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A B S T R A C T

In this work, we use molecular statics to study the stability of a pair of symmetric dipole tilt walls in Cu thin
films. Two geometric wall parameters, the dislocation spacing and wall separation distance, are varied in the
calculations. We find that even closely spaced dipole walls can be stabilized in a thin film under no applied
strain, and with this insight, develop a stability map that identifies the regime of maximum dislocation spacing
and minimum wall separation for which dipole walls can reside in the film. In addition, we show that a critical
in-plane tensile strain exists that can destabilize the dipole walls and transition the film to a wall-free state. The
simulations reveal that the wall recovery process occurs by sequentially annihilating alternating pairs of dipole
dislocations rather than sudden, simultaneous annihilation of an entire wall. Dipole wall stability is rationalized
based on a substantial enhancement in the Peierls barrier of the wall dislocations due to the reorientation of the
lattice between the walls and narrowing of their intrinsic stacking faults, two effects that have atomic-scale
origins.

1. Introduction

The deformation of metallic thin films subject to an applied strain or
residual strains is accommodated by the formation and glide of dis-
locations. In the early stages of straining from a nearly defect free state,
dislocation glide meets little resistance [1]. After moderate amounts of
strain (0.1–1), the density of dislocations can increase by two to three
orders of magnitude [2,3]. Accumulated dislocations tend not to be
distributed uniformly but assembled into patterns [4–6]. Over the
years, the origins of these sub-boundaries have garnered considerable
attention due to the marked effect on the electronic, magnetic, and
structural properties of materials. For example, sub-boundary mobi-
lities have been shown to be positively correlated with recrystallization
rates in polycrystals [7]. The stress fields generated from sub-bound-
aries can interact with moving dislocations, hindering their glide, and
limiting plasticity. Dislocations within these sub-boundaries can also
directly react with mobile lattice dislocations, severely hampering the
latter from gliding across the former [8] and encouraging dislocation
pile ups and hence generation of stress concentrations [9]. Because the
length scales of the gliding dislocations are comparable to that of the
constitute dislocations in the sub-boundaries, the ability for dislocations
to transfer slip across the boundaries depend sensitively on their local,
atomic-scale defect structures [10].

The length scales and morphologies of the dislocation patterns have
been studied most extensively in deformed materials postmortem via
microscopy [11]. The propensity for patterning increases as the amount
of deformation and rate of deformation decreases, resulting in loose
tangles in shock [12], well defined sub-boundaries after rolling [13],
and increasing sub-boundary dislocation density with creep deforma-
tion [14]. To understand their development during deformation, two-
dimensional (2D)and three-dimensional (3D)dislocation dynamics si-
mulations based on linear elasticity theory have been employed. They
have predicted self-organization of dislocations under a continually
rising externally applied strain into linear pileups [15] and sub-
boundaries in the form of 2D dipole walls [16] and 3D bands [17].

One type of dislocation sub-boundary prevalent in thin films are tilt
dislocation walls [18,19]. They can be described as an array of edge
dislocations with their dislocation lines on separate but parallel planes.
The lattices on either side of the wall are tilted in equal amounts in
opposing senses [20]. The ability of moving dislocations to penetrate a
tilt wall depends sensitively on the wall misorientation angle θ and the
wall frequency (or equivalently wall spacing). Unlike general sub-
boundaries, tilt walls with low θ contain sparsely stacked dislocations
pose relatively little resistance to moving dislocations by altering their
slip plane without directly interacting with any of the constituent dis-
locations in the wall [21]. Toward understanding their development is
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the stability of these walls under no applied deformation as well as
under a critical applied deformation to remove them. Yet most analy-
tical studies [22], continuum-based modeling [23], and atomistic si-
mulations [24] treat tilt dislocation walls in an infinite body, instead of
in a thin film.

In this work, we use molecular statics (MS) to determine the sta-
bility of dipole tilt walls in copper (Cu) thin films in both undeformed
and deformed states. The effects of two key geometric parameters de-
scribing the dipole wall pair, the wall spacing and internal wall dis-
location spacing, on their atomic defect structure and stability are in-
vestigated. A regime of stable dipole wall configurations is identified
and linked to the increased resistance to dislocation motion due to
lattice misorientation and narrowing of the associated intrinsic stacking
faults (ISF). Last we show that a critical in plane tensile strain exists that
eliminates the dipole wall and the process of dipole wall elimination
occurs by a sequential process rather than a simultaneous one.

