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A B S T R A C T   

The generalized stacking fault energies (GSFE) and Peierls stresses are strongly related to the mechanical 
properties of refractory metals. In this work, the GSFE curves and Peierls stresses of screw and edge dislocations 
in four body-centered cubic refractory metals (Mo, Nb, Ta, and W) on the {110}, {112}, and {123} slip planes are 
calculated using molecular statics simulations. A recently developed machine learning (ML)-based interatomic 
potential, called the spectral neighbor analysis potential (SNAP), is employed in all simulations. The computed 
GSFE curves achieve reasonable agreement with those from ab initio calculations and predict the asymmetry with 
respect to sense of glide direction on the {112} and {123} planes better than non-ML interatomic potentials. In 
general, SNAP provides screw dislocation Peierls stresses close to those of density functional theory, closer than 
those achieved by non-ML potentials. The screw dislocation Peierls stress values confirm slip symmetry on the 
{110} plane and exhibit pronounced slip asymmetry on the {112} and {123} planes. For all metals, the edge 
dislocation Peierls stress are the lowest on the {110} plane and the highest on the {112} plane. For screw dis
locations, glide on either the {110} or the {123} plane is the easiest.   

1. Introduction 

Refractory metals are metals with high melting points (above 2200 
◦C) [1]. This property makes them desirable materials for a wide range 
of industrial applications [2]. One of the earliest and most well-known of 
these applications is the use of W in incandescent lighting [3]. Today, 
refractory metals are present in many cutting-edge technologies as 
components exposed to extreme environments [4]. Refractory metals, 
for example, can serve as control rods in nuclear energy reactors [5]. 
They also find applications in rocket engines, which must sustain the 
high temperatures from burning rocket fuels. The main engine of Apollo 
Lunar Modules, for instance, consists of 89% Nb [6]. 

While the high temperature strength of refractory metals makes them 
attractive structural materials, it also renders them difficult to shape into 
useful industrial components [7]. Plastic behavior in metals is realized 

by the glide of dislocations on specific crystallographic slip systems or 
slip modes, and for refractory metals, the stresses required to activate 
dislocation glide are relatively high compared to traditional metals like 
steel or aluminum [8]. Dislocation motion involves the breaking and 
forming of bonds across their crystalline glide planes, roughly similar to 
shearing the two halves of the crystal across the plane [9]. The potential 
energy associated with shearing is the generalized stacking fault energy 
(GSFE) [10], and from GSFE calculations, a measure of the ideal shear 
strength can be obtained for the plane [11]. Another basic measure of 
dislocation glide resistance is the Peierls stress, the minimum resolved 
shear stress required for an isolated, stationary dislocation to first move 
[12]. In some cases, the GSFE and Peierls stress can be related [13]. A 
study on body-centered cubic (BCC) Fe demonstrated how variations in 
the GSFE affected the core structure of the edge character dislocations 
[14]. 
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Plastic deformation in refractory metals may possibly occur by 
multiple distinct slip planes, commonly the {110}, {112}, and {123} 
planes [15]. To date, studies on Peierls stresses of refractory metals often 
focused on the {110} plane and less so on the {112} or {123} plane. 
Obtaining key insights into the deformation behavior refractory metal 
components would benefit from a comprehensive understanding of how 
these critical energies and stresses vary with crystallographic glide plane 
and dislocation character. 

Common methods for characterizing dislocation structures and their 
behavior are atomic-scale simulation methods, such as density func
tional theory (DFT) and molecular statics (MS) and dynamics (MD) 
calculations. DFT is the most accurate of the three methods and has been 
used in a few studies to calculate GSFE curves in the 〈111〉 direction on 
the {110} plane and, in few cases, the {112} or {123} plane, for six 
refractory BCC metals: Cr [16], Mo [17,16], Nb [18,19,16], Ta [20,16], 
V [21,16], and W [22–26,16]. Peierls stress calculations via DFT for the 
{110} and/or {112} planes have also been carried out for all these 
metals: Cr [27], Mo [28–32], Nb [31,33], Ta [29,34,31,33], V [31,33], 
and W [22,31,33,32]. DFT calculations are usually limited to a relatively 
small number of atoms, in the range of 20–200 atoms. MS or MD sim
ulations, on the other hand, can be used to study dislocation behavior in 
model crystals of much larger size scales [35], although with less ac
curacy due to the reliance on interatomic potentials [36,34]. In this 
regard, many of the commonly used interatomic potentials, such as the 
embedded-atom method (EAM) and the Finnis–Sinclair (F-S) potentials, 
have been found to have a few issues [37,38]. Classical interatomic 
potentials have been shown to perform poorly in calculating Peierls 
stresses in BCC metals, producing values more than 100% greater than 
DFT calculations due to omission of quantum effects [39]. For BCC Fe, 
properties, such as energies of defective configurations, Peierls poten
tials associated with screw dislocations, and other fundamental bulk 
properties are not satisfactorily reproduced by EAM and F-S potentials 
[40]. 

Recently, machine learning (ML)-based interatomic potentials have 
emerged as a new class of potentials and are rapidly gaining popularity 
[41]. Similar to classical interatomic potentials, ML potentials incor
porate quantum effects only in the construction of the potential. How
ever, ML potentials attempt to remedy the loss of accuracy through 
optimization of potential function parameters through an ML algorithm 
[42]. Unlike classical interatomic potentials, physical approximations 
are not used other than in the reference electronic structure during its 

construction stage. ML potentials have achieved near-DFT accuracy in 
calculating material properties with computational cost more than one 
order of magnitude lower than DFT [43]. In addition, unlike DFT in 
which the computational cost scales quadratically or cubically with the 
number of atoms, the computational cost of atomistic simulations with 
short-range interatomic potentials scales linearly with the number of 
atoms [44]. 

Several kinds of ML potentials have been used for atomistic simu
lations [45], including the high-dimensional neural network potential 
(NNP), spectral neighbor analysis potential (SNAP), Gaussian approxi
mation potential (GAP), and moment tensor potential (MTP). They differ 
in accuracy, computational cost, and training difficulty. In developing 
an ML potential for a new material, training sets that span a wide variety 
of conditions are used to allow the potential to learn and improve 
through ML algorithm. An effective ML algorithm means less training 
difficulty in that less training simulations need to be performed for the 
potential to achieve a certain accuracy. Under these criteria, the most 
accurate ML potentials are the GAP and MTP potentials. However, SNAP 
exceeds GAP in having lower computational cost and exceeds MTP in 
having higher extrapolability [46]. In addition, SNAP has been shown to 
reach reasonable accuracy, while requiring less training data when 
fitting a new material [47]. Note that SNAP is about two to three orders 
of magnitude higher in computational cost than EAM [48]. 

