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ABSTRACT

Using hybrid molecular dynamics and Monte Carlo simulations, we examine the role of lattice distortion (LD) and chemical short-range
ordering (CSRO) on the development of defects ahead of a mode I crack in medium entropy alloy CoCrNi. We show that CSRO noticeably
increases fracture toughness. The result can be explained by the effect of CSRO on lowering LD and increasing intrinsic stacking fault energy
and the direct impact CSRO has on the energetic barriers for emitting partial dislocations and forming nanotwins from CoCr clusters on the
crack tip. CSRO allows the nanotwin domains to further support inelastic deformation, such as dislocation glide and amorphization, leading
to stable crack-tip plasticity and postponement of softening. These findings imply that the superior fracture toughness in CoCrNi can be
attributed to the non-negligible CSRO that naturally exists.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0206532

Owing to many superior mechanical properties, such as high
creep resistance1 and excellent ductility,2 multi-principal element
alloys (MPEAs), including high entropy alloys and medium entropy
alloys (MEAs), have attracted worldwide attention.3–6 As a premier
example, the CoCrNi MEA has demonstrated an outstanding combi-
nation of high strength and fracture toughness at ultra-low and room
temperatures.7–9

MPEAs contain at least three principal elements in similar por-
tions and consequently bear an unusual chemical inhomogeneity with
element types randomly varying from one lattice site to another. The
deviation from traditional alloys leads to severe lattice distortion (LD)
and randomly varying strengths in bonds between neighboring
atoms.10,11 While many MPEAs consist of different elements that are
randomly distributed, in some MPEAs, chemical short-range ordering
(CSRO), the thermodynamic preference for certain elements to pair or
cluster, can be significant, as demonstrated through experimental stud-
ies on CoCrNi.12–14

Many studies have used atomistic simulations to identify the
influence of LD and CSRO on the properties of CoCrNi. Molecular

statics (MS) simulations have revealed non-negligible effects of LD
and/or CSRO on lattice parameter, elastic constants,15 and generalized
stacking fault energies (GSFE).16 Molecular dynamics (MD) simula-
tions of simple tests, such as uniaxial loading and shear loading, have
reported increases in strength due to LD and CSRO,17,18 both of which
are shown to be responsible for reducing dislocation mobility15,19 and
promoting nanotwinning.20,21 MD studies have also exposed CoCrNi’s
noticeable effects under more complex conditions, such as melting,22

shock dynamics,23 nanoindentation,24 creep,25 and quasi-isentropic
compression.26 It was found that shock-induced amorphization27 and
phase transitions26 are promoted by LD and/or CSRO.

Only recently, the deformation mechanisms occurring at the
crack-tip have been investigated in MPEAs. Load-induced amorphiza-
tion at the crack tip, which was observed in CoCrFeMnNi MPEA in
experiments and MD simulations, was proposed as a strain energy dis-
sipating mechanism that explained its high toughness.28,29 Recently,
the role of LD on dislocation behavior at the crack tip in the
CoCrCuFeNi MPEA was studied using MD simulations.30 The study
found that LD induces local fluctuations in surface energy, which can
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lead to crack arrest. It was also revealed that the effect of LD can
depend on load orientation. Zhu et al.31 recently examined the role of
both LD and CSRO on energy release rates at the crack tip (J-integral)
in CoCrNi. They found that CSRO increases the activation energy bar-
rier of partial dislocations, while LD decreases it. The deformation
mechanisms ahead of the crack-tip in all situations were dislocation
emission and nanotwinning, occurring on a one slip system.

In this work, we seek to further identify and isolate the roles of
LD and CSRO on the mechanisms ahead of a mode I crack in CoCrNi.
We utilize LAMMPS32 to perform atomistic simulations, where the
embedded-atom method potential developed by Li et al.15 is applied.
This potential has been used in a series of atomistic simulations involv-
ing mechanical deformation in CoCrNi MEA.15,16,18,20,26,27,33,34 An A-
atom potential, via the method in Ref. 35, is generated to describe a
pure metal with the equivalent lattice constants and elastic moduli as
the CoCrNi MEA.20,22,23,26,36 Atomic structures are visualized by the
polyhedral template matching (PTM) method37 implemented in
OVITO38 to distinguish face-centered cubic (FCC), body-centered
cubic, and hexagonal close-packed (HCP) structures from one
another.

For constructing MEA atomic models, a pure Ni single crystal is
built first, whose crystallographic orientations ([�1�12], [111], and
[�110]) are aligned, respectively, with the x-, y-, and z-axes. These ori-
entations are common in studies of crack events in FCC metals.28–31

The {111} plane is the preferred cleavage plane in FCC systems and
the normal to the glide planes on which dislocations are emitted would
lie within the x–y plane. Figure 1(e) presents a schematic of the model.
Lx , Ly , and Lz are about 60, 60, and 10nm, respectively.