2. Materials and methods

We select Cu as a model material with a face-centered cubic (FCC)
crystal structure. As dislocations in FCC metals belong to the {111}
〈110〉 slip system, tilt dislocation walls can be described by a vertical
array of edge dislocations belonging to this slip system with the tilt axis
lying along 〈112〉. Fig. 1 illustrates the simulation cell containing two
finite-length dipole dislocation walls in a thin film. The crystallographic
orientations are x [110], y[111], and z [112], with the y direction serving
as the normal to the film. To model a thin film, periodic boundary
conditions are applied along the x and z directions, while the top and
bottom surfaces of the film, the y-boundaries, are traction-free.

Thin film models are designed to examine the effects of two wall
parameters: the initial dipole wall separation hx0 and dislocation spa-
cing in each wall d, on the stability of the dipole walls under zero stress
and in-plane tensile strain. Unless stated otherwise, the film thickness
Ly=50.8 nm, and the two in-plane dimensions in the x and z direc-
tions, respectively, Lx=122.9 nm and Lz=0.9 nm. In selected cases, Lx
and Ly will be varied to assess their influences. The distance between
the top dislocation in each wall and the cell upper boundary,

h′=1.59 nm, as well as the distance between the bottom dislocation in
each wall and the cell lower boundary, h′′=1.59 nm are fixed in every
case. The film thickness Ly is related to the number of dislocations N in
each wall and d according to

= ′ + ′′ + −L h h N d( 1)y (1)

Each edge dislocation in the wall is created by displacing all atoms
by (ux,uy) following the corresponding isotropic elastic displacement
fields [25], i.e.,
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where b is the magnitude of the Burgers vector of an edge dislocation, ν
is the Poisson's ratio, and (x , y ) is the relative position of each atom
with respect to the dislocation core center along the x and y axes, re-
spectively.

All MS simulations in this work are carried out by LAMMPS [26].
The interatomic interactions between Cu atoms are provided by an
embedded-atom method (EAM) potential [27] because it has proven to
describe well many dislocation-related material properties [28,29]. The
lattice parameter for Cu is a0= 0.3615 nm, and each model contains
460,800 atoms. As such, = =b a / 2 0.25560 nm. Atomic structures are
visualized by OVITO [30] and the adaptive common neighbor analysis
(a-CNA) [31] is used to identify dislocations.

Once the two dislocation walls are created, MS simulations with the
conjugate gradient algorithm are carried out and are terminated when
one of the following two criteria is satisfied: (i) the change in energy
between successive iterations divided by the most recent energy mag-
nitude is less than or equal to 10−9 and (ii) the length of the global
force vector for all atoms is less than or equal to 10−9 eV/Å. During the
energy minimization, all edge dislocations dissociate into two Shockley
partials that glide apart on the (111) planes. An ISF forms between
them. The distance between the centers of the two bounding Shockley
partials is defined as the ISF width [32].

3. Results and discussion

3.1. Wall stability under zero stress

In this section, we study the wall stability under zero stress as a
function of the vertical dislocation spacing d and the initial wall se-
paration hx0. Lx and Ly are also varied in selected cases.

As a reference, we first consider a single dislocation dipole of two
oppositely signed edge dislocations lying in the same plane. When the
system is relaxed the dislocations may move toward one another and
annihilate. The reason is well known. The interaction force between
these two dislocations is attractive. This force can be approximated
using linear elastic dislocation theory. For two edge dislocations of
opposite sign separated by hx0 on the same plane, the attractive force
per unit length is [1]
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where μ is the isotropic shear modulus. Let the horizontal wall spacing
hx0= 10 nm. Using the Voigt average to estimate the isotropic
equivalent moduli for Cu, μ=41.16 GPa and ν=0.34, we obtain
Fx0= 64.8 mN/m for the interaction force between these two disloca-
tions. The only resistance to this force is the intrinsic material re-
sistance, the Peierls stress [33]. Previously, the same EAM potential
calculates the Peierls stress for a single, isolated dislocation to be
τP= 2.5 MPa [34]. The corresponding resisting force per unit length
τPb=0.639 mN/m is two orders of magnitude below Fx0. With rela-
tively little resistance, the dislocations can easily glide on their shared

Fig. 1. An illustration of a Cu thin film containing two vertical dislocation walls
of opposite sign. Fixed geometric parameters include depth of the model
Lz=0.9 nm and h′=h″=1.59 nm. Different models are considered in which Lx,
Ly, hx0, and d vary. The zoomed out snapshot shows the atomic structures
around two dislocation dipoles prior to the energy minimization. Atoms are
colored by a-CNA [31]: green and white corresponds to FCC and disordered
local lattice structures, respectively.
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glide plane and annihilate. Alternatively, for this situation, we can use
Eq. 4 to determine the critical wall separation above which the dipole
walls are stable, i.e., Fx0≤ τPb; the critical separation is found to be
1014.08 nm, an extremely large value.