In this paper, we use atomistic simulations employing the SNAP ML 
potential [49] to calculate the GSFE curves and Peierls stresses for edge 
and screw dislocations on three {110}, {112}, and {123} planes in Mo, 
Nb, Ta, and W. We demonstrate that on all three planes, the GSFE curves 
from SNAP agree well with those from DFT. We show that the group VI 
metals, Mo and W, achieve higher peak energies in the GSFE curves 
compared to the group V metals, Nb and Ta. In addition, we show that 
for edge dislocations, the Peierls stress are the lowest on the {110} plane 
and the highest on the {112} plane. For screw dislocations, however, 
glide on either the {110} or {123} plane is the easiest. Our results 
confirm the twinning/anti-twinning slip asymmetry in screw dislocation 
Peierls stress in the {112} plane. We reveal that like the {112} plane, the 
highest order {123} plane also exhibits glide asymmetry. The differ
ences in screw-to-edge Peierls stress ratio and slip-plane anisotropy 
among these four metals are also discussed. 

2. Basic structural parameters 

We first validate SNAP against DFT by calculating the lattice 
parameter a0 and three elastic constants (C11, C12, C44) associated with 
each BCC metal. For a0, two independent calculations are conducted. 
The first measurement is based on relaxation, in which a BCC unit cell 
with a pre-defined lattice parameter a†

0 = 3.2 Å is built and the system is 
relaxed such that the three normal stress components are zero. a0 is 
obtained from the resultant unit cell volume. The second calculation is 
based on the volume-energy relation, which involves constructing a 
series of periodic simulation cells of different a†

0. The bulk energy per 
atom, E†

bulk, is computed for each cell and a0 is obtained from the cell 
with the lowest energy per atom, Ebulk [50]. Results are shown in 
Fig. A.1. 

Table 1 
Lattice parameters a0 (in Å) and equilibrium bulk energy per atom Ebulk (in eV). Volume-energy measurement-based DFT results are from Ref. [16]. All other results are 
newly calculated in this work, but closely following Ref. [16].  

Measurement Method Mo Nb Ta W 

a0  Ebulk  a0  Ebulk  a0  Ebulk  a0  Ebulk  

Relaxation SNAP 3.167 − 10.85  3.326 − 10.1  3.317 − 11.85  3.181 − 12.97  
Relaxation DFT 3.162 − 10.92  3.322 − 10.09  3.321 − 11.81  3.184 − 12.95  

Volume-energy SNAP 3.168 − 10.85  3.326 − 10.1  3.32 − 11.85  3.181 − 12.97  
Volume-energy DFT 3.16 − 10.92  3.324 − 10.09  3.32 − 11.81  3.184 − 12.95   

Table 2 
Elastic constants C11, C12, and C44 (in GPa). The isotropic shear modulus in Hill 
form, μ, is calculated based on C11, C12, and C44. DFT results are from Ref. [16].   

Method Mo Nb Ta W 

C11  SNAP 434.85 266.09 256.79 560.28 
DFT 467.85 249.01 268.13 520.35 

C12  SNAP 169.16 142.57 160.86 217.81 
DFT 158.75 135.43 160.35 199.88 

C44  SNAP 95.87 20.3 66.21 154.64 
DFT 100.22 18.1 77.38 142.42 

μ  SNAP 109.27 32.32 58.19 161.08 
DFT 119.29 29.23 66.94 149.3  
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The list of results in Table 1 demonstrates that for the same metals, 
(i) with the same method, the two measurements of a0 and Ebulk are very 
close and (ii) for the same measurement, SNAP agrees well with DFT. In 
the remainder of this paper, values of a0 based on the volume-energy 
measurement will be used. 

Values of C11, C12, and C44 are obtained using the stress–strain 
method [51]. The SNAP elastic constants also achieve good agreement 
with the DFT constants, differing by less than 10%, as shown in Table 2. 
Based on these results, we proceed with confidence to use SNAP to 
calculate the GSFE and Peierls stresses for these four refractory metals. 
LAMMPS [52] is used for all MS simulations in this paper. 

3. Generalized stacking fault energy 

3.1. Methodology 

With SNAP, we calculate GSFE curves using a method similar to that 

used in Ref. [51]. Simulation cells are first constructed with a 12 Å 
vacuum on one end in the y direction to prevent periodic images from 
interacting with each other. BCC crystal lattice structures are then 
created inside the simulation cells (except the vacuum region). For each 
metal, three different lattice orientations are adopted by making the x-z 
plane correspond to the glide plane of interest. For the {110} plane 
calculation, the orientation of the crystal is set to be x〈112〉, y〈110〉,
z〈111〉. Likewise, for the {112} plane, the model orientation is x〈110〉,
y〈112〉, and z〈111〉. Finally, for the {123} plane, the crystallographic 
orientation is x〈145〉,y〈123〉, and z〈111〉. 

Each GSFE curve is computed by displacing the top half layers of 
atoms with respect to the bottom half in the z〈111〉 direction. Dis
placements are made as equal increment, with each increment being a 
fraction of 0.025 of the Burgers vector magnitude. Following each 
displacement, the top and bottom atomic layers are held fixed, while the 
remaining layers are allowed to relax only in the y direction. Relaxation 
through energy minimization is achieved via the conjugate gradient 
scheme. The minimization process is terminated when (i) the quotient of 
the change in energy in successive iterations and the most recent energy 
magnitude is less than 10− 12 or (ii) when the the global force vector 
length of all atoms is less than or equal to 10− 12 eV/Å. It follows that 41 
GSFE values are obtained along each curve. 

In GSFE calculations, once the displacement is set, the atoms are not 
relaxed along the x direction during energy minimization. The effects of 
relaxing atoms along the x direction are studied in Mo and Nb. Results, 
presented in Fig. B.2, show that this relaxation leads to little changes in 

Fig. 1. Relaxed GSFE curves on the three planes in four BCC refractory metals. SNAP-based results (open symbols) are compared with those from previous DFT 
calculations (filled symbols) from Ref. [16]. 

Table 3 
Number of atoms and number of atomic planes along the y direction for each 
plane.  

Plane No. of atoms No. of planes 

{110} 72 12 
{112} 72 24 
{123} 84 28  
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GSFE. 
A prior DFT study in face-centered cubic (FCC) Ir and Rh [53] found 

that the calculated GSFEs can be overestimated if the number of atomic 
planes used in the simulation cell is too small. Hence, we study the effect 
of the number of atomic planes on GSFE curves, as shown in Fig. C.3. The 
study is done in Nb, whose cutoff distance, 4.701 Å, is larger than those 
of the other three metals, i.e., 4.6 Å for Mo, 4.499 Å for Ta, and 4.499 Å 
for W. It is found that, when the number is too small, the GSFE is 
overestimated, similar to Ir and Rh. More importantly, the analysis 
confirmed that the numbers of atomic planes used in the present cal
culations (summarized in Table 3) provide converged GSFE values. 

