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ABSTRACT

In this work, we use density functional theory to calculate the entire generalized stacking fault energy (GSFE) surface for eight transition
metals with a face-centered cubic structure: Ag, Au, Cu, Ir, Ni, Pd, Pt, and Rh. Analysis of the 112h i GSFE curves finds that the displacements
corresponding to the unstable stacking fault energy are larger than the ideal value for all eight metals except Ag and Cu. Over the entire
surface, Pt is found to not possess well-defined local maxima or minima, suggesting spreading in favor of dissociation of the dislocation core,
unlike the other seven metals. Our calculations also reveal that at a large 112h i displacement, where atoms on two {111} adjacent planes are
aligned, an anomalous local minimum occurs for Ir and Rh. The oddity is explained by relatively large, localized atomic displacements that
take place in the two metals to accommodate the alignment that do not occur in the other six metals. In addition to the fully calculated sur-
faces, we characterize a continuous 11-term Fourier-series function, which provides a particularly excellent representation of the GSFE sur-
faces for Ag, Au, Cu, Ni, and Pd.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5115282

I. INTRODUCTION

Many industrially relevant metals have a face-centered cubic
(FCC) crystal structure.1,2 The plastic response of FCC metals is
governed by the motion of dislocations and deformation twins on
specific crystallographic planes.3,4 A well-recognized characteristic
of dislocations in FCC systems is that their atomic cores can be
extended in their glide planes, spanning from a fraction to several
tens of nanometers in width, depending on the metal.5 In this
core region, the dislocation generates a heterogeneous distribution
of atomic displacements across the glide plane. The extent of the
dislocation core, whether wide or narrow, is fundamental to
understanding its mobility and the type of dislocation processes
(i.e., cross slip or climb) and plastic deformation mechanisms
(wavy slip, deformation twinning) that can be expected to prevail in
a given FCC metal.6,7 Many studies have been devoted to estimating
or characterizing the size of the dislocation core in FCC systems.

Most models or experimental studies interpret the disloca-
tion core as an energetically stable structure.8 The total Burgers
vector of the dislocation prefers to dissociate into two Shockley
partial dislocations with smaller length Burgers vectors,9,10

thereby lowering the total strain energy, but at the expense of
creating a faulted region, named the intrinsic stacking fault
(ISF), in between the partials, which increases the core energy.
The excess energy corresponding to the fault is the intrinsic
stacking fault energy (ISFE), γ isf . The size of the individual
Shockley partial dislocations and the ISF width separating them
are considered the two primary structural length scales consti-
tuting the dislocation core.11

Due to the fine characteristic length scales of dislocation cores,
calculations for core structures usually involve atomic-level simula-
tions. In this class of modeling, ab initio techniques can best
account for the nonlinear, anisotropic interactions between the core
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atoms. However, since the cores of most FCC metals generally span
a few nanometers, application of density functional theory (DFT)
would be too computationally intensive. One exception is Al,
which has a narrow core and for which a number of studies have
used full DFT calculations,12,13 reporting ISF widths in the range of
0.66–1.28 nm. For other pure FCC metals, in which ISFs are wider
than those in Al, molecular dynamics or molecular statics (MS) is
the method of choice. However, the accuracy of the calculated core
structure from these methods depends on the reliability of the
interatomic potential used and whether it was developed for defect
calculations.14–16 For the same FCC metal, the same dislocation
character, and the same measurement method, predictions for the
ISF width can vary widely among atomistic studies.17–20

At the other extreme lies classical linear elastic continuum
dislocation theory, which neglects the atomic details of the core
altogether and applies to the elastic continuum region outside
the core. Presuming a dissociated or split core structure a priori,
the ISF width is estimated based on a force balance between the
linear elastic repulsion between the two partial dislocations and
the attraction associated with γ isf . It has the advantage of pro-
viding a quick and insightful estimation of the core width, but it
can significantly deviate from the results based on atomistic
simulations.14