Next, the Ni model is used to generate the CoCrNi MEAs with a
uniformly random atomic distribution, i.e., random solid solution
(RSS), or two prescribed degrees of CSRO. For the former [Fig. 1(b)],
we replace the Ni atoms with Co or Cr atoms randomly. For the latter
[Figs. 1(c) and 1(d)], the hybrid MD/Monte Carlo (MC) simulation
method is used to create CoCrNi MEA structures with CSRO.
Through MC calculations under the semi-grand-canonical ensemble

at 1500K, we determine the chemical potential differences among the
three elements: DlCo�Ni ¼ �0:021 and DlCr�Ni ¼ 0:32 eV. Then, a
hybrid MD/MC simulation is carried out at an annealing temperature
of 950 or 350K, starting from the pure Ni samples. In MD simulations,
a time step size of 2.5 fs is used, and an NPT ensemble is applied to
maintain the temperature (950 or 350K).15 For every 20 MD steps,
there is one MC cycle, wherein a quarter of the atoms attempt to swap
Ni atoms for Co or Cr atoms under the variance-constrained semi-
grand-canonical ensemble. The variance constraint parameter is 1000.
After 100000 MC cycles, we achieve equilibrium configurations with
the equimolar composition, which is subsequently quenched to 1K
and followed by energy minimization, while all three normal stresses
are zero.39 The resulting samples represent two different degrees of
CSRO. As a basis for comparison with the random and CSRO samples
mentioned above, an A-atom sample [Fig. 1(a)] is created. In what fol-
lows, “A-atom,” “RSS,” “950KCSRO,” and “350KCSRO” denote,
respectively, the A-atom sample, the RSS CoCrNi, and the CoCrNi
with CSRO resulting from annealing at 950 and 350K. As shown in
Figs. 1(c) and 1(d), the 350KCSRO sample has a higher degree of
CSRO than the 950KCSRO one.

As mentioned, comparing across the three MEAs and the
A-atom sample is intended to reveal the effects of LD and CSRO on
dynamic processes. First, it is worth noting some interactions between
LD and CSRO on a few of the static properties. Using the full width at
half maximum of the radial distribution function of the atomic MEA
structures,20 it was found that increasing CSRO from RSS has the effect
of reducing LD. The average LDs for the RSS, 950KCSRO, and
350KCSRO MEAs were estimated to be 5.401, 5.124, and 4.721pm,
respectively. In prior work, MS simulations were used to calculate an
average intrinsic SFE for the A-atom, RSS, 950KCSRO, and
350KCSRO samples. Their values are, respectively, �25:26, �14:97,
30.72, and 82.6 mJ/m2.20 While odd, calculations of negative intrinsic
SFE for this and other FCC MEAs are not unusual and have been
reported previously.40,41 It must be remembered that the A-atom and
even the RSS MEA are unlike MEAs tested experimentally. Only the

FIG. 1. Single crystal atomic configurations used
in the simulations: (a) A-atom, (b) RSS, (c)
950KCSRO, and (d) 350KCSRO. (e) Schematic
of the mode I crack geometry. The crack with a
length of Lc ¼ 10 nm is created on the x–z
plane with its crack front along the z direction.
The dislocation emitting from the crack tip glides
on the (11�1) plane (the dashed plane) intersect-
ing the x–z plane.
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MEAs with CSRO have been evidenced experimentally and these are
the ones with positive intrinsic SFE values.

Once all models are built, a time step size of 1 fs is used in all
remaining simulations. First, all materials are subject to dynamic relax-
ation with an NPT ensemble at 300K with zero normal stresses along
all three directions for 150 ps. After thermal relaxation, a through
crack with a length of Lc ¼ 10 nm is created on the (111) plane at the
middle position of Ly=2 by blocking the interactions between two 1-
nm-thick regions above and below the crack surface, denoted by the
blue and red regions in Fig. 1(e), respectively. This method has also
been utilized in many atomistic simulations of crack behavior42,43

because it produces an ideally sharp crack. Conversely, if the cracks
were formed by deleting a few layers of atoms, the crack would have
been blunted.44 The thickness of the simulation cell is sufficiently large
(10 nm), making this a 3D cell. Then mode I loading is applied,
by stretching the sample along the y axis at a constant strain rate of
108 s�1, resulting in a relative velocity of 6 m/s between the top and
bottom layers of atoms. Periodic boundary conditions are imposed in
the y- and z-directions, while the surfaces normal to the x axis are trac-
tion-free.45 Zero normal stress along the z direction is maintained.

