potential, i.e., 5.5 Å in the current work, to
ensure that atoms in A, B1, and B2 are not affected by the non-periodic BCs [72, 73]. Hence,
each of the C1 and C2 regions includes four layers of atoms. The ratio of the thickness
of region A to that of the entire cell, i.e., LA/Lz, is about 0.6, and the remaining thick-
ness equals 2LB, where Lx, Ly, and Lz, are the edge lengths along the x-, y-, and z-axes,
respectively.

In what follows, the temperature-related, the interatomic potential-induced, and the applied
atomic velocities will be designated as v

T, vP, and v
A, respectively. Also we denote the

interatomic potential-induced and the applied atomic forces as f
P and f

A, respectively. As
such, the atomic velocities v = v

T + v
P + v

A, and the atomic forces f = f
P
+ f

A. We con-
sider two loading modes: constant applied strain rate and constant applied stress. For the
constant applied strain rate mode, four BCs, namely, rigid, linear-rigid, semi-rigid and �ex-
ible BCs are applied to C1 and C2, as summarized in table 1. In the rigid BC [53], v
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Table 1. Atomic velocity, force, and relaxation for atoms in regions C1 and C2 in differ-
ent BCs. We set z = 0 at the bottom of the simulation cell along the z direction. Unless
stated otherwise, the atomic velocity and force are uniform to all atoms in the speci�c
region.We use ‘null’ to represent no control over velocities or forces along that direction.

Relaxation
BC Direction Velocity (C1) Velocity (C2) Force (C1 & C2) (C1 & C2)

Rigid x vAx 0 0 No
y 0 0 0 No
z 0 0 0 No

Linear-rigid x vAx z/Lz 0 0 No
y 0 0 0 No
z 0 0 0 No

Semi-rigid x vAx 0 0 No
y Null Null Null Yes
z Null Null Null Yes

Flexible x Average vAx Average 0 Total 0 Yes
y Null Null Null Yes
z Null Null Null Yes

Super-particle x vPx + vTx vPx + vTx f Px + f Ax Yes
y vPy + vTy vPy + vTy f Py Yes
z vPz + vTz vPz + vTz f Pz Yes

and f of atoms in C1 and C2 are �rst zeroed, and then a constant velocity along the pos-
itive x direction, vAx , is applied to C1. Consequently, a constant applied strain rate γ̇ =

vAx /(Lz − 2LC) is achieved. The linear-rigid BC [22, 61] is similar to the rigid BC, except
that the velocity in the C1 region varies linearly along the z direction. In this BC, the
applied velocity of the top-most atomic layer in C1 is vAx , while the applied atomic veloc-
ity decreases linearly with distance from vAx in the top-most layer to vAx (Lz − LC)/Lz in the
bottom-most atomic layer in C1. Compared with the rigid BC, the semi-rigid BC [39] only
zeroes vx and fx in C1 and C2, such that the atoms therein are free to move along the y and
z directions.

In the foregoing three BCs, the interatomic distances within the same xy layer in C1 or
C2 are unchanged along all directions (rigid BC and linear-rigid BC) or along the x direction
(semi-rigid BC). To allow for changes in the interatomic distances in C1 and C2 (and hence
relaxation of the atoms within), Rodney [61] proposed the �exible BC. In this BC, the average
velocities along the x direction of all atoms in C1 and C2 are �rst calculated, as vC1x and vC2x ,
respectively. Then two opposite-signed velocities, −vC1x and −vC2x , are uniformly added to all
atoms in the two regions, respectively. Similarly, the total forces along the x direction of all
atoms in C1 and C2 are calculated, as f C1x and f C2x , respectively. Then two opposite-signed
forces, − f C1x and − f C2x , are uniformly added to all atoms in the two regions, respectively. In
this way, the average atomic velocities and total atomic forces along the x direction in C1 and
C2 become zero. It follows then that a constant velocity along the positive x direction, vAx , is
applied to C1. Similar to the semi-rigid BC, atomic velocities and forces along the y and z
directions are not constrained. It is necessary to put these boundary conditions together and
then compare them, which may constitute a useful reference to researchers in the �eld.