For the comparisons between SNAP and DFT that follow, we focus on 
key properties of the GSFE curves, including the unstable stacking fault 
energy (USFE) γusf and the ideal shear strength Tis. They can be calcu
lated from the GSFE curves γgsf via [11]: 

γusf = max[γgsf(dz)] (1)  

Tis = max
[∂γgsf(dz)

∂dz

]

(2)  

Since γusf and Tis are obtained based on discrete GSFE values, one may 
wonder whether the number of GSFE values, currently 41, is sufficient. 
To test this, we recalculated the GSFE curves on the three slip planes in 
Ta and W with 101 values along each curve, and recalculated γusf and Tis. 
Results, shown in Table D.1, suggest that 41 GSFE values along each 
curve are sufficient. 

In addition to the GSFE curves, we also calculate the entire GSFE 
surfaces on the three slip planes in the four metals. The model and 
method are the same, except that the top half atomic layers are also 
displaced along the x direction, in addition to the z direction, to generate 
the entire energetic surface. Note that DFT calculations to date have only 
computed the GSFE curves in the 〈111〉 slip direction [16], not the entire 
GSFE surfaces for any plane. 

3.2. Results and discussion 

Fig. 1 presents the calculated GSFE curves for all three planes in all 

four metals. The MS calculation with SNAP generally produces higher 
GSFE compared to DFT. The GSFE curves for Mo achieve the best 
agreement with DFT, especially for the {110} plane, which only shows a 
4% discrepancy in the peak value, the γusf . The results for Nb display the 
poorest agreement with DFT, where the largest discrepancy of 39% in 
the γusf is seen for the {112} plane. 

According to the hard-sphere model for the BCC lattice, the peak γusf 
in the {110} 〈111〉 GSFE curve should occur at a displacement of b/2 =

(a0/4)〈111〉, indicating that the {110} GSFE curve is symmetric [9]. In 
agreement, calculations from both SNAP and DFT on the {110} planes 
exhibit symmetry for all four metals. By the same hard-sphere model, the 
displacement at γusf should be b/3 for the {112} and {123} higher order 
planes, making their GSFE curves asymmetric. While the DFT calculated 
curves exhibit this asymmetry, the SNAP calculated GSFE curves show a 
slightly lower degree of asymmetry. The closest result to DFT is realized 
with Ta, and the farthest one with W. Nonetheless, the prediction of 
asymmetry made by SNAP is an improvement from those provided by 
previous non-ML potentials. For instance, the calculated GSFE curves on 
the {112} and {123} planes of W with an EAM or an F-S potential are 
symmetric [25]. Although interatomic potentials include quantum ef
fects in their construction, simulations with these potentials do not 
capture their effect on atomic arrangements. The fact that interatomic 
potentials show less or no degree of asymmetry could suggest that in 
order for the GSFE curves to exhibit asymmetry as seen in DFT, quantum 
effects need to be taken into account in the calculations as well. 

The γusf and Tis are compared in Table 4. Unlike γusf ,Tis from SNAP 
lies within ±10% from that of DFT. Table 4 also compares the SNAP and 
DFT results with those from EAM potentials (Mo [54], Nb [55], Ta [54], 
W [54]). In γusf , the EAM results are slightly closer to DFT than SNAP; 
however, in Tis, SNAP results are clearly in most cases closer to DFT. 

Results in Table 4 show that the group VI metals, Mo and W, have 
higher γusf and Tis than the group V metals, Nb and Ta. For the same 
plane, the metal with the highest γusf among the four metals is W, with a 
value approximately twice that of Ta, which has the lowest γusf , another 
feature in which SNAP and DFT agree. 

Besides the GSFE curves, the entire GSFE surfaces in Ta and W are 
presented in Fig. 2 as references. The GSFE surfaces in Mo and Nb, which 
are not shown, are similar. It is found that the GSFE surfaces on different 
planes differ greatly from each other, and from that in FCC metals [53]. 
Notably, on all three planes in all four BCC metals, all 〈111〉 GSFE curves 
sit at local minima, suggesting that the full dislocations would not be 
associated into partials as in FCC metals [56–59]. This also explains why 
allowing relaxation along the x direction does not alter the GSFE curve 
values (Fig. B.2). 

4. Peierls stress 

4.1. Methodology 

We employ the periodic array of dislocations (PAD) model to 
calculate the Peierls stress [61]. Table 5 specifies the number of atoms, 
crystallographic orientations, and initial simulation cell edge lengths (Lx,

Ly, Lz) of the simulation models. An edge or a screw dislocation with 
Burgers vector magnitude of b = (a0/2)〈111〉 is inserted into the center 
of the simulation cell by displacing atoms following linear elasticity 
theory [62–64]. The dislocation line is aligned with the z axis and the 
x–z plane corresponds to the slip plane, in which the dislocation lies. 
Periodic boundary conditions are applied in the x and z directions and 
traction-free boundary conditions are in the y direction [65]. Fig. 3 
shows the core structures of six dislocations in Nb. 

An incremental strain tensor ∊ is applied by gradually applying a 

Table 4 
USFEs γusf (in mJ/m2) and ideal shear strengths Tis (in GPa). DFT results are from 
Ref. [16]. EAM potentials for Mo, Ta, and W are from Ref. [54], and that for Nb is 
from Ref. [55]. Note that EAM results for Mo and Nb have been reported in terms 
of γusf [51] and Tis [60].  

Plane  Method Mo Nb Ta W 

{110} γusf  SNAP 1498.8 912.94 830.8 1910.3 
DFT 1443.39 676.78 724.46 1772.74 
EAM 1458.05 604.87 751.11 1740.14 

Tis  SNAP 17.41 9.64 9.32 23.17 
DFT 17.7 7.51 7.78 20.99 
EAM 33.1 14.1 8.74 15.56  

{112} γusf  SNAP 1635.8 1072.7 977.64 2121 
DFT 1465.13 768.82 838.39 1845.83 
EAM 1689.03 697.23 868.3 2011.13 

Tis  SNAP 20.2 12.27 12.21 27.37 
DFT 21.67 9.88 11.4 26.46 
EAM 58.4 24.5 10.14 18.44  

{123} γusf  SNAP 1632.7 1031 950.93 2114.2 
DFT 1481.35 767.42 832.34 1854.3 
EAM 1657.93 684.71 852.26 1975.71 

Tis  SNAP 19.75 11.59 11.65 26.75 
DFT 20.35 8.91 9.97 24.99 
EAM 19.3 8.1 9.94 8.11  
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simple shear to the simulation cell. Each simulation cell starts as a 
cuboid and distorts to a triclinic shape with an increasing shear strain. 
The non-zero shear strain component for the screw dislocation case is 
∊yz, while the non-zero component for the edge dislocation case is ∊xy. 
All other strain components are zero. The strain increment at each step is 

2 × 10− 5 for edge dislocations and 2 × 10− 6 for screw dislocations, until 
the maximum strain of 0.12 is reached. Similar increments were used in 
a recent MS work for edge and screw dislocations in Mo and Nb [60,68] 
and an earlier MS work for an edge dislocation in Fe [61]. With SNAP, 
we have recalculated selected Peierls stresses with smaller stress 

Fig. 2. Relaxed GSFE surfaces on {110}, {112}, and {123} planes in Ta and W, based on SNAP.  