Figure 2 shows tensile force–displacement curves for the four
crack-containing samples: A-atom, RSS, 950KCSRO, and 350KCSRO.
After yielding, all materials show an initial strain hardening as the
force is increased, which is a signature of stable inelastic deformation
ahead of the crack tip. Eventually, the hardening response is termi-
nated by rapid force release and softening of the curve, indicating the
start of an unstable response. The area below the force–displacement
curve up to the initiation of softening, multiplied by the cell volume, is
0.244, 0.117, 0.269, and 0.3GPa, respectively, for the A-atom, RSS,
950KCSRO, and 350KCSRO samples. The RSS MEA is the least tough,

despite it possessing LD and chemical heterogeneity, suggesting that
CSRO plays a more important role than LD in enhancing fracture
toughness.

In the early period of loading, the responses of all four sample
types are similar. However, at larger displacements, greater than that at
which the A-atom and RSS samples have become unstable, the force in
the two CSRO alloys continues to rise, suggesting different deforma-
tion events are at play. Of special note, the MEA with the larger degree
of CSRO reaches the highest peak force and largest failure displace-
ment among all samples.

We then probe the sequence of crack tip events underlying the
force–displacement curves. Analysis in Fig. 3 finds that the first event to
occur in all samples is a Shockley partial dislocation emitted ahead of
the crack tip, before it propagates on the ð11�1Þ plane creating a stacking
fault. The slip system is the same in all samples. In the A-atom metal,
the atomic structure is distorted ahead of the crack tip, but to a lesser
degree than the MEAs. The moments on the curves for the onset of dis-
location nucleation are indicated by M, M

0
, M

00
, and M

00 0
for A-atom

sample, RSS, 950KCSRO, and 350KCSRO, respectively. The critical force
for dislocation emission is the lowest in the RSS sample, while highest in
the A-atom one. With the RSS MEA bearing the highest LD and the A-
atom possessing none, we conclude that LD lowers the energy barrier
for dislocation emission, in agreement with Zhu et al.31 Relatedly, prior
MD studies of crack-free single crystalline and nanocrystalline CoCrNi
also found that LD lowered the stress to nucleate dislocations.20 Another
recent study in CoCrFeMnNi MPEA showed that the LD produces a
heterogeneous stress field and those regions that experience higher stress
are sites that promote dislocation formation.46

Through its effect on reducing LD, increasing CSRO above RSS
can have an indirect effect on dislocation emission. However, the
CSRO can also have a direct effect on the process of dislocation nucle-
ation since the scale of the clustering is similar to the activation volume
of dislocation formation. Figure 4 shows the atomic configurations at
different displacements in the 350KCSRO CoCrNi. It is observed that
the dislocation nucleation site corresponds to a CoCr cluster.
Preferential dislocation emission from CoCr clusters at the crack-tip is
also seen in the 950KCSRO sample, although the critical force for dis-
location emission is higher than that for the 350KCSRO sample. The
implication is that plastic deformation is promoted by higher levels of
CSRO. The force for the first partial emission is the lowest in the RSS.
The trends seen from the crack-tip are consistent with what has been
learned from prior studies on dislocation nucleation on stressed single
crystals and nanocrystalline samples of CoCrNi MEA with the same
two degrees of CSRO.17,20,47 They showed that CoCr regions in the sin-
gle crystal were preferred nucleation sites and in the nanocrystalline
material, dislocations first formed from the CoCr regions near the
grain boundaries.

Following dislocation emission from the crack tip, the force and
displacement rise as the dislocation glides away and a second partial is
emitted on an adjacent plane parallel to the one where the first partial is
emitted and glides in the same direction. After some amount of dis-
placement, a nanotwin forms at the same site as dislocation nucleation
and builds on the same glide plane in all samples, as marked by labels
associated with N in Fig. 3. For the RSS MEA, the nanotwin forms at
the lowest displacement and force, and nanotwinning reduces the hard-
ening response and causes it to deviate from the response of other
samples.

FIG. 2. Force–displacement curves of different samples under tension. M, M
0
, M

00
,

and M
00 0
correspond to the moments of the initial dislocation emission from the crack

tip in the four samples, respectively. Similarly, N, N
0
, N

00
, and N

00 0
are related to twin

formation, while O, O
0
, O

00
, and O

00 0
are the dislocation emission starting on a sec-

ondary slip system.
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FIG. 3. Snapshots of dislocation emission,
nanotwinning, and secondary slip system
activation at the crack tip in different sam-
ples. The HCP atoms and those with
unknown coordination structures are col-
ored red and gray, respectively. Labels
associated with M, N, and O are denoted
on the force–displacement curves in
Fig. 2.