For the constant applied stress loadingmode, only the super-particle BC [22, 57] is imposed,
to the best of our knowledge. Here, C1 and C2 are regarded as two super particles and their
equations of motion are coupled with those of the atoms in other regions. This means that at
each time step, the total force on each super particle is computed as the sum of the forces
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on its constituent atoms. The coordinates and velocities of the atoms in each super parti-
cle are then updated so that each of C1 and C2 moves as a single entity. This is imple-
mented by creating internal data structures for each super particle and performing inher-
ent NVE time integration on these data structures. Meanwhile, positions and velocities of
the constituent atoms are regenerated from the data structure in every time step and their
comprehensive embodiment is the motion of super particle. In this way, each atom in each
of the super particle has equal velocity and force. To exert a constant applied stress, we
impose two constant, but different, forces, f Ax , to each atom in region C1 and region C2,
respectively. For C1, f Ax = f AC1 and is along the positive x direction; for C2, f Ax = f AC2 and
is along the negative x direction. The resultant applied stress is then NC1 f

A
C1/(LxLy), which

equals NC2 f
A
C2/(LxLy), where NC1 and NC2 are the total numbers of atoms in C1 and C2,

respectively.
Besides loadingmode and BCs, another important model setting is whether the temperature

in a certain region is controlled via a thermostat. If it is, an NVT ensemble is used; otherwise,
an NVE ensemble is used. In regions C1 and C2, atomic motions are associated with the BC;
hence, an NVE ensemble is used there. When an NVT ensemble is applied to regions A, B1
and B2, we call it a ‘full thermostat’; when an NVE ensemble is applied to all three regions, it is
referred to as a ‘no thermostat’ case. As an intermediate case, we can apply anNVT ensemble to
regions B1 and B2 and an NVE ensemble to region A. This case is called a ‘partial thermostat’.
It should be noted that ‘partial thermostat’ is a similar to ‘stadium BCs’ proposed and devel-
oped by Holian and Ravelo [74], Zhou et al [75], Holland and Marder [76], and Qu et al [77].
In both techniques, a speci�c region can be set for thermostat or temperature control. However,
some discrepancies exist between them. Firstly, the stadiumBCs can be applied to absorb ener-
getic wave, while the partial thermostat cannot. Secondly, the stadium BC is a BC applied on
the boundaries of the atomistic simulation cell, while the partial thermostat is independent of
the BC and can be combinedwith different BCs, e.g., rigid, linear-rigid, semi-rigid and �exible
BCs. As mentioned, the partial thermostat denotes that thermostat is only applied to a part of
the interior region rather than the cell boundaries. In our simulations, no thermostat is used in
the top or bottom layers, which are related to BCs. In comparison with the ‘full thermostat’,
we opt to use the term ‘partial thermostat’ in this work for better readability and comparison.
By combining the various types of BCs and thermostats for the two loading modes, we acquire
nine sets of settings in total, which are summarized in table 2. Settings 1–6 are for the con-
stant applied strain rate loading mode, while settings 7–9 are for the constant applied stress
loading mode. Settings 1–4 identically have no thermostat, but different BCs. Settings 4–6
all use �exible BCs, but different thermostats. Settings 7–9 all use the super-particle BC, but
different thermostats.