Table 5 
The number of atoms, crystallographic orientations, and edge lengths for each simulation cell for Nb. The cells of other metals are the same in terms of number of atoms 
and crystallographic orientations, but the edge lengths are scaled with respect to their own lattice parameters.  

Plane Dislocation No. of atoms x y z Lx (Å)  Ly (Å)  Lz (Å)  

{110} Edge 70308 [111] [110] [112] 401.8 395.1 8.1 

Screw 49980 [112] [110] [111] 399.2 399.8 5.8 

{112} Edge 80352 [111] [112] [110] 401.8 391.1 9.4 

Screw 49980 [110] [112] [111] 399.8 399.2 5.8 

{123} Edge 187488 [111] [123] [541] 401.8 398.2 21.6 

Screw 51072 [541] [123] [111] 409.5 398.2 5.8  
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increments and found the results to differ by less than 1%. 
Following each incremental strain, two minimization procedures are 

employed: the conjugate gradient algorithm and the fast inertial relax
ation engine method [69]. The minimization stops when either of the 
conditions stated earlier in the GSFE calculations in Section 3.1 is met. 
The Peierls stress is then identified as the minimum stress at which the 
dislocation starts to move. In all planes, we carry out separate simula
tions for shearing in the positive and negative directions to assess the 
slip asymmetry in the Peierls stress. We refer to positive shearing as 
“forward”, and negative shearing as “backward”. For the {112} plane 
only, the backward sense we assigned is commonly known as the anti- 
twinning direction, while the forward one the twinning direction [70]. 

Before embarking on systematic atomistic simulations in the four 
refractory metals, we conduct a study on the effects of the simulation cell 
size on the Peierls stress value. For this, we choose Nb with an edge 
dislocation on the {112} plane and apply the shear strain in the twinning 
direction. For the effect of dislocation line length, Lx and Ly are fixed, 
while Lz is varied from 4.7, 9.4, 14.1, to 18.8 Å. For the effect of the other 

two edge lengths, a fixed dislocation line length (Lz = 9.4 Å) is chosen, 
while Lx × Ly is varied from 301.0 × 293.3 Å2,401.8 × 391.1 Å2, to 
502.6 × 488.8 Å2. It is shown that in general the Peierls stress increases 
as Lz decreases or as Lx and Ly increase. Note that a recent study on the 
same dislocation in Nb using an EAM potential [55] or an F-S potential 
[71] showed that the effect of Lx and Ly on the Peierls stress value de
pends on the interatomic potential [68], hence justifying the need to 
identify these dimensions for SNAP. Overall, the resulting Peierls 
stresses here do not show a strong correlation with the simulation cell 
size. With changing Lz, the Peierls stress varies within ±2%, and with 
varying Lx and Ly, it varies within ±8%. In all subsequent simulations, 
we employ the simulation cell sizes given in Table 5 for Nb; cell sizes are 
scaled with lattice parameters for the other three metals. 

4.2. Results and discussion 

In this section, the MS results using SNAP are compared with those 
from previous MS simulations, near 0 K MD simulations, ab initio 

Table 6 
Peierls stress values (in MPa) for edge dislocations on different slip planes in four BCC metals. All used MS simulations except [73], which used near 0 K MD simu
lations. Data from Ref. [68] were taken for comparable sizes (edge length or diameter per dislocation ≈ 50 nm) and the same shear-controlled loading as the present 
work. T: twinning; AT: anti-twinning; fw: forward; bw: backward.  

Metal Model Potential {110}fw {110}bw {112}fw (T) {112}bw (AT) {123}fw {123}bw 

Mo PAD SNAP [73] 138 134 1037 710 231 208 
Mo [73] FBC SNAP [73] 76 – – – – – 
Mo [60] PAD EAM [54] 50 50 533 734 160 117 
Mo [74] FBC MEAM [74] – – 150 – – – 

Nb PAD SNAP [73] 23 25 282 316 31 85 
Nb [73] FBC SNAP [73] 29 – – – – – 
Nb [60] PAD EAM [55] 6 6 118 99 12 13 
Nb [68] FBC EAM [71] – – 509 577 – – 
Nb [68] FBS EAM [71] – – 493 574 – – 
Nb [68] PAD EAM [71] – – 504 549 – – 
Nb [68] Dipole-H EAM [71] – – 517 567 – – 
Nb [68] Dipole-V EAM [71] – – 516 567 – – 
Nb [68] Quadrupole EAM [71] – – 524 566 – – 
Nb [68] FBC EAM [55] – – 97 121 – – 
Nb [68] FBS EAM [55] – – 102 129 – – 
Nb [68] PAD EAM [55] – – 105 94 – – 
Nb [68] Dipole-V EAM [55] – – 119 99 – – 
Nb [68] Quadrupole EAM [55] – – 121 101 – – 

Ta PAD SNAP [73] 20 21 162 172 4 4 
Ta [73] FBC SNAP [73] 41 – – – – – 
Ta [75] FBS F-S [71] 30 – – – – – 

W PAD SNAP [73] 8 7 2276 1042 736 213 
W [73] FBC SNAP [73] 56 – – – – –  

Fig. 3. Atomistic structures of six dislocation cores in Nb, visualized in OVITO [66]. Atoms are colored by adaptive common neighbor analysis [67]: blue and white 
correspond to BCC and disordered local lattice structures, respectively. 
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calculations, and experiments. We exclude estimates of Peierls stress 
calculated from the GSFE, e.g., Ref. [72,13]. The number of different 
potentials used previously is large, including the F-S, EAM, modified 
embedded-atom method (MEAM), bond-order potential (BOP), modi
fied generalized pseudo potential theory (MGPT), first-principles-based 
embedded atom model force field (qEAM-FF), and the angular depen
dent potential (ADP). The ab initio calculations used are either DFT or 
the tight-binding (TB) method. The TB calculations used the 
environment-dependent tight-binding (EDTB) potential, while the DFT 
calculations employed the projector augmented wave (PAW) method, 
ultrasoft pseudopotential (USPP), and norm-conserving pseudopotential 
(NCPP). 