Next, we consider a pair of dipole tilt walls within the thin film. The
two walls are identical, sharing the same tilt axis and same dislocation
spacing d. They only differ in the sign of the dislocations in the wall.
The wall on the right contains positive dislocations and the one on the
left negative dislocations. As before, the initial wall separation is close,
hx0= 10 nm, so the walls should be strongly interacting. We first
consider walls with a relatively large dislocation spacing of d=7.94
nm, more than 30 times that of b. When allowing the system to relax,
the dislocations in the two walls glide toward one another under the
attractive interaction forces between their oppositely signed disloca-
tions and annihilate. The dipole walls are not stable under zero stress.

More cases are simulated involving a pair of walls with even finer
spacing d but the same separation hx0= 10 nm. For values of d > 3.21
nm, the walls glide toward another and annihilate. When d=3.21 nm,
however, the walls glide toward one another and stop with a final se-
paration of hx. Fig. 2a shows the stable configuration. The mid-plane
separation is smaller compared to the wall separation near the surface
(Fig. 2b). The stress state locally at the surface opposes the glide of
dislocations toward one another. The difference is not significant. The
main finding is that we have identified a critical spacing, dc= 3.21 nm,
at and below which the dipole walls can be stabilized.

The critical dc is far below the total thickness of the film to be af-
fected by it. However, to be certain, we examined the effects of film
thickness Ly on dc, by repeating the calculations while setting Ly to
40.4 nm and 59.7 nm, respectively. The critical dc did not change.

In present simulations, a condition evidently is reached in which the
critical stress to move the dislocation constituting the walls, the Peierls
stress, has increased to surpass the attractive interaction stress between
them. The elastic stress fields between two interacting dipole tilt walls
have been studied analytically using linear elastic continuum disloca-
tion mechanics [35,36]. On this basis, this pair of walls would be ex-
pected to annihilate since the calculated attractive force per unit length
exceeds that associated with the Peierls stress τPb=0.639 mN/m.
However, these walls do not annihilate, suggesting that attainment of a
zero-stress stable dipole wall configuration must then have atomic-scale
origins captured in the atomistic calculation but not in the continuum
mechanics model. In the latter model, the dislocations are undissociated
and each dislocation dipole lies on the same plane. In atomistic

simulations, however, the lattice between the walls has rotated and is
misoriented across each wall. Further, the dislocations in the walls are
dissociated.

To understand the origin of the wall stability, we first consider
lattice misorientations on the interaction stress. The walls have caused
the slip planes between the walls to tilt, which changes the dipole in-
teraction force per unit length in Eq. 4 to [1]:
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where hy is the vertical distance between the two dislocations in the
same dipole due to the plane tilt, as illustrated in Fig. 1. This interaction
force considers a single dipole, so the force fields by the other dis-
locations in the wall are not included; however, these would have a
relatively small contribution compared to the nearest oppositely signed
dislocation. We calculate the interaction force per unit length between
the two walls using Eq. 5, where hx is substituted for hx0. At d=3.21
nm, hy=0.34 nm on the mid-y plane, and hence Fx=0.9967Fx0. This
value of Fx is slightly lower than Fx0, yet still much larger than τPb.
Therefore, the change in the interaction force due to the misorientation
cannot explain stabilization of the dipole wall.

In light of the foregoing analysis, stabilization can be perceived as a
result of an increase in the Peierls stress of the constituent dislocations
when lying in wall compared to when each is in isolation. Two atomic-
scale changes are readily apparent. First, within the wall, at the dis-
location site, the glide plane abruptly changes orientation, severely
hindering glide, and second, the dislocation core has been altered. We
study next the effect of d on both lattice misorientation angle and ISF
width for the dipole wall configuration.

The dipole tilt walls cause the lattice in between them to tilt, hin-
dering the dislocations to glide. In the case of an isolated, infinitely long
wall with a uniform vertical dislocation spacing d, the misorientation
angle θ is
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For the stabilized dipole walls, θ can be directly measured based on
the energy minimized atomistic structures by
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For the dipole wall, the misorientation angle will deviate from that