More advanced continuum-based computational models,
such as the generalized Peierls-Nabarro (GPN) model21–24 and
the phase-field (PF) model,25–27 have also been employed to simulate
the relaxation of a dislocation from its compact, perfect state into
its low-energy dissociated structure. Two essential components
included in these computational techniques are the linear elastic
interactions between the Shockley partial dislocations, as in the
classical model, and the nonlinear interactions between atoms
across the glide plane. The latter is usually represented as a func-
tion relating the excess energy incurred as the two atomic planes
are displaced relative to one another in the plane of glide. In prac-
tice, the possible shift vectors made available to the core calculation
have varied, from solely those along the Burgers vector to those cor-
responding to all possible in-plane displacements. The energetic
surface corresponding to all in-plane shift vectors is called the gen-
eralized stacking fault energy (GSFE) surface.

GPN-based and PF-based models have demonstrated that
the relaxation process into a dissociated state is best predicted
when the entire GSFE surface is taken into account. For instance,
it was shown using GPN-based simulations that using two GSFE
surfaces for Ni that have the same γ isf but 16.7% difference in
the unstable stacking fault energy (USFE), γusf , results in an
8.7% difference in the ISF width.28 Linear elasticity theory,
which uses only γ isf , tends to predicts a higher ISF width than
GPN/PF models, especially when γ isf is relatively small.26,29,30

Another recent study using PF-based dislocation models found
that calculations of the ISF widths achieved much better agree-
ment with those from atomistic calculations when the GSFE
surface representation was accurate over the entire surface and not
just at special local maxima or minima.31

Over the years, direct calculation of the entire GSFE surface
is usually accomplished via MS, rather than DFT. Yet, as we have
already alluded earlier, MS-based GSFE surfaces are sensitive to
the interatomic potential used.32 Values for certain points on the

GSFE surface are found to disagree with DFT. In Al and Ni, for
instance, γ isf predicted by various embedded-atom method (EAM)
potentials was shown to be one order of magnitude smaller than
that based on DFT.33 DFT is used to only calculate selected portions
of the surface, usually the GSFE curves along the 112h i and/or
110h i directions, but not the entire surface. DFT has been used to
calculate GSFE curves for Ag,30,34,35 Al,30,35–39 Au,30,34,35

Cu,30,34,35,38,39 Ir,30,34,35,37 Ni,30,34,35,38 Pb,34,35 Pd,30,34–37 Pt,30,34,35,37

and Rh.30,34,37 As one exception, Lu et al.40 obtained 40 values on
1/12 of the entire GSFE surface for Al.

As an alternative to direct calculation of the entire surface,
many works have elected to use DFT to calculate specific points
on the surface and use them to build the entire GSFE surface via
a continous function. In particular, Nfs-term Fourier-series func-
tions, with Nfs ¼ 2 (Ref. 34), 6 (Ref. 23), 7 (Ref. 41), 8 (Ref. 42),
or 11 (Ref. 31), have been used for pure FCC metals. In each func-
tion, the Nfs coefficients are fit to preselected Nfs GSFE values,
usually the local minima or maxima. The Fourier-series functions
represent those selected points reliably, but not necessarily the
remaining points. Furthermore, unless the entire surface is given,
it is unknown whether the preselected points correspond to the
actual local maxima and minima.

In this paper, we use DFT to calculate the full GSFE surfaces
of eight FCC transition metals, including Ag, Au, Cu, Ir, Ni, Pd,
Pt, and Rh. We show that five metals can be described well by an
11-term Fourier-series function, for which we characterize and
provide. We identify an anomalous local minimum in the GSFE
surfaces in Ir and Rh, suggesting a possible high-stress-induced
dissociated structure. The results reveal that the GSFE surface of
Pt has a special characteristic of not exhibiting any well-defined
maxima or minima, implying that its core would spread rather
than dissociate. DFT-based GSFE surfaces for these common
pure FCC metals can provide understanding of atomic bonding
across crystallographic planes on which dislocations glide and
enable continuum dislocation models to reliably predict disloca-
tion core structures.43