In addition to the interatomic potential, prior MD and MS works used 
different initial dislocation configurations for calculating the Peierls 
stress. As mentioned, for most of the SNAP Peierls stress calculations 
here, we use the PAD configuration. Apart from PAD, six other model 
configurations have been adopted in the literature, namely the fixed 
boundary circle (FBC), fixed boundary square (FBS), horizontal dipole 
(dipole-H), vertical dipole (dipole-V), quadrupole, and Green’s function 
boundary condition (GFBC) models. In a recent study, the Peierls 
stresses for an edge dislocation on the {112} plane in Nb calculated 
using PAD and the first five aforementioned models were compared 
[68]. It was found that even with the same interatomic potential, cell 
size, material, and dislocation character, these six configuations produce 
significantly different Peierls stresses. In addition, only the Peierls stress 
from the PAD model converged to a single value as the simulation cell 
increased. In this work, at the end of the discussion, for the screw 
dislocation in Ta and W, we compare the SNAP Peierls stress from six 
model configurations. 

4.2.1. Peierls stress of edge dislocations 
Table 6 summarizes the calculated Peierls stresses for edge disloca

tions. In all cases, the dislocation glides on the habit plane. For com
parison, Table 6 also lists edge dislocation Peierls stresses previously 
calculated with atomistic simulations, involving other interatomic po
tentials and/or other model configurations. To the best of our knowl
edge, neither ab initio calculations nor measured values for the Peierls 
stresses of edge dislocations in any of these metals have been previously 
reported. 

Considering all Peierls stresses computed to date shows substantial 
variation among them. Li et al. [73] used the same SNAP to calculate the 
Peierls stresses on the {110} plane in all four metals but in near 0 K MD 
simulations. For Nb and Ta, their values are close to ours, within 20 
MPa, but for Mo and W, there exist larger differences. In general, dis
crepancies can be attributed to the choice of cell size and model 
configuration. They used the FBC model configuration and a smaller cell 
size of 20 nm diameter compared to the approximately 40 nm size used 
in the current PAD configuration. The remaining prior atomistic simu
lation studies used the MS method with non-ML interatomic potentials. 
For all three planes in Nb and Mo, the SNAP results are higher by 
approximately 93% than the Peierls stresses recently calculated using 
EAM potentials [60]. The Peierls stress on the {112} plane calculated for 
Mo using an MEAM potential [74] is much smaller, by 89% compared to 
the value of this study. Jian et al. [68] computed Peierls stresses of Nb in 
both twinning and anti-twinning directions on the {112} plane using an 
EAM [55] and an F-S potential [71]. Using the same loading mode, 
model configuration, and a similar cell size as here, their results when 
using EAM are higher by 330% than ours but when using F-S, they are 
lower than ours. In Ta, another calculation on the {110} plane using an 

Table 7 
Peierls stress or CRSS (in MPa) for screw dislocations on different slip planes in Mo.  

Method Model Potential {110}fw {110}bw {112}fw (T) {112}bw (AT) {123}fw {123}bw 

MS PAD SNAP [73] 4054 4054 4317* 5510* 3932* 4808* 
MS [76] Quadrupole F-S [71] 2400 – – – – – 
MS [60] PAD EAM [54] - - 2496 3842 - - 
MS [74] FBC MEAM [74] 1790 – 2020 2360 – – 
MS [77] FBC BOP [77] 2600 – 2800 3500 – – 
MS [78] GFBC MGPT [78] 866 – 1235 1876 – – 
MS [79] GFBC MGPT [80] 2610 – 2340 7290 – – 
MS [81] FBS MGPT [80] – – 3440* – – – 
MS [82] FBS MGPT [80] 6192 – 3440* – – – 
MS [78] FBC F-S [71] 2354 – 2372 4199 – – 
MS [83] FBS F-S [71] 3510 – 3510 5990 – – 
MD [73] FBC SNAP [73] 1376 – – – – – 
TB [76] Quadrupole EDTB [84] 3800 – – – – – 

DFT [30] Quadrupole USPP [85] 1800 – – – – – 
DFT [28] GFBC USPP [85] 2085 – 1740 3480 – – 
DFT [32] Quadrupole USPP [85] 1350 – – – – – 
DFT [31] Quadrupole PAW [86] 1600 – – – – – 
DFT [29] GFBC USPP [85] 2420 – 1738 3173 – – 
Exp [87]   870 – 690 – – – 
Exp [88]   730 – – – – –  

Table 8 
Peierls stress or CRSS (in MPa) of screw dislocations on different slip planes in Nb.  

Method Model Potential {110}fw {110}bw {112}fw (T) {112}bw (AT) {123}fw {123}bw 

MS PAD SNAP [73] 840 827* 1452* 2106* 1177* 568* 
MS [90] FBC EAM [90] 1313* – 1130 3844 – – 
MS [60] PAD EAM [55] - - 859 - - - 
MS [68] FBC EAM [90] - – 1264 – – – 
MD [73] FBC SNAP [73] 889 – – – – – 
DFT [31] Quadrupole PAW [86] 740 – – – – – 
DFT [33] Quadrupole USPP [85] 650–860 – - - – – 
Exp [91]   415 – – – – –  
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F-S potential [71] was reported in Ref. [75] and the value obtained is 
comparable to the one we obtain here with SNAP. 

Our results show that for all four refractory metals, the Peierls 
stresses for edge dislocations on the {110} and {123} planes are rela
tively low compared to those on the {112} plane. The highest Peierls 
stress is for W in the {112} plane with 2276 MPa in the forward direc
tion. In addition, no metal consistently achieves the highest or lowest 
Peierls stress for all planes. For example, among the four metals, Mo 
achieves the highest Peierls stress on the {110} plane and W the highest 
on the {112} and {123} planes. The Peierls stresses are the lowest for Ta 
on the {123} plane, and for W on the {110} plane. 

4.2.2. Peierls stress or CRSS of screw dislocations 
Tables 7–10 present the Peierls stresses for screw dislocations in the 

four metals calculated here and by simulation or measured in experi
ments from other studies. Since screw character dislocations can cross 
slip, the screw dislocation may not necessarily glide on its habit plane 
when the deformation is applied. This behavior has been studied in 
detail in Ref. [89] and was attributed to the incorrect dislocation core 
structures rendered by the interatomic potentials. Here, in some metals 
and glide planes, we find that the dislocation glides on its habit plane, 
while in others it cross slips onto another plane. When it remains on its 
habit plane, the critical stress to move the dislocation is the Peierls 
stress. However, should it cross slip and glide on another plane, we refer 
to this motion as unstable and the critical stress for first motion as a 
critical resolved shear stress (CRSS) instead of a Peierls stress. In 
Tables 7–10, all CRSSes are marked with *. In a few studies, the critical 

stresses were not reported when the screw dislocation cross slipped off- 
plane [60]. In other works, the critical stress was reported regardless of 
whether the dislocation actually moved on the intended plane; in these 
cases, the critical stress is referred to as the Peierls stress. Since the 
Peierls stress on the {110} plane is expected to be symmetric, most prior 
studies did not specify the direction for which the Peierls stress is 
computed. Although their true directions are unknown, all Peierls stress 
calculated on the {110} plane previously are listed as forward direction 
in Table 5. 