To study simulation cell size effects, six sets of edge lengths are studied, and these
are listed in table 3. Models 1 and 2 are compared to assess whether the dislocation
line length in�uences dislocation dynamics, while models 1, 3, and 4 aim to elucidate
the effects of aspect ratio Lx/Lz. Here, the largest aspect ratio is 3.2 and the smallest
is 0.8. Models 4–6 have the same aspect ratio but different values of Lx and Lz, whose
in�uences will also be analyzed here. Here, it should be noted that Szajewski and Curtin
investigated the spurious image stresses induced by dislocation bow-out around obsta-
cles in MD simulations and compared the results with those in the multiscale image-free
simulation conducted by the coupled atomistic/discrete dislocation method [78], in which
they found the spurious image stress is minimum when the optimum aspect ratio (0.8) is
applied. Since this is a benchmarking study, we compare the optimum aspect ratio (i.e.,
0.8) and some non-optimum ones in order to provide a complete understanding of the
aspect ratio effect, namely, how the non-optimum aspect ratios may affect the stress–strain
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Table 2. Different modeling parameters used in this paper. Settings 1–6 are for the con-
stant applied strain rate loading mode, while settings 7–9 for the constant applied stress
loading mode. When a thermostat is or is not used in a region, an NVT or an NVE
ensemble is used, respectively. In C1 and C2, no thermostat is used.

Setting Loading mode BC in C1(C2) Thermostat in B1(B2) Thermostat in A

1 Constant applied strain rate Rigid No No
2 Linear-rigid No No
3 Semi-rigid No No
4 Flexible No No
5 Flexible Yes Yes
6 Flexible Yes No
7 Constant applied stress Super-particle No No
8 Super-particle Yes Yes
9 Super-particle Yes No

Table 3. Edge lengths of the simulation cells used in this paper. Models 1 and 2 are
compared to assess whether the dislocation line length in�uences dislocation dynamics,
while models 1, 3, and 4 are to illustrate the effects of the aspect ratio Lx/Lz. Models
4–6 have the same aspect ratio, but different values of Lx and Lz.

Model Lx (nm) Ly (nm) Lz (nm)

1 64 10 20
2 64 20 20
3 48 10 26.7
4 32 10 40
5 24 10 30
6 50 10 62.5

response of dislocation mobility without dislocation bow-out and dislocation–void
interaction.

In the present simulations, different settings are utilized in these models, so that a particu-
lar series of combinations are obtained. Here, we use ‘S+ number+M+ number’ to denote
the combinations. For example, ‘S1M1’ refers to the combination of setting 1 and model 1.
For dislocation–void interaction, ‘void’ is added to the name, e.g., ‘S1M1-void’. In addition,
the letter ‘e’ is used in the notation of strain rate, e.g., ‘5e6’ represents 5× 106 s−1. For the
partial thermostat, the stress, e.g., the one in the stress–strain curve, is calculated by averaging
atomic virial stresses in region A. For other thermostats, the stress is obtained by averaging
atomic virial stresses in regions A, B1, and B2. For different thermostat cases, temperature in
temperature–time curve is calculated in the same region as stress does. Unless stated oth-
erwise, the term ‘stress’ refers to the internal stress of the simulation cell, instead of the
‘applied stress’ imposed by the surface traction, e.g., in the constant applied stress loading
mode. In what follows, the amplitude of oscillations is the peak-to-peak amplitude. We let
the average atomic displacements along the x direction in C1 and C2 be DC1

x and DC2
x in the

constant applied stress loading mode, respectively. The corresponding strain is calculated as
(DC1

x − DC2
x )/(Lz − 2LC), and the strain rate is obtained accordingly. To visualize the dislo-

cation, we use the polyhedral template matching method [79] implemented in OVITO [80].
By tracing the position of the leading partial dislocation, the dislocation displacement is
determined.
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Figure 2. Shear stress–strain curves for S1M1, S2M1, S3M1 and S4M1 at a strain rate
of 5× 106 s−1. S1: rigid boundary condition with no thermostat in B1 (B2) and A; S2:
linear-rigid boundary condition with no thermostat in B1 (B2) and A; S3: semi-rigid
boundary condition with no thermostat in B1 (B2) and A; S4: �exible boundary condi-
tion with no thermostat in B1 (B2) and A. M1: the simulation cell with 64 nm × 10 nm
× 20 nm.