Fig. 2. (a) Atomic structures of the dipole tilt wall before and after energy minimization. Ly=50.8 nm, hx0= 10 nm, and d=1.5 nm. Atoms are colored by a-CNA
[31]: green, red, blue, and white corresponds to FCC, hexagonal close-packed, body-centered cubic, and disordered local lattice structures, respectively. (b) Final
horizontal wall spacing hx after energy minimization in cases of different initial horizontal wall spacing hx0. Values of hx and hx0 shown here are averaged over those
in different models with different vertical dislocation spacing d.
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of a single wall, provided the two walls are sufficiently close. Using Eq.
7 the through-thickness variation of θ are calculated for different values
of hx0 and d for which a stable dipole wall configuration is achieved.
Fig. 3 shows the calculated θ after the configuration has stabilized. For
comparison, also shown is the corresponding misorientation angle
predicted by Eq. 6 for one wall with the same d. As seen earlier, the
effect of the free surfaces at the top and bottom of the film is to locally
increase the dipole wall separation from the center, leading to a lower
misorientation angle at the top and bottom film surfaces than that at the
center of the film. The misorientation angles of the two walls rotate the
lattice in between them in the same sense. When the walls are initially
closely spaced, hx0= 8 nm, the misorientation angle of the lattice in-
between is reduced from that of a single wall for all d. For instance,
when hx0= 8 nm and d=1.5 nm, the measured θ on the mid-y plane is
about 8° while the theoretical prediction for a single wall is about 10∘.
The analysis also finds that for a wall separation of almost double,
hx0= 14 nm, the misorientation angle measured in the center of the
film is almost the same as that for a single wall. Using Fx0≤ τPb as a
condition for stability, along with Eqs. 5 and 7, we can estimate the
Peierls stress for every stabilized wall configuration. This analysis im-
plies that the Peierls stress in the wall must have ranged from 181.09 to
316.9MPa.

In FCC metals, the Peierls stress is strongly influenced by the ISF
width, w. Wider ISFs generally have lower resistance to glide than
narrower ones. Prior density functional theory calculations in Al

showed that, compared with a dissociated screw dislocation
(w=3.81b), the Peierls stress of an undissociated screw dislocation
(w= b) is much higher by approximately two orders of magnitude [37].
Qualitatively, a similar boost in the Peierls stress can be expected in Cu,
since it has the same crystal structure and bonding type as Al. Fig. 4
shows the average ISF width of a dislocation in the dipole wall. Each
dislocation has dissociated into two Shockley partials, with equal edge
components and oppositely signed screw dislocations. As d decreases,

Fig. 3. The misorientation angle θ along the y axis based on Eq. 7, measured after the energy minimization in models with different initial horizontal wall spacing hx0
and uniform vertical dislocation spacing d. The predictions of θ based on Eq. 6, denoted by horizontal dashed lines, are also shown for references.

Fig. 4. ISF width w on the mid-y plane in simulation cells with different initial
horizontal wall spacing hx0 and uniform vertical dislocation spacing d. For an
isolated edge dislocation, w=10.57b [28].
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the attraction force between the neighboring screw components in-
creases, causing the wall w to narrow. When d=3.21 nm, for instance,
w=6.78b on the mid-y plane, which is much smaller than 10.57b [38].
Narrowing of w as d decreases could significantly raise the Peierls
stress, which may surpass the elastic attraction between dislocations.

It has, thus far, been shown that with smaller d a dipole wall can be
stabilized provided that the wall spacing d is below dc, arguably when
the slip plane misorientation across the wall and the widths of the ISFs
have become sufficiently narrow to stall motion of the wall dislocations.
According to Eq. 5 misorientation depends on the wall separation dis-
tance, implying that dc would depend on how far they are separated. To
investigate the effects of the initial horizontal wall spacing hx0 on wall
stability, we consider small wall separations that tend to lower the wall
misorientation angle compared to that of an isolated wall (8 nm, 10 nm,
and 12 nm) and a sufficiently large wall separation when it is close to it
(14 nm). Recall from earlier analysis, when hx0= 10 nm, dc is 3.21 nm.
Comparatively when hx0 increases from 8 nm and 12 nm, to 14 nm, dc
increases from 2.5 nm and 3.21 nm to 4.5 nm. With this insight, a re-
gion in hx0-d space can be envisioned, wherein a dipole wall can be
stabilized. Fig. 5 shows a hx0-d map for the Cu film arising from these
calculations. A region associated with large hx0 and small d corresponds
to dipole wall stability. To assess the influence of the length of the
model along the x direction, Lx, we repeat the calculations with larger
Lx of 180 nm and 265 nm, respectively, and find that the stability map
remains unchanged from Lx=122.9 nm.