II. METHODS

All DFT calculations conducted in this study use VASP.44

Within the framework of the projector augmented wave method,45,46

a pseudopotential is used for each metal to approximate the core
electrons, and a plane-wave basis is adopted for the valence electrons.
Table I summarizes the numbers of valence electrons per atom
and the cutoff energies Ecut for the plane-wave basis set. The
exchange-correlation energy functional is approximated by the
Perdew-Burke-Ernzerhof (PBE) formulation of the generalized
gradient approximation (GGA).47

For the electronic self-consistent loop, the residual minimi-
zation scheme with direct inversion in the iterative subspace is
used, and the convergence is reached when the total free energy
change and the band structure energy change between two steps
are both smaller than 10�4 eV. The Brillouin zone is constructed
by the Monkhorst-Pack scheme.49 For correct handling of the
Fermi surface, the Methfessel-Paxton smearing method50 with a
smearing width σ ¼ 0:2 eV is employed, unless stated otherwise.
Among the eight metals, spin-polarization is considered only for Ni,
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where ferromagnetism is assumed. Results based on nonmagnetic
Ni are denoted as NiNM.

For each metal, a periodic cell containing four atoms is used
to determine the lattice parameter a0 and elastic constants C11, C12,
and C44. The k-point mesh in these calculations is 11� 11� 11.
For a0, the cell size is varied, and for each size, the free energy
without ionic relaxation is calculated. With this approach, a0 corre-
sponds to the cell size with the smallest free energy. The elastic
constants are calculated via the energy-strain method provided in
AELAS.51 The results are summarized in Table II.

For the GSFE surface calculations, a cell with lattice orienta-
tions of x[�1�12], y[111], and z[�110] is built containing 24 atoms,
with two atoms on each (111) plane. In other words, the number
of atomic layers, Nal, is 12. A vacuum region of 8 Å is added to
each cell along the y direction, creating a series of noninteracting
slabs. Unless stated otherwise, 13� 1� 17 k-points are adopted.
Note that the smearing width σ is related to the k-point number.
To ensure convergence of the GSFEs, for σ ¼ 0:2 eV and
Nal ¼ 12, different k-point numbers and Ecut values are tested.
Then, with fixed k-point number and Ecut value, different values
of σ and Nal are tested in selected cases, which will be presented
in Sec. III. We remark that in previous work, (i) Nal ¼ 12 was
found to be sufficiently large for selected GSFE values in ten FCC
metals,34 and (ii) σ ¼ 0:2 eV was used to calculate selected GSFE
values in nine FCC metals.30

To obtain the GSFEs, the top six layers of atoms, in the y
direction, are displaced with respect to the bottom six layers
incrementally and independently along the x and z directions,
until the displacements dx and dz reach the respective periodic
lattice lengths dx0 ¼

ffiffiffi

6
p

a0=2 and dz0 ¼
ffiffiffi

2
p

a0=2. Following each
displacement [dx , dz], the top two and bottom two layers of atoms
are fixed, while the remaining eight layers are allowed to relax
along the y direction. The ionic relaxation stops when the total
energy between two steps is smaller than 10�3 eV/atom.39 The

GSFE surface is represented by the energies associated with a fine
101 � 65 grid of the [dx , dz] displacements. Data for the GSFE
surfaces in all eight metals are available in Materials Cloud.52

III. RESULTS

As a way to check the DFT method and model, we first
compare our results for Cu to those reported by prior DFT
studies using the same PBE-GGA formulation of the exchange-
correlation energy functional. Among the eight metals considered
here, the fault energies for Cu are among the most extensively
studied by DFT,30,34,35,38,39 and the structures of the dislocations
in Cu have drawn considerable attention.53,54 Figure 1 presents
the GSFE surface of Cu from our DFT calculations. As men-
tioned, prior GSFE calculations in Cu have not aimed to produce
the entire surface, but rather slices of the surface lying within the
region AGA0, which is illustrated in Fig. 1(d). This region contains
key local minima and maxima related to the equilibrium core
structure of dislocations in FCC systems. A perfect dislocation
with Burgers vector AA0 dissociates into two Shockley partial dis-
locations AG and GA0, i.e.,

a0
2
[�110] ¼ a0

6
[�211]þ a0

6
[�12�1]: (1)