3. Dynamics of an edge dislocation

3.1. Constant applied strain rate loading mode: effects of the boundary condition

First, we study the effects of BCs on the stress–strain response under the constant applied
strain rate loading mode. To this end, four cases are considered: S1M1, S2M1, S3M1, and
S4M1. A strain rate of 5× 106 s−1 is applied. When the simulation cell is subject to a simple
shear, the dislocation keeps still until the shear stress reaches a critical level, which is conven-
tionally de�ned as the Peierls stress [81, 82]. During the dislocation motion, periodic oscilla-
tions are observed in stress–strain curves for all BCs. Speci�cally, the semi-rigid BC (S3M1)
results in an intermediate amplitude (∼ 100 MPa), while rigid BC (S1M1) and linear-rigid BC
(S2M1) are associated with the largest amplitude (∼ 440MPa), suggesting that latter two BCs
are practically similar (�gure 2).

The development of relatively large periodic stress oscillations, when using non-�exible
BCs, have already been reported in the literature. In referemce [39], where the semi-rigid BC
is utilized, the stress oscillations were attributed to the intrinsic inertia involved in fast disloca-
tion motion. Interestingly, Krasnikov and Mayer [83] observed the oscillations only when the
dislocation passes across the periodic BCs, which is contrary to the current work and to refer-
ence [39]. Rodney [61] considered that these oscillations resulted from the mismatch between
the displacement pro�le in C1 (and C2) and the dislocation motion in the remaining regions.
This mismatch yields a con�gurational force on the moving dislocation. To balance this force,
while maintaining the dislocation motion at a constant speed, the internal stress needs to vary
periodically with dislocation position.

The large stress oscillations are not physical and so should be minimized. Among the four
BCs, the �exible BC has negligible stress amplitude (∼ 6MPa). In addition, its period of stress
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Figure 3. Shear stress–strain curves for S1M1, S3M1, and S4M1 at strain rates of (a)
5× 107 s−1 and (b) 5× 108 s−1. S1: rigid boundary condition with no thermostat in B1
(B2) and A; S3: semi-rigid boundary condition with no thermostat in B1 (B2) and A; S4:
�exible boundary condition with no thermostat in B1 (B2) and A. M1: the simulation
cell with 64 nm × 10 nm × 20 nm.

oscillations is much shorter and the serrations correspond to the overcoming of the periodic
Peierls barrier by the dislocation. Indeed, the �exible BC allows for atomic relaxation in C1
and C2 along all three directions, signi�cantly reducing the mismatch between the motion of
the surface region and the motion of dislocation.

To assess the effects of strain rate in conjunction with the BC, we use two higher strain
rates in S1M1, S3M1, and S4M1. As shown in �gure 3, at 5× 107 s−1, the rigid BC (S1M1)
and �exible BC (S4M1) still possess the largest and smallest stress oscillation amplitudes,
respectively. However, at a higher strain rate of 5× 108 s−1, the differences among BCs almost
disappear. This outcome suggests that the choice of BC plays a more important role at lower
strain rates. Tang [39] postulated that at high strain rates, the material deforms at rates that
are too high for the dislocation motion to accommodate, characterized by an increasing stress
rather than an oscillating one. Consequently, the in�uence of BCs can be overshadowedby that
of the strain rate.