In Table 7, for Mo, the SNAP Peierls stresses are higher in the {110} 
and {112} glide planes compared to those using other interatomic po
tentials, from experiments, and from DFT. For the {110} plane, DFT 
calculations and experiments reported values in the range of 1350–2420 
MPa, while previous MS and TB results ranged from 866–6192 MPa. Our 
result is 4054 MPa. This value is on average 1.54 times larger than those 
from non-ML interatomic potentials. It is more than twice the value 
obtained by Li et al. [73] using SNAP. As mentioned earlier, differences 
may arise from differences in the model size and model configuration 
used (PAD here vs. FBC there). We adopt a size that is two times large; it 
is known that the Peierls stress values are sensitive to simulation cell size 
[68]. 

For Nb, the Peierls stress on the {110} plane by SNAP (840 MPa) is 
very close to those from DFT reported in the literature (650–860 MPa) 
[31,33] and is much lower than the CRSS predicted by an EAM potential 
(1313 MPa) [90]. In the SNAP calculation, the screw dislocation glides 
stably on the {110} plane, whereas in the EAM calculation it does not. 
However, the opposite is true for the {112} plane, where the screw 

Table 9 
Peierls stress or CRSS (in MPa) of screw dislocations on different slip planes in Ta.  

Method Model Potential {110}fw {110}bw {112}fw (T) {112}bw (AT) {123}fw {123}bw 

MS PAD SNAP [73] 956* 956* 893* 3583* 845* 2123* 
MS [75] FBS F-S [71] 2785 – – – – – 
MS [92] FBC qEAM-FF [93] 740 – – – – – 
MS [83] FBS F-S [71] 5916 – 4120 14832 – – 
MS [78] FBC F-S [71] 3060* – 2149 – – – 
MS [82] FBS MGPT [20] 1875 – 1375* – – – 
MS [20] GFBC MGPT [20] 640* – 605 1400 – – 
MS [89] FBS F-S [71] 2864* – 2033 7207 – – 
MS [89] FBS EAM [94] 2023 – 2320 8624* – – 
MS [89] FBS EAM [95] 5698* – 3634 9416 – – 
MS [89] FBS EAM [96] 3357* – 2012 8357* – – 
MS [89] FBS ADP [97] 1242* – 842 4086* – – 
MD [73] FBC SNAP [73] 912 – – – – – 
MD [98] Dipole-H qEAM-FF [93] 1800 – – – – – 
MD [99] Dipole-H qEAM-FF [93] – – 790 1430 – – 
MD [34] Quadrupole qEAM-FF [93] 655 – 575 1075 – – 
DFT [34] Quadrupole NCPP [100] 1410–1760 – – – – – 
DFT [29] GFBC USPP [85] 1550 – 701 3591 – – 
DFT [31] Quadrupole PAW [86] 860 – – – – – 
DFT [33] Quadrupole USPP [85] 810–920 – – – – – 
Exp [101]   340 – – – – –  

Table 10 
Peierls stress or CRSS (in MPa) of screw dislocations on different slip planes in W.  

Method Model Potential {110}fw {110}bw {112}fw (T) {112}bw (AT) {123}fw {123}bw 

MS PAD SNAP [73] 3773 3772 3958* 5937 3689 4569* 
MD [73] FBC SNAP [73] 1686 – – – – – 
DFT [22] Quadrupole PAW [86] 2850 – – – – – 
DFT [31] Quadrupole PAW [86] 2400 – – – – – 
DFT [32] Quadrupole USPP [85] 1970 – – – – – 
DFT [33] Quadrupole USPP [85] 1800 – – – – – 
Exp [102]   960 – – – – –  
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dislocation cross slips away from the {112} plane in Nb by SNAP, 
whereas it glides stably by the two EAM potentials [90,55]. No DFT 
results on the {112} plane exist for Nb. 

In Table 9, prior atomistic simulations for the {110} plane in Ta 
obtained Peierls stresses ranging from 655–5916 MPa and DFT results 
yielding 810–1760 MPa. Our SNAP-based CRSS value is 956 MPa, which 
is much closer to those based on DFT than those predicted by non-ML 
interatomic potentials. 

In W, on the {110} plane, our SNAP-based Peierls stress is 3773 MPa, 
while DFT data range from 1800 to 2850 MPa. To the best of our 
knowledge, no non-ML potential has been applied to calculate the 
Peierls stress in W, for either an edge or screw dislocation, on any of the 
three planes studied here. Among the four metals, the SNAP-based 
Peierls stresses agree well with DFT measurements except for Mo and 
W. However, a prominent characteristic of ML potentials is its ability to 
improve through a proper expansion of training data. The current SNAP 
training data do not include any geometries containing dislocations. In 
theory, adding some geometries with dislocations explicitly included 
can improve the accuracy in Peierls stress measurements. It is also worth 
mentioning that these additional training data come with a higher 
computational cost. 

Experimentally measured Peierls stresses in BCC metals are provided 
in the last rows of Tables 7–10. For Peierls stress calculations, screw 
dislocations on the {110} plane is the most commonly studied disloca
tion in the literature. For the {112} plane, no experimental results for 
screw dislocations have been previously reported. Calculations of Peierls 
stresses are quantitatively and consistently off from measurement. 
Measurements are typically much lower than any of the calculated 
Peierls stresses and they are even lower than the DFT data in all four 

metals. On the one hand, it can be concluded that atomistic calculations 
using interatomic potentials can be useful in providing trends and 
relative values of dislocation resistance, but not precise values. But on 
the other hand, it has been suggested that the low Peierls stresses for 
screw dislocations from experiments could be misleading due to possible 
internal stress concentrations that reduced the energy barrier for kink 
nucleation [74,103,104]. 

4.2.3. Effect of model configuration for screw dislocations 
As mentioned, a recent work studied the effects of the model 

configuration on the Peierls stress values of an edge dislocation on the 
{112} plane in Nb [68]. Screw dislocations, however, were not studied 
there, and since edge dislocations glide stably on the habit plane, the 
question remains whether the model configuration can also affect the 
stability of screw dislocation glide. 

To address this question, we examine the effect of model configu
ration on the glide of {112} screw dislocations in Ta and W. We consider 
five additional models apart from PAD: FBC, FBS, dipole-H, dipole-V, 
and quadrupole. Results presented in Table 11 find that the model 
configuration has a strong effect on the plane on which the screw 

Fig. 4. Stress–strain curves for different models to calculate the Peierls stress or CRSS along the anti-twinning direction on the {112} plane in Ta. (b) is the zoom-in of 
a small region in (a) that encompasses the first stress drops, denoted by six arrows. Peierls stresses or CRSS are values of the shear stress at the first drop, which are 
summarized in the second row in Table 11. 