Based on a hard-sphere model of the atomic positions during
the displacements,5 a local minimum would ideally exist at dx0=3,
where two adjacent hexagonal close-packed atomic layers form [see
Fig. 1(b)]. The displacement is associated with the Shockley partial
Burgers vector, and the corresponding GSFE value is the ISFE, γ isf .
In the displacement pathway along AG between 0 and dx0=3, there
exists a local maximum, which is the USFE, γusf . The displacement
for γusf , denoted as dusf , is ideally dx0=6, according to the hard-
sphere model of an FCC lattice.

TABLE I. A summary of two parameters for DFT calculations: the number of valence electrons per atom Nve and the cutoff energy for the plane-wave basis set Ecut (in eV).

Ag Au Cu Ir NiNM Ni Pd Pt Rh

Nve 17 11 17 9 16 10 10 15
Ecut 446.8 344.91 552.97 316.3 551.98 376.39 345.42 371.11

TABLE II. A summary of the lattice parameter a0 (in Å) and elastic constants C11, C12, and C44 (in GPa), calculated by this work (DFT). Experimental measurements (Exp)48

are also given for comparison.

Method Ag Au Cu Ir NiNM Ni Pd Pt Rh

a0 DFT 4.153 4.157 3.634 3.873 3.514 3.519 3.942 3.968 3.831
Exp 4.086 4.078 3.615 3.839 3.524 3.89 3.923 3.803

C11 DFT 100.5 151.99 174.96 583.65 259.22 278.87 202.29 299.51 405.34
Exp 122 191 169 580 247 221 347 413

C12 DFT 85.25 134.16 121.57 234.36 172.74 158.83 151.32 225.36 183.1
Exp 92 162 122 242 153 171 251 194

C44 DFT 39.16 27.69 76.45 254.35 110.3 132.18 61.52 59.85 187.47
Exp 45.5 42.2 75.3 256 122 70.8 76.5 184
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Previous DFT calculations reported the portion of the 112h i
GSFE curve between 0 and 0:4dx0, which spans γusf and γ isf .

30,34,38,39

Figure 1(a) compares this part of the 112h i GSFE curve from our
calculations with those of others, showing excellent agreement.
Common to the literature, the local maximum γusf is reached at
0:17dx0 in our DFT calculations, and the local minimum γ isf occurs
at 0:33dx0. Given the numerical resolution, +0:005dx0, we consider
these two displacements the same as the hard-sphere model predic-
tion, dx0=6 and dx0=3, respectively.

In Fig. 1(a), we also show the energies from our calculations
corresponding to 112h i in-plane displacements larger than 0:4dx0
and up to the full periodic length dx0. This region of the 112h i GSFE

curve was considered inaccessible by dislocations and was not
studied in prior DFT studies. In the ideal GSFE surface, the 112h i
curve is expected to achieve a maximum at point M [Fig. 1(d)] for a
shift of 2dx0=3, when two adjacent layers of atoms are perfectly
aligned, wherein atoms lie directly on top of each other [Fig. 1(b)].
Hence, we term the GSFE value at M as the “aligned SFE”, denoted
as γasf . Note that it was called by Lu and Kaxiras55 as “run-one
SFE”. Our calculations show that for Cu, γasf sits at the global
maximum, as shown in Fig. 1(c).

Having demonstrated consistency with other DFT calculations
in the literature, we proceed to examine the full γ-surface for all
eight metals, with particular focus on their 110h i curves and 112h i

FIG. 1. Results based on DFT calculations in Cu. (a) Relaxed GSFE curves along the [�211] direction, of which the portion between 0 and 0:4dx0 agrees with those of pre-
vious DFT calculations.30,34,38,39 (b) Illustrative atomic configurations for the four points (A, G2, G, and M) in (c) and (d); the dashed lines are the slip planes, with the
atoms below fixed and the atoms above moved toward left as indicated by the arrow. (c) 3D relaxed GSFE surface on a (111) plane along both [�1�12] and [�110] directions.
(d) is the projection of a portion of (c) onto the (111) plane. Note that the arrows AG and GA0 point to the [�211] and [�12�1] directions, respectively.
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GSFE curves. Figure 2 presents the GSFE curves for all eight metals
along the 110h i and 112h i directions, respectively. For the 110h i
curve, it is expected that the peak energy, γp110, would correspond
to a displacement at the halfway point, at dz0=2. Indeed, a
maximum is reached in all metals at dz0=2, and the GSFE values
are symmetric with respect to it. The peak value γp110 varies sub-
stantially, being highest for Ir and lowest for Au.