Further, to investigate the effect of simulation cell size, we compare models 1–6 with the
semi-rigid BC, i.e., from models S3M1 to S3M6. The results are displayed in �gure 4(a).
Compared with S3M1, S3M2 has twice the dislocation line length. However, the stress–strain
curves of S3M1 and S3M2 coincide, suggesting that the dislocation line length does not deter-
mine the macroscale stress �uctuations. Models S3M1, S3M3, and S3M4 have the same vol-
ume but different aspect ratios Lx/Lz. Models 4–6 have the same aspect ratio but different
values of Lx and Lz. Results show that a smaller aspect ratio leads to a lower stress oscil-
lation amplitude, while the values of Lx and Lz do not signi�cantly affect the amplitude, as
long as the ratio Lx/Lz remains the same. There is also an amplitude convergence in the mod-
els 4–6 with the same optimal aspect ratio Lx/Lz = 0.8 and different Lx (or Lz). In addition,
the period of stress oscillation increases with the increase of the aspect ratio. Consistent with
these results, Tang [39] found that doubling Lx, thereby increasing the aspect ratio Lx/Lz,
caused the amplitude and the period of these stress oscillations to increase. Szajewski and
Curtin [78] also pointed out that increasing the system size proportionally while keeping the
aspect ratio constant does not affect the normalized image stress. Even for the non-optimal
aspect ratio, convergence still exists with increasing sizes, but to the incorrect value of shear
stress.
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Figure 4. Shear stress–strain curves for (a) S3M1-S3M6 and (b) S4M1 and S4M6 at
a strain rate of 5× 106 s−1. S3: semi-rigid boundary condition with no thermostat in
B1 (B2) and A; S4: �exible boundary condition with no thermostat in B1 (B2) and A.
M1–M6 represent the simulation cells with 64 nm × 10 nm × 20 nm, 64 nm × 20 nm
× 20 nm, 48 nm × 10 nm × 26.7 nm, 32 nm × 10 nm × 40 nm, 24 nm × 10 nm × 30
nm and 50 nm × 10 nm × 62.5 nm, respectively.

For the semi-rigid BC, models S3M1 and S3M6 differ the most. It is interesting to compare
these two model sizes using the �exible BCs, i.e., S4M1 and S4M6. Figure 4(b) shows that
only a small discrepancy occurs between the two sets when �exible BCs are used, suggesting
the robustness of this BC. In what follows, �exible BCs will be used in all constant applied
strain rate loading mode.

3.2. Constant applied strain rate loading mode: effects of the thermostat

Here, using model 6, we compare settings 4–6 to quantify the effects of whether or not, and
which type of thermostat is applied, as shown in �gure 5. At a low strain rate of 5× 106 s−1,
there is almost no difference among S4M6, S5M6, and S6M6 in the stress–strain curve and
the dislocation displacement–time curve. The temperature–time curves differ among the three
settings, yet the oscillation amplitude is very small (< 0.004 K), even in S4M6, which uses
no thermostat. At a higher strain rate of 5× 107 s−1, both stress–strain curve and dislocation
displacement–time curve are still almost the same among the three settings. The tempera-
ture–time curve, however, has a larger oscillation amplitude (∼ 0.07 K) if no thermostat is
applied to region A. Also note that the period of stress oscillation increases with the strain rate.
This �nding suggests that applying no thermostat to region A, which enables a better represen-
tation of dislocation dynamics, does not result in a large increase in the temperature, as long
as the strain rate is relatively low.

3.3. Constant applied stress loading mode: effects of the thermostat

As mentioned earlier, when the model uses constant applied stress loading, only the super-
particle-rigid BC is utilized. Here, we study the effects of the thermostat, by comparing S7M6,
S8M6, and S9M6, at a constant applied stress of 150 MPa. Figure 6 presents the results of
this comparison. It is found that the calculated stress in the S9M6 simulation converges to the
target value, i.e, 150 MPa, much faster than the stress in the S7M6 and S8M6 simulations.
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Figure 5. (a) Stress–strain, (b) temperature–time, and (c) dislocation displace-
ment–time curves for S4M6, S5M6, and S6M6 at the strain rate of 5× 106 s−1. The
corresponding results for a strain rate of 5× 107 s−1 are shown in (d)–(f), respectively.
S4: �exible boundary condition with no thermostat in B1 (B2) and A; S5: �exible bound-
ary condition with thermostat in B1 (B2) and A; S6: �exible boundary condition with
thermostat in B1 (B2) and no thermostat in A. M6: the simulation cell with 50 nm × 10
nm × 62.5 nm.

Figure 6. The evolution of (a) stress, (b) temperature, and (c) dislocation displacement
with time for S7M6, S8M6, and S9M6 at a constant applied stress of 150MPa. S7: super-
particle boundary condition with no thermostat in B1 (B2) and A; S8: super-particle
boundary condition with thermostat in B1 (B2) and A; S9: super-particle boundary con-
dition with thermostat in B1 (B2) and no thermostat in A. M6: the simulation cell with
50 nm × 10 nm × 62.5 nm.