Table 11 
Peierls stress or CRSS (in MPa) of a screw dislocation on the {112} plane in Ta and W based on different model configurations.  

Metal Direction PAD FBC FBS Dipole-H Dipole-V Quadrupole 

Ta Twinning 893* 973* 990* 948* 925* 936* 
Anti-twinning 3583* 3700 3643 3481* 3582 3618 

W Twinning 3958* 4046 4029 4081* 4002* 3991 
Anti-twinning 5937 6050 5980 5918 5975 5975  

Table 12 
CoV in Peierls stress or CRSS across all planes for each dislocation in each BCC 
metal. Results are based on MS simulations in this paper using SNAP, as pre
sented in Tables 6–10.   

Mo Nb Ta W 

Edge 0.839 1.025 1.25 1.116 
Screw 0.125 0.437 0.646 0.186  
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dislocation ultimately glides. In Ta, the twinning direction glide is un
stable in all models. The anti-twinning glide is also unstable when using 
the PAD and dipole-H model configurations, but stable when the other 
four model configurations are used. Notably, the stress–strain curves are 
all similar, as shown in Fig. 4, regardless of whether the glide is stable or 
not. In W, anti-twinning direction glide on the {112} plane is stable for 
all model configurations. The twinning direction, however, is unstable 
in the PAD, dipole-H, and dipole-V configurations, but stable in the other 
three. For the same metal, the Peierls stress values obtained under stable 
glide from the different configurations are close, lying within 1.8%, 
while the CRSS values obtained when the dislocation cross slips to 
another plane deviates slightly more, by 5.4%. Model configurations 
that support stable glide can yield consistent values, provided that all 
else is equal. 

4.2.4. Anisotropy in critical stress 
The degree of slip-plane anisotropy can be measured by calculating 

the coefficient of variation (CoV) in Peierls stresses or CRSS among all 
distinct planes belonging to each metal [60]. For each dislocation, the 
CoV is calculated as the standard deviation divided by the mean among 
the six cases (three slip planes, for each of which there are two shearing 
directions). The CoVs of the four metals are summarized in Table 12. For 
the edge dislocation, the four metals exhibit a similar degree of slip- 
plane anisotropy in the Peierls stress. These values are close to those 
from a recent MS study for four slip planes, additionally including the 
{134} plane, using EAM potentials: 1.13 for Mo and 1.31 for Nb [60]. On 
the other hand, screw dislocations possess smaller CoVs in Peierls stress 
or CRSS than edge dislocations, indicating that their critical stress values 

are more uniform across different slip planes. For both dislocations, CoV 
is the highest in Ta and the lowest in Mo. 

Another measure of stress anisotropy is glide asymmetry, the dif
ference between the Peierls stress or CRSS in the forward and backward 
slip directions. Table 13 summarizes the glide asymmetry ratios. About 
the glide direction (i.e., x axis), the atomic structure of the {110} plane is 
symmetric (see Fig. 3(a,d)), and based on this geometric argument 
alone, the Peierls stress or CRSS is expected to be equal in the forward 
and backward direction. The calculated Peierls stresses or CRSS in the 
{110} plane exhibit near glide symmetry, with ratios ranging from 
0.875–1.05. Despite this, in some cases, the motion of the screw dislo
cation is not necessarily symmetric. In Nb, for instance, the dislocation 
cross slips onto another plane when sheared in one direction but glides 
on the habit plane in the other. 

For the {112} plane, glide asymmetry is expected for screw dislo
cations. Our results indicate glide asymmetry in all cases. For the screw 
dislocations, the Peierls stress or CRSS in the anti-twinning (AT) direc
tion is always higher than that in the twinning (T) direction on all slip 
planes in all four metals, where the AT/T ratios range around 1.28–4.01. 
These ratios are similar to the range 1.170–4.85 from MS and 1.83–5.12 
from DFT calculations (see Tables 7–10). The AT/T asymmetry on the 
{112} plane is also a good indicator of the non-Schmid effect, which is 
commonly observed in BCC metals [32]. This effect is captured by SNAP, 
as shown in Fig. 5. For edge dislocations, the glide asymmetry is not 
consistent as it is for screw dislocations. SNAP predicts that the anti- 
twinning Peierls stress is higher than the twinning one in Nb and Ta, 
but reversed in Mo and W. Evaluation of computed Peierls stress for edge 
dislocations from other studies also finds that the AT/T asymmetry de
pends on the material, interatomic potential, and model configuration 
[68,60]. 

Fig. 5. Selected SNAP-based Peierls stresses or CRSS of screw dislocations in four BCC metals. Results for the {110} plane are averaged between forward and 
backward directions, which are denoted as σ110. Results based on Schmid’s law follow σ110/cosχ, where χ is the degree from {110} plane. The anti-twinning and 
twinning directions on the {112} plane are, respectively, 30 and − 30 degrees from the {110} plane. 

Table 13 
Backward-to-forward ratios in the Peierls stresses or CRSS on three slip planes in 
four BCC metals. Results are based on MS simulations in this paper using SNAP, 
as presented in Tables 6–10.  

Metal Dislocation {110} {112} {123} 

Mo Edge 0.971 0.685 0.9 
Screw 1 1.276 1.223 

Nb Edge 1.087 1.121 2.742 
Screw 0.985 1.45 0.483 

Ta Edge 1.05 1.062 1 
Screw 1 4.012 2.512 

W Edge 0.875 0.458 0.289 
Screw 1 1.5 1.239  

Table 14 
Screw-to-edge ratios in the Peierls stress or CRSS on different slip planes in four 
BCC metals. Results are based on MS simulations in this paper using SNAP, as 
presented in Tables 6–10.  

Metal {110}fw {110}bw {112}fw 

(T) 
{112}bw 

(AT) 
{123}fw {123}bw 

Mo 29.38 30.25 4.16 7.76 17.02 23.12 
Nb 36.52 33.08 5.15 6.66 37.97 6.68 
Ta 47.8 40.52 5.51 20.83 211.25 530.75 
W 471.63 538.85 1.74 5.7 5.01 21.45  
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Like the {112} plane, the {123} plane exhibits similar glide asym
metry, where the ratio of Peierls stresses or CRSS in the two opposing 
senses of slip is 0.29–2.74. Unlike the {112} plane, however, the {123} 
plane has no association with twinning. For all metals except Nb, the 
forward slip direction on the {123} plane has a lower Peierls stress or 
CRSS than that in the backward direction. 