More studied in the literature are the 112h i curves. The
pathway AG possesses the local minimum γ isf , and the local
maximum along the 112h i path, γusf , is much smaller than
γp110. Thus, displacements along the 112h i pathway are likely to
determine the behavior and structure of the dislocation. In all
metals, the local minimum γ isf is achieved at dx0=3. Our results
that Ni has higher γ isf and γusf than NiNM are consistent with a
prior DFT calculation.38 Two more findings are worth noting.
First, the 112h i curve for Pt bears no well-defined maximum or
minimum over the entire periodic length. Second, the 112h i
displacement to reach γusf , dusf , differs substantially among the
metals, and all metals (except Ag and Cu) deviate from the
hard-sphere value of dx0=6. The values of γusf and dusf are sum-
marized in Table III. The value for dusf for Ag and Cu is the

closest to the ideal one and the smallest, while that for Pt is
the largest.

For the 112h i curve, the GSFE values corresponding to dis-
placements larger than 0:4dx0 are significantly larger than those in
region AGA0. We find that, in addition to Cu [Fig. 1(c)], γasf in
four other FCC metals (Ag, Au, Ni, and Pd) correspond to the
global maximum, as shown in Fig. 3, achieved at 2dx0=3. Pt, as
shown in Fig. 4, does not exhibit well-defined extrema, particu-
larly at γasf . In the two remaining metals (Ir and Rh), we observe
an interesting finding that γasf sits at a local minimum. To better
highlight this energy well, Figs. 5(a) and 5(b) present the entire
GSFE surface for Ir and Rh.

IV. DISCUSSION

A. Parameterization

In this section, we consider parameterizations of these fully
calculated GSFE surfaces via an 11-term Fourier-series continuous
function.31 This type of functions can be directly used in contin-
uum models for static and dynamic dislocation studies and can
offer insight and understanding of dislocation energetics. The

FIG. 2. Relaxed GSFE curves along the 112h i and 110h i directions for all eight metals.

TABLE III. A summary of the USFE γusf (in mJ/m
2), the displacement dusf (in dx0) for γusf, ISFE γisf (in mJ/m

2), aligned SFE γasf (in mJ/m
2), and the peak GSFE value along

the 〈110〉 curve, γp110 (in mJ/m
2).

Ag Au Cu Ir NiNM Ni Pd Pt Rh

γusf 92.01 76.68 160.52 671.66 279.69 300.89 214.93 297.92 475.34
dusf 0.17 0.18 0.17 0.19 0.19 0.19 0.2 0.25 0.18
γisf 14.49 26.79 41.83 385.87 139.01 152.13 135.54 280.87 208.67
γasf 499.26 380 891.28 1194.4 1157.75 1262.14 698.69 566.96 1077.54
γp110 307.39 246.57 519.05 1250.63 716.3 801.47 476.98 501.97 958.3
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Fourier series function for the GSFE surface takes the form

γgsf ¼ c0 þ c1[cos(2pdx)þ cos(pdx þ qdz)þ cos(py � qz)]

þ c2[cos(2qdz)þ cos(3pdx þ qdz)þ cos(3pdx � qdz)]

þ c3[cos(4pdx)þ cos(2pdx þ 2qdz)þ cos(2pdx � 2qdz)]

þ c4[cos(pdx þ 3qdz)þ cos(pdx � 3qdz)þ cos(4pdx þ 2qdz)

þ cos(4pdx � 2qdz)þ cos(5pdx þ qdz)þ cos(5pdx � qdz)]