Regarding temperature, we observe that it increases near-linearly for S7M6, while the temper-
ature evolution for S8M6 or S9M6 eventually converges to a stable value. An applied stress
of 150 MPa results in an average strain rate of more than 5× 108 s−1, which causes rapid
temperature rise. This outcome suggests that it is necessary to apply a thermostat in the con-
stant applied stress loading mode, due to the related high strain rate. Therefore, to alleviate
the arti�cial friction on the dislocation, a partial thermostat, i.e., setting 9 as designated in this
study, is recommended in the constant applied stress loadingmode. As a �nal note, at the same
simulation time, the dislocation displacements are almost the same in the three settings.
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Figure 7. The evolution of (a) stress, (b) temperature, and (c) dislocation displacement
with respect to time for S9M6 at a constant applied stresses of 150 MPa, 300 MPa, and
450MPa, respectively. S9: super-particle boundary condition with thermostat in B1 (B2)
and no thermostat in A. M6: the simulation cell with 50 nm × 10 nm × 62.5 nm.

3.4. Constant applied stress loading mode: effects of the applied stress

Next, we use S9M6 to study dislocation dynamics at different applied stress levels, including
150, 300, and 450 MPa. Figure 7 compares the time evolution of stress, temperature and dislo-
cation displacement for these levels. As the applied stress increases, (i) the stress converges to
the respective target value faster, (ii) the temperature eventually reaches a higher stable value,
and (iii) the dislocation moves faster. Although the stable temperature, after controlling, rises
with the increase of applied stress, these temperature rises are small (< 2 K). We also note
that even at an initial temperature of 300 K, the temperature increase is no more than 1 K at
an applied stress of 150 MPa. All these cases indicate that setting 9 behaves well for various
applied stress.

4. Dislocation–void interactions

4.1. Constant applied strain rate loading mode

Similar to the dynamics of a dislocation, two loading modes—with constant applied strain
rate or constant applied stress—can be used in the dislocation–void interactions. Here, we
study the effects of the BC on the results of the interaction in the constant applied strain rate
mode, using S1M1, S3M1, and S6M1. It is found that the stress–strain curves coincide with
their counterparts in dislocation dynamics until the dislocation contacts the void. As time pro-
gresses in simulation the stress continues to rise until the dislocation cuts through the void,
after which the stress drops rapidly. The critical stresses for the dislocation to break away from
the void are denoted by the solid arrow in �gure 8. We �nd that the critical stress depends on
the model setting and increases in the order of S6M1, S3M1, and S1M1, which follows the
order of the stress oscillation amplitude in these three cases. The important result here is that
comparedwith the �exible BC, the rigid and semi-rigid BCs may predict a higher critical stress
for dislocation–void interactions.

Since different strain rates and temperatures are often applied in dislocation–void interac-
tion simulations, we investigate these two effects in S6M6, as shown in �gure 9. As in �gure 8,
the solid arrows are used to point to the critical dislocation bypass stresses. Except in the case
with the highest strain rate of 5× 108 s−1, all other cases experience a drop in the stress after
the dislocation breaks away from the void. Thus, the stress increase induced by a high strain
rate (e.g., 5× 108 s−1) dominates both dislocation dynamics and dislocation–void interaction.
Below a critical strain rate (107 s−1), the resulting stress–strain curves have much less �uctua-
tions and the critical stresses converge at both 1 K and 300 K. In addition, when the strain rate
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Figure 8. Shear stress–strain curves for S1M1, S3M1, and S6M1, and their counterparts
in dislocation–void interaction cases. The solid arrows denote the critical stresses to
break away from the void. S1: rigid boundary condition with no thermostat in B1 (B2)
and A; S3: semi-rigid boundary condition with no thermostat in B1 (B2) and A; S6:
�exible boundary condition with thermostat in B1 (B2) and no thermostat in A. M1: the
simulation cell with 64 nm × 10 nm × 20 nm.