3.2. Wall stability under tensile loading

Next we examine dipole wall stability under mechanical deforma-
tion. In MS simulations, thin films containing stable dipole wall con-
figurations are strained until a threshold strain is reached at which the
walls are able to glide together and annihilate. An in-plane tensile strain
would tend to reorient the lattice back to its original planar orientation,

reducing the barrier to wall glide, enabling the dislocations in the di-
pole wall to move toward one another under an attractive force. On this
basis it would be anticipated that the higher the lattice misorientation,
the more resistant the dipole configurations to recovery. The force on
the dislocations from the strain applied in the loading direction is
minimal since the tilts are relatively small. For example, for a tilt angle
of 8°, the Schmid factor on the central dislocation is 0.14. Thus, in this
case, the key effect provided by the applied deformation is to reduce the
impediment to wall destabilization and recovery of a perfect film.

In the calculations, after the system energy is minimized and the
dipole walls stabilized, an incremental tensile strain is applied to the
thin film along the x direction. After every increment in true strain
(0.001%), the total system energy is minimized. Fig. 6 shows the var-
iation in the critical strain εc for a broad range of hx0 and d. The most
stable walls are those that develop the highest misorientations, which
are the widely separated walls (large hx0) and those with fine disloca-
tion spacing (small d). The interesting aspect is the strong sensitivity to
these variables. For d=2.04 nm, nearly doubling the separation from
8 nm to 14 nm leads to a ten-fold increase in εc. Likewise, for hx0= 10
nm, a change in d from 1.5 nm to 3.21 nm dramatically decreases εc
from 0.07% to 0.003%.

These critical strains are governed by the process of dislocation
annihilation. Rather than gliding uniformly toward each other on their
respective habit planes and annihilating simultaneously, the disloca-
tions in the walls annihilate through sequence of events. Fig. 7 shows a
few snapshots of the annihilation process in consecutive stages. In
Fig. 7(b), the walls first move together simultaneously and stop. Next
dislocation dipoles on alternating planes draw closer and annihilate
(e.g., dislocation pairs C/D and G/H in Fig. 7). The remaining config-
uration is a dipole tilt wall with double dislocation spacing, as shown in
Fig. 7(c). Next, dislocations in alternating planes of these dipole walls
glide toward one another and annihilate, leaving a dipole pair of walls
those spacing doubles that of the previous walls or quadruples that of
the original walls, as shown in Fig. 7(d). This pattern occurs repeatedly
until all dislocations in the dipole walls annihilate.

Fig. 8 illustrates the process to elucidate the underlying mechan-
isms. The key maneuver in the wall recovery process is the formation of
a zig-zag configuration. Under deformation the tilt walls draw closer
(Fig. 8(a)) until at some point they form a zig-zag pattern (Fig. 8(b)),
wherein the dislocations on alternating planes draw closer while those
on every other plane glide apart. This alternative configuration zig-zag
configuration is another well known stable configuration for a pair of
dipole dislocations on parallel but separate planes [39]. By creating the
zig-zag pattern, the planes with the more closely spaced dislocation
dipoles are able to annihilate. The remaining dislocations lie in a pair of
walls with large dislocation spacing and hence lower tilt angles, as
shown in Fig. 8(c). These two walls subsequently and simultaneously
draw closer, assuming a zig-zag arrangement again (Fig. 8(d)) and
enabling the more closely spaced dislocation dipoles to annihilate. At
the critical strain εc, all dislocations are annihilated.

4. Conclusions

In this work, atomistic simulations are conducted to study the sta-
bility of dipole tilt walls in Cu thin films. The effects of the initial wall
separation hx0 and wall dislocation spacing d are investigated. For thin
films under zero stress, we show that there exists a critical dislocation
spacing below which even closely spaced dipole walls can be stabilized.
Dipole wall stability is explained by an increased resistance to dis-
location motion due to lattice misorientation and narrowing of the
associatedISFs. A measure of dipole wall stability is identified as a
critical in-plane tensile strain above which the dipole walls become
destabilized and annihilate one another, leaving a wall-free film. The
more stable wall configurations (or higher critical tensile strains) are
associated with finer dislocation wall spacing and wider wall separa-
tions. Subject to a tensile loading, it is revealed that the process of

Fig. 5. Map indicating whether the dislocation walls are stable for a specific
initial horizontal wall spacing hx0 and uniform vertical dislocation spacing d.

Fig. 6. Critical strains for the dislocation dipole annihilation εc in models with
different initial horizontal wall spacing hx0 and uniform vertical dislocation
spacing d.
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dipole wall elimination occurs by a sequential, multi-step process rather
than a single, simultaneous one. Alternating dislocation dipoles anni-
hilate first, leaving the dipole walls with a larger dislocation spacing

and hence less stable under the ensuing tensile strain. The process
continues until the entire wall has been removed.
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