þ c5[sin(2pdx)� sin(pdx þ qdz)� sin(pdx � qdz)]

þ c6[sin(4pdx)� sin(2pdx þ 2qdz)� sin(2pdx � 2qdz)]

þ c7[cos(6pdx)þ cos(3pdx þ 3qdz)þ cos(3pdx � 3qdz)]

þ c8[cos(8pdx)þ cos(4pdx þ 4qdz)þ cos(4pdx � 4qdz)]

þ c9[cos(4qdz)þ cos(6pdx þ 2qdz)þ cos(6pdx � 2qdz)]

þ c10[cos(6qdz)þ cos(9pdx þ 3qdz)þ cos(9pdx � 3qdz)],

(2)

FIG. 3. Relaxed GSFE surfaces in Ag, Au, Ni, and Pd, for which γasf , denoted by the black filled circles, sits at a local maximum, which is also the global maximum.

FIG. 4. Relaxed GSFE surface in Pt for which γasf is denoted by the black
filled circles. There are no well-defined extrema.
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where p ¼ (2
ffiffiffi

6
p

=3)π=a0 and q ¼ 2
ffiffiffi

2
p

π=a0 are magnitudes of the
reciprocal lattice vectors. The 11 coefficients ci are presented in
Table IV by fitting the equation above to the 11 GSFE values as
described in Ref. 31.

The 11-term Fourier-series function is found to provide an accu-
rate representation for the GSFE surfaces for five metals: Ag, Au, Cu,
Ni, and Pd. For Pt, the fit is not as perfect but reasonable, as will be
discussed shortly. For Ir and Rh, it fails to capture the local minimum
at point M, the origin of which we examine further below. Thus, for
these three transition FCC metals, Pt, Ir, and Rh, direct DFT calcula-
tions of the GSFE curves are preferred over analytic approximations.

B. Pt

The unique energetic landscape of the entire GSFE surface of
Pt shows that Pt has a distinct and more complex bonding

structure than other metals. To assess the effects of the smearing
width σ and the number of atomic layers Nal, we vary σ from
0.05 eV to 0.4 eV and Nal from 6 to 15. Results, presented in Fig. 6,
demonstrate that use of σ ¼ 0:2 eV and Nal ¼ 12 in these calcula-
tions is appropriate for Pt.

To further validate the result, we sought another method, in
which the exchange-correlation functional in the DFT calculations
is approximated by GGA+U56 rather than GGA. Compared with
GGA, GGA+U is considered to more accurately describe the localiza-
tion of d orbitals of transition metals. It does require, however, at least
one additional energy term that is usually unknown a priori.57 Here,
for the GGA+U calculation, we aim to characterize a single effective
Hubbard correction, Ueff , for the on-site Coulomb interactions of
localized electrons in the d orbitals. For each metal, we determine its
value by fitting the GGA+U-based lattice parameter a0 to that
measured in experiments.48 As shown in Fig. 7(a), Ueff ¼ 3:357 eV

FIG. 5. (a) and (b) Relaxed GSFE surfaces in Ir and Rh for which γasf is denoted by the black filled circles and sits at a local minimum. (c) is the projection of a portion
of (a) onto the (111) plane.
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provides a good fit for Pt. The two calculations for Pt are compared
in Fig. 7(b), where it is seen that for Pt, γasf from GGA+U provides
generally different fault energies and even shallower maxima and
minima, compared to the 112h i GSFE curve based on GGA.

Figure 8 presents the GSFE curves in Pt along the 112h i and
110h i directions using DFT, the 11-term Fourier-series represen-
tation,31 and several EAM potentials.58–62 It is found that (i) all
EAM potentials predict γ isf less than 50% of the DFT-calculated
value; (ii) while one EAM potential61 gives a reasonably good
γusf value, none correctly predict the large dusf ; and (iii) although
the 11-term Fourier-series function captures the general shape of
the DFT-calculated curve, it predicts a larger convexity at 2dx0=3
along the 112h i direction and an incorrect local minimum at
dz0=2 on the 110h i curve.