Figure 9. Shear stress–strain curve of S6M6-void at different strain rates and an ini-
tial temperature of (a) 1 K and (b) 300 K. The solid arrows denote the critical stresses
for the dislocation to cut though the void. S6: �exible boundary condition with thermo-
stat in B1 (B2) and no thermostat in A. M6: the simulation cell with 50 nm × 10 nm
× 62.5 nm.

is higher than 107 s−1 and lower than 5× 108 s−1, the stress drop, if any, is relatively small
after the dislocation bypasses the void. By contrast, the strain rates less than or equal to 107 s−1

result in a steep stress drop. Such a rapid drop is alignwith that in discrete dislocation dynamics
simulations, in which the stress is largely released after the dislocation bypassing the obsta-
cles [84]. All these indicate that the strain rate for dislocation–void interaction should be no
greater than 107 s−1 in order to obtain reliable results. This critical strain rate (107 s−1) is much
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Figure 10. Atomic con�gurations at the shear strains of (a) 0.001 350, (b) 0.001 800,
(c) 0.002 550, (d) 0.005 250, (e) 0.006 300 and (f) 0.006 375 in the case of S6M6-void
with the strain rate of 107 s−1 and an initial temperature of 1 K, respectively. In all
the atomic con�gurations, body-centered cubic (BCC) atoms, hexagonal close-packed
(HCP) atoms and those with unknown coordination structure are colored by blue, red
and gray, respectively. Note that the void remains at the same location during the whole
bypassing process. S6: �exible boundary condition with thermostat in B1 (B2) and no
thermostat in A. M6: the simulation cell with 50 nm × 10 nm × 62.5 nm.

higher than those in most experimental conditionwhich is an unavoidable issue forMD simula-
tions due to the small timestep size. Nevertheless, MD simulations can still uncover important
dislocation-mediated mechanisms at the nano-scale, which would be dif�cult in experiments.

It should be noted that the strain rate imposed in MD simulations is different from that in
realmaterial. The former has the elastic character and the latter behaves in more plastic form. In
addition, the strain rate in MD simulations involves thermal activation events, which affect the
critical stress to bypass void in our simulations and manifested by the strain rate dependence to
some extent [85]. In addition, low and high strain rates inMD simulations can introduce inertial
effects to different extents, while such an effect is absent in the real quasistatic experimental
conditions. This effect is also con�rmed in MD dislocation simulation with constant applied
stress loading [86, 87], in which different applied stresses induce different strain rates. Given
that the strain rate higher than 107 s−1 is too high to obtain reliable results in dislocation–void
interactions and the strain rate of 106 s−1 is the lower bound in MD due to the limitation of
the computational power, only a narrow strain rate range between 106 s−1 and 107 s−1 can be
considered.

To better describe the dislocation–void interaction, we show the atomic con�gurations at
different loading stages in the case of S6M6-void with the strain rate of 107 s−1 and an initial
temperature of 1 K. Dissociated into leading and trailing partials, the edge dislocation propa-
gates initially upon shear loading along the slip direction on the glide plane (�gure 10(a)). Then,
the leading and trailing partial dislocations are sequentially pinned by the void, as shown in
�gures 10(b) and (c). With an increasing shear strain, the pinned leading partial dislocation
bows out and breaks away from the void (�gures 10(d) and (e)). Finally, the trailing partial
dislocation is also unpinned and then the entire dislocation bypasses the void (�gure 10(f)).