The last measure of the anisotropy in critical stresses is the screw-to- 
edge ratio in the Peierls stress or CRSS along the same shear direction on 
the same slip plane. It is conventionally known that plasticity of BCC 
metals at low temperatures is controlled by the glide of screw disloca
tions since the Peierls stress and Peierls barrier are one to two orders of 
magnitude higher for screw dislocations than for edge dislocations 
[105,106]. In agreement, Peierls stresses for edge dislocations 

Fig. 6. Averaged Peierls stress or CRSS vs. ideal shear strength Tis for (a) edge and (b) screw dislocations across different slip planes in the four metals. The lines 
drawn between symbols are intended to only guide the eye. 

Fig. 7. Normalized averaged Peierls stress or CRSS/μ vs. normalized ideal shear strength Tis/μ for (a) edge and (b) screw dislocations across different slip planes in 
the four metals, where μ is the isotropic shear modulus in Hill form presented in Table 2. 

Table 15 
Averaged Peierls stresses or CRSS (in MPa) on three slip planes in four BCC 
metals. Results are based on MS simulations in this paper using SNAP, as pre
sented in Tables 6–10.  

Metal Dislocation {110} {112} {123} 

Mo Edge 136 873.5 219.5 
Screw 4054 4913.5 4370 

Nb Edge 24 299 58 
Screw 833.5 1779 872.5 

Ta Edge 20.5 167 4 
Screw 956 2238 1484 

W Edge 7.5 1659 474.5 
Screw 3772.5 4947.5 4129  
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calculated here are much smaller than those of screw dislocations. 
Screw-to-edge ratios in the Peierls stress or CRSS on different slip planes 
in four BCC metals are summarized in Table 14. It is shown that the 
ratios are generally high on the {110} plane, with the highest one being 
538.85 for the backward direction in W. In some other cases, such as in 
the higher order {112} and {123} planes in Mo and W, the screw-to-edge 
ratios in the critical stress are remarkably much smaller, being in the 
range of 1.74–23.12. For W on the {112} plane, for instance, the ratio is 
only 1.74. Clearly with such low ratios, the effects of edge dislocation 
glide on plasticity cannot be considered negligible on these slip planes. 
As mentioned in Section 4.2.1, there is currently no ab initio or experi
mental data for the Peierls stresses of edge dislocations in either of the 
four BCC metals, so the screw-to-edge ratios based on ab initio calcula
tions or experiments cannot be provided. 

4.2.5. Correlation between ideal shear strength and Peierls stress 
As mentioned in Section 1, there are two measures of glide resistance 

that can be obtained from atomistic simulations, the Peierls stress of a 
dislocation and the ideal shear strength Tis (Eq. 2). For the same plane, 
the averaged Peierls stress or CRSS between the forward and backward 
directions are calculated and presented in Table 15. Fig. 6 presents the 
averaged Peierls stress or CRSS versus Tis, indicating a generally positive 
correlation. The Peierls stress or CRSS on the higher order {112} and 
{123} planes are higher than that on the {110} plane in the same metal, 
just as the higher order planes possess higher Tis than the {110} plane. 
Experimental studies obtained similar ranking among the screw dislo
cations for the {110} plane. Specifically, the Peierls stresses for Mo and 
W are higher than those for Nb and Ta, with 730–870 MPa for Mo 
[87,88] and 960 MPa for W [102], as opposed to 415 MPa for Nb [91] 
and 340 MPa [101] for Ta. However, when the critical stresses are 
normalized by their corresponding shear modulus, no correlation is 
observed, see Fig. 7. This effect of normalization means that metals with 
high Peierls stresses or CRSS and Tis have a proportionally much higher 
shear modulus than metals with smaller critical stresses. From a physical 
viewpoint, the uncorrelatedness may not be surprising since Peierls 
stresses in BCC metals are known to not only depend on bonding across 
the plane but also on the atomic structure of the dislocation core 
[107,108], which is missing in the GSFE calculation. 

5. Conclusions 

In this work, the GSFE curves and Peierls stress or CRSS in four BCC 
refractory metals (Mo, Nb, Ta, W) are calculated using a recently 
developed ML-based interatomic potential called SNAP. The calcula
tions focus on both screw and edge character dislocations on three 
common glide planes {110}, {112}, and {123}. On all three planes, the 
GSFE curves from SNAP agree well with those from DFT and when 
compared to non-ML interatomic potentials, are more accurate in cal
culations of the ideal shear strength. The SNAP-calculated GSFE curves 
on the higher order planes show lower degrees of asymmetry than the 
DFT curves. This can be regarded as an improvement from those 
calculated by other interatomic potentials, which produce symmetric 
curves for these planes. The fact that SNAP and other interatomic po
tentials give rise to less or no asymmetry suggests that asymmetry can 
only be exhibited when quantum effects are well captured. 

We show that SNAP provides screw dislocation Peierls stresses close 
to those of DFT, much closer than those achieved by non-ML potentials. 
Like DFT, the values are still higher than those from the few experi
mentally measured values in the literature. For all metals, the edge 
dislocation Peierls stress are the lowest on the {110} plane and the 
highest on the {112} plane. For screw dislocations, glide on either the 
{110} or {123} plane is the easiest. Both the {112} and {123} planes 

exhibit glide asymmetry, being on average 1.9 times higher in one di
rection than the other. The screw-to-edge ratio is large, in the range of ≈
29–539 for the {110} plane, but substantially smaller, in the range of ≈
2–21, for the {112} plane. The slip-plane anisotropy, the difference in 
the Peierls stresses or CRSS among the three distinct crystallographic 
planes, is the greatest for Ta and minimal for Mo, for both edge and 
screw dislocations. Last, we observed that in most cases, the screw 
dislocation cross slips away from the habit plane, and this outcome can 
change depending on the model configuration used, i.e., PAD, FBC, FBS, 
dipole-H, dipole-V, or quadrupole. Besides static properties such as 
GSFEs and Peierls stresses, dynamic dislocation properties are also 
important [109]. Specifically for BCC metals, kink activation enthalpy 
and kink-controlled dislocation mobility are critical. Those calculations 
however would involve much longer dislocation lines. For example, a 
recent MD work studied kink dynamics along screw dislocations in Fe 
and W using EAM potentials [110], with the dislocation line length 
being 30–450 nm. In comparison, the current work used a much shorter 
dislocation line, < 2.2 nm. As mentioned, the computational cost of 
SNAP is generally two to three orders of magnitude higher than that of 
EAM. Therefore, application of SNAP to kink dynamics would require 
high computational effort. 
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Appendix B. Relaxing atoms along the x direction in GSFE 
calculations  

Fig. B.2. GSFE curves on the three planes in Mo and Nb based on SNAP. Filled symbols denote relaxation of atoms along both x and y directions while open symbols 
denote relaxation of atoms along the y direction only. 

Fig. A.1. Bulk energy per atom E†
bulk vs pre-defined lattice parameter a†

0 in four BCC metals based on SNAP. DFT results are from Ref. [16]. Dashed vertical lines 
indicate the lowest point on each curve. 
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Appendix C. Effects of atomic plane numbers in GSFE 
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