Some of these anomalies in the 112h i GSFE curve of Pt, namely,
the unusually large dusf ¼ dx0=4 and the lack of a well-defined local
minimum at γ isf , have been reported in prior DFT calculations.30,34,35

These oddities were attributed to a unique change in the interatomic
bonding in the ISF, which were revealed by a valence charge density
difference (VCDD) analysis.30 Furthermore, the lack of a deep local
minimum in the 112h i GSFE curve, and the entire surface, suggests
that, unlike the other metals, dislocation dissociation is not favorable.
Incorporating the DFT-informed GSFE surface into the energy func-
tional, a PF-based model indicated that the equilibrium dislocation
core did not involve a dissociation but rather a spreading within its
{111} glide plane.30 Taken together, to date, for Pt, direct calculation
of the entire GSFE surface using DFT is preferred over using semiem-
pirical interatomic potentials or Fourier-series representations.

C. Ir and Rh

As mentioned, in Ir and Rh, γasf sits at a local minimum. To
validate the result, we again vary σ from 0.05 to 0.4 eV and Nal

from 6 to 15. Figure 9 shows that our choices of σ ¼ 0:2 eV and

TABLE IV. A summary of the 11 coefficients ci, in units of mJ/m
2, in Eq. (2).

Ag Au Cu Ir NiNM Ni Pd Pt Rh

c0 222.77 177.08 383.24 932.83 530.09 589.67 360.73 385.07 708.48
c1 −60.11 −48.06 −107.47 −185.45 −146.6 −161.16 −93.69 −93.85 −151.06
c2 −16.8 −13.39 −22.86 −131 −36.91 −42.21 −27.91 −34.63 −90.14
c3 3.21 3.42 3.82 11.95 3.97 5.07 1.74 1.71 9.2
c4 0.01 −0.47 0.07 −0.77 −0.01 −0.18 −0.14 −0.59 −0.3
c5 −99.9 −75.8 −172.98 −189.38 −208.12 −229.7 −117.38 −73.57 −189.92
c6 −6.6 −7.83 −9.5 −33.78 −12.06 −16.07 −9 −18.51 −22.71
c7 0.41 0.91 −0.04 5.95 5.63 4.29 2.82 4.48 3.04
c8 0.02 0.38 −0.12 −0.53 −0.52 0.03 −0.45 −0.82 −0.43
c9 −0.89 −1.18 −0.95 −9.72 −2.1 −2.08 −2.31 −3.82 −5.38
c10 −0.12 −0.16 −0.27 −0.6 −0.15 −0.12 −0.18 −0.24 −0.79

FIG. 6. Relaxed GSFE curves along the 112h i direction for Pt, with (a) Nal ¼ 12 but different smearing width σ and (b) σ ¼ 0:2 eV but different number of atomic layers Nal.
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Nal ¼ 12 are appropriate for Ir. As another check, for Ir and Rh,
we recalculated the entire 112h i GSFE curves using DFT with the
exchange-correlation functional approximated by GGA+U .56 Using
the same method for characterizing Ueff already described, we
determine that Ueff ¼ 2:786 and 3.375 eV, respectively, for Ir and
Rh. We observe in Fig. 7(b) that with GGA+U , γasf still sits at a
local minimum of the 112h i GSFE curve. Agreement in this

particular feature suggests that the anomalous local minimum at
γasf for Ir and Rh is not the result of an inaccurate description of
the d-orbital localization via GGA.

The reason for the anomaly at γasf may lie in a change in the
electronic or atomic structure in the aligned faulted region that
arises for these two metals but not the others. To expose the
change in the electronic structure, we calculated the VCDD in the

FIG. 7. (a) Lattice parameter, a0, predicted by DFT calculations with the exchange-correlation energy functional approximated by GGA+U, with respect to Ueff .
Experimental values of a0, as summarized in Table II, are shown as horizontal dashed lines. (b) Relaxed GSFE curves along the 112h i direction for Ir, Pt, and Rh, while
the exchange-correlation energy functional approximated by GGA (symbols) or GGA+U (solid line).