4.2. Constant applied stress loading mode

Last, we study the dislocation–void interactions using the constant applied stress loadingmode
at an initial temperature of 1 K. The critical applied stress is determined to be 70± 1 MPa.
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Figure 11. (a) Stress–time and (b) strain–time curves for S9M6 and S9M6-void at an
applied stress of 70 MPa and an initial temperature of 1 K. (c) Stress–strain curve for
S9M6-void at a strain rate of 1.15 × 108 s−1 and an initial temperature of 1 K. The dashed
and solid arrows denote the stress at which the dislocation contacts the void and the
critical stress when the dislocation breaks away from the void, respectively. S9: super-
particle boundary condition with thermostat in B1 (B2) and no thermostat in A. M6: the
simulation cell with 50 nm × 10 nm × 62.5 nm.

Although the applied stress is only 70 MPa, in studying the dynamics of the dislocation, the
internal stress for S9M6 oscillates and may exceed 80 MPa. It takes some time for the inter-
nal stress to converge to a stable level, analogous to the plots in �gure 7(a). As shown in
�gure 11(a), once the dislocation contacts the void, the stress–time curve of S9M6-void devi-
ates from that of S9M6 and then rises up to 132 MPa, where the dislocation breaks away
from void. On the other hand, the strain rate drops when the dislocation interacts with the
void (�gure 11(b)), indicating the interaction between the dislocation and the void can lower
the strain rate in the constant applied stress loading mode. Before the dislocation contacts the
void, the average strain rate is about 1.15× 108 s−1. For comparison, the stress–strain curve
for S9M6-void in the constant applied strain rate loading mode with a strain rate of 1.15× 108

s−1 is displayed in �gure 11(c), in which the critical stress for the dislocation to bypass the void
is found to be 133 MPa. This consistency implies both loading modes can be used to measure
the critical dislocation for dislocation bypass. However, one difference exists in that the strain
rate in the constant applied stress loadingmode is associated with the applied stress and cannot
be adjusted freely.

5. Conclusions

In this work, large-scale MD simulations are performed to investigate the effects of certain
modeling parameters on dynamics of an edge dislocation and its interactions with a void in
copper. The main conclusions are the following.

• Comparedwith rigid, linear-rigid and semi-rigid BCs, the �exible BC behaves better in the
constant applied strain rate loading mode, characterized by its negligible stress oscillation
as a dislocation moves in a lattice. As the strain rate increases, the discrepancy among
these BCs vanishes. As the aspect ratio Lx/Lz increases, the stress �uctuations induced by
the rigid BC become larger, while those by the �exible BC remain small.

• In both loading modes, the partial thermostat is advantageous over the full thermostat and
no thermostat, because it can maintain the desired temperature, while not interfering with
the dislocation motion.

• The BC plays an important role in both dislocation dynamics and dislocation–void inter-
action. In the constant applied strain rate loading mode, the �exible BC results in a much
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smaller stress oscillation amplitude than non-�exibleBCs including rigid, linear-rigid, and
semi-rigid BCs. The stress oscillations induced by BCs during dislocation dynamics can
result in a higher critical stress for the dislocation to bypass the void.

• At both low and high temperatures, the strain rate effect is signi�cant in dislocation–void
interaction. A strain rate of no more than 107 s−1 is recommended in order to achieve a
converged result for the critical dislocation bypass stress.

• The constant applied stress loading mode is more suitable if one were to calculate the
dislocation mobility, while the constant applied strain rate loading mode is better in the
dislocation–void interaction cases. Both loading modes provide a consistent critical stress
to cut through the void.

• Considering the optimum model settings affect similarly the dislocation motion and the
stress release after bypassing in all dislocation–obstacle interactions, the conclusions for
dislocation–void interaction problem, representing the optimum simulation settings, may
also apply to more general dislocation–obstacle problems, involving different obstacle
types and crystal structures, e.g., dislocation–precipitate, dislocation-Frank loop, and dis-
location–stacking fault tetrahedron interactions in other FCC, BCC and HCPmetals. Such
optimum simulation settings include the �exible BC, the partial thermostat, lower strain
rate (no higher than 107 s−1), larger simulation cell and the optimum aspect ratio (0.8).
The related LAMMPS �les for dislocation–void interaction can be downloaded from
https://github.com/wrj2018/MSMSE_2020.
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