FIG. 4. Atomic configurations associated
with dislocation nucleation at the crack tip
in 350KCSRO CoCrNi MEA. The green
curve indicates the partial dislocation. The
atomic coloring follows that in Fig. 1,
except that all FCC atoms have been visu-
ally removed. The CoCr cluster pointed to
by an arrow in (a) is the site of the subse-
quent partial dislocation nucleation.
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In all cases, nanotwinning causes the crack tip to become more
blunted. As an example, Figs. 5(a)–5(c) show snapshots of the nano-
twin nucleation process at the crack tip in the 350KCSRO CoCrNi,
starting with the two-layer stacking fault. A second partial is emitted
from the crack front in Fig. 5(a), then propagates on the two-layer
stacking fault and along the same slip direction in Fig. 5(b). With a
force increment, the three-layer fault transitions to a nanotwin, signi-
fied by the transition of the middle atomic layer from HCP to FCC
[Fig. 5(c)]. This sequential glide process of Shockley partials to build a
three-layer twin embryo is the same as the twinning process seen from
grain boundaries48,49 and interfaces50 in pure FCC metals and alloys.

After nanotwin nucleation, the crack does not propagate signifi-
cantly but rather increasing forces drive the nanotwin to thicken
(Fig. 3). The twins grow by further emission of partials from the crack
tip on the coherent twin boundary. Nanotwin growth is a toughening
mechanism that occurs in all samples, even without chemical heteroge-
neity and/or CSRO. On the one hand, CoCrNi is known for easily pro-
ducing wide stacking faults and stacking fault clusters and
nanotwins.15 On the other hand, nanotwinning at the crack tip occurs
even in the A-atom metal. Accordingly, nanotwinning alone is not
directly responsible for the good fracture toughness of this MEA.

In the RSS MEA, as the displacement increases further, a partial
dislocation emits onto a secondary slip system, non-planar to the nano-
twin as shown in Fig. 3(b). As the partial glides in the secondary slip sys-
tem, the crack tip opens up further. Secondary slip occurs at the
moment at point O

0
in Fig. 2 and marks the onset of softening, leading

to the reduced strength and lower toughness of the RSS sample com-
pared to the CSRO samples. Similarly, in the A-atom sample, the activa-
tion of secondary slip also marks the onset of softening, but at greater
displacement, marked as point O in Fig. 2. Accordingly, the nanotwin
has the opportunity to grow thicker. The relatively early onset of second-
ary partial dislocation emission is favored over nanotwin growth in the
RSS MEA because it has the lowest dislocation nucleation stress with the
highest LD and the lowest intrinsic SFE. The A-atom’s sample intrinsic
SFE is similarly very low in this regard, favoring secondary partial slip
emission and glide, albeit at greater displacements.

In Fig. 2, the two CSRO samples exhibit a second strain harden-
ing, unlike the A-atom and RSS samples. The analysis finds that in
both CSRO alloys, the second hardening response initiates with the

emission of a leading Shockley partial from the crack tip that glides
within the nanotwin domain. The sequence of steps for the
350KCSRO MEA is shown in Figs. 5(d)–5(f). First, a stacking fault
originates from the crack tip, and the leading partial glides away. As
the force increases, the trailing partial emits and the perfect dislocation
with a wide stacking fault glides further away from the crack front,
leaving behind some amorphous debris [Figs. 5(e) and 5(f)].
Eventually, after these deformation events develop in the nanotwin, a
partial dislocation on the secondary slip system emits into the crystal
at moment O

00 0
marked in Fig. 2, initiating rapid force release.

Likewise, in the 950KCSRO MEA, the second rise is also attributed to
the glide of leading partials within the nanotwin domain. However, in
this lower CSROMEA, the corresponding trailing partials do not emit.
Instead, with a larger force, more leading partials emit on the second-
ary slip system, causing the crack tip to open up and initiating abrupt
softening. Thus, plasticity within the nanotwin domain occurs but is
not as extensive as in the 350KCSROMEA.

In summary, using hybrid MD/MC simulations, we investigate
the role of LD and CSRO on the deformation mechanisms ahead of a
mode I crack in CoCrNi. The RSS MEA and two other MEAs exhibit-
ing different degrees of CSRO are considered. An A-atom sample that
is a chemically homogeneous counterpart with zero LD, but the same
lattice constant and elastic properties, is also studied to assess the
effects of both LD and CSRO. Simulations show that, in all four sam-
ples at the first stage of loading, partial dislocations are emitted from
the crack tip, and with further increments in force, more partials are
sequentially emitted on adjacent planes building a nanotwin. The only
distinctive behavior occurs later at larger displacements, wherein the
two CSRO MEAs manifest a second hardening response, while the
RSS and A-atom samples have already become unstable. Our work
suggests that in CoCrNi, CSRO plays a substantial role in its superior
toughness.
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FIG. 5. Snapshots of the nucleation and
development of nanotwins and the onset
of amorphization at the crack tip in
350KCSRO CoCrNi MEA. The atomic col-
oring follows that in Fig. 3.
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