FIG. 8. Relaxed GSFE curves along the 112h i and 110h i directions for Pt using DFT, DFT-informed 11-term Fourier-series function [Eq. (2)], and several EAM potentials.58–62
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aligned fault at point M for all eight metals. The VCDD maps
between the unfaulted and faulted regions produced are similar; that
is, no unique change in the symmetry and directionality of the
charge transfer from the unfaulted to the faulted region emerged for
Ir and Rh. Therefore, alterations in the charge transfer at point M do
not explain the anomalous local minimum seen in these two metals.

Last, we examine the atomic displacement associated with
point M. Recall that the GSFE surfaces are obtained after energy

minimization during which atoms were allowed to move along the
y direction. To quantify the atomic displacements during the relax-
ation, we revisit the unrelaxed 112h i GSFE curves, which are shown
in Fig. 10(a). Significantly, we find that a global maximum lies at
point M for all metals. The difference between the relaxed and
unrelaxed curves, particularly at point M, indicates that additional
local atomic displacements took place to accommodate fault forma-
tion at point M. Here, to determine whether a special set of

FIG. 9. Relaxed GSFE curves along the 112h i direction for Ir, with (a) Nal ¼ 12 but different smearing width σ and (b) σ ¼ 0:2 eV but different number of atomic layers Nal.

FIG. 10. (a) Unrelaxed GSFE curves along the 112h i direction for all eight metals. (b) The atomic displacement hasf at point M during relaxation along the glide plane normal.
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displacements occurrs in forming the fault at point M, we further
study in Fig. 10(b) the atomic displacements involved during relax-
ation at point M in the nearest four atomic planes for all eight
metals. The analysis shows that, in Ir and Rh, the two atomic layers
that are immediately adjacent to the glide plane have been signifi-
cantly displaced compared to the third and fourth layers from the
glide plane. Unlike all other metals, large, local atomic displace-
ments occurred in Ir and Rh to accommodate the alignment of two
adjacent {111} planes at point M.

The sufficiently deep local minimum at M indicates a possible
dissociation reaction to an extended dislocation structure that
would take place in Ir and Rh, but not in the other metals. A full
dislocation AA0 would dissociate into two Shockley partial disloca-
tions AM and MA0, i.e.,

a0
2
[�110] ¼ a0

6
[�12�1]þ a0

6
[�211]: (3)

The ISF width associated with this reaction would be much
smaller than that associated with the creation of an ISF at γ isf . For
an edge dislocation in Rh, for instance, linear elasticity theory pre-
dicts that the ISF widths following Eqs. (1) and (3) are, respectively,
9b and 1:74b. Furthermore, the former reaction occurs under no
stress, whereas the latter would only likely occur when the disloca-
tion is subject to shear stresses that are sufficiently large to over-
come the energy barriers between point A and point M.

V. CONCLUSIONS

In this paper, we use DFT to calculate the (111) GSFE surfaces
of eight FCC transition metals, including Ag, Au, Cu, Ir, Ni, Pd, Pt,
and Rh. Analysis of the 112h i GSFE curves finds that the displace-
ments corresponding to the USFE are larger than the ideal value for
all eight metals except Ag and Cu, with Pt having the largest dis-
placement. The GSFE surface of Pt does not possess well-defined
local maxima and minima, suggesting that its dislocation core does
not dissociate but spreads in the glide plane. In addition, at a 112h i
displacement 2dx0=3, at which two adjacent planes would geometri-
cally align, an anomalous local minimum occurs for Ir and Rh, sug-
gesting the existence of a novel dissociated dislocation structure.
This anomaly is shown to be a result of special, relatively large local-
ized atomic displacements, taking place to accommodate the align-
ment that does not occur in the other metals. Based on these surface
calculations, a Fourier-series parameterization is tested and shown
to offer an excellent continuous function representation for five of
these metals, Ag, Au, Cu, Ni, and Pd. The results of these analyses
and the GSFE surfaces can provide insight and benefit continuum
modeling of dislocations, such as the GPN/PF-based modeling,
which requires reliable GSFE surfaces as input.23,26–31,41
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