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The structures of pyramidal-II 〈c + a〉 dislocations, one of the most important defects in structural hexagonal-
close-packed (HCP) metals, have not been fully characterized for many of the HCP metals in use today. Here,
we employ ab initio informed phase-field dislocation dynamics to determine the minimum energy structure of
pyramidal {1̄1̄22}〈112̄3〉 dislocations in ten HCP metals, including Be, Co, Mg, Re, Ti, Zn, Cd, Hf, Y, and Zr. As
input for the simulations, we calculate, using first-principles density functional theory, the {1̄1̄22} generalized
stacking fault energy (GSFE) curves for all ten metals. From these calculations, it is found that magnetism
in Co is necessary for achieving a local minimum in the GSFE curve. We observe in simulations that edge
and screw character dislocations split into two partials separated by a low-energy intrinsic stacking fault. The
splitting distance is shown to scale inversely with the local minimum energy normalized by the product of its
shear modulus and Burgers vector. Interestingly, some HCP metals exhibit an asymmetric structure, with either
unequal partial Burgers vectors or widths, in contrast to the symmetric configuration expected from linear elastic
dislocation theory. We explain these structures by properties of the local maxima in their GSFE curves. Metals
with larger degrees of elastic anisotropy result in dislocations with larger splitting distances than would be
expected under the commonly used assumption of elastic isotropy. These findings on the sizes and asymmetry
in the structures of pyramidal-II 〈c + a〉 dislocations are fundamental to understanding how these dislocations
glide and interact or react with other defects when these metals are mechanically strained.
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I. INTRODUCTION

Hexagonal-close-packed (HCP) materials are already
being widely used as structural materials in several key
industries, and there is currently great interest in expanding
their employment in many next-generation engineering
applications. HCP Hf, Zr, and Be and their alloys are
frequently used in many nuclear and defense industries
[1–4]. In the biomedical industry, HCP Ti and Zr and
their alloys have long been the materials of choice, but
additional alloys of Mg and Zn are currently being considered
[5,6]. Many HCP Co-based alloys are in development
for use in newer high-temperature aerospace applications
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[7,8]. Employment of HCP materials in these technologies
necessitates understanding and modeling their deformation
response, whether in processing or in service.

With respect to the HCP lattice, HCP materials slip eas-
iest in their compact 〈a〉 direction on their compact planes,
either basal or prismatic. Deformation in their 〈c〉 axis re-
quires pyramidal 〈c + a〉 slip, which is more difficult, and
the degree of plastic anisotropy scales with the difference in
activation energies between 〈a〉 slip and pyramidal 〈c + a〉
slip modes [9–15]. Another inelastic mode of deformation that
occurs easily in HCP materials is deformation twinning, and
it competes directly with pyramidal 〈c + a〉 slip in accommo-
dating 〈c〉 axis deformation [6,16]. Ductility of HCP metals is
thought to be limited by plastic anisotropy and/or deforma-
tion twinning [15]. Therefore, enabling a wider use of HCP
metals and improving ductility is dependent on understanding
pyramidal 〈c + a〉 slip [17–20].

2475-9953/2021/5(4)/043602(18) 043602-1 ©2021 American Physical Society

https://orcid.org/0000-0003-4876-2269
https://orcid.org/0000-0003-0121-9445
https://orcid.org/0000-0002-0443-4020
https://orcid.org/0000-0002-5489-5132
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.5.043602&domain=pdf&date_stamp=2021-04-06
https://doi.org/10.1103/PhysRevMaterials.5.043602


CLAIRE ALBRECHT et al. PHYSICAL REVIEW MATERIALS 5, 043602 (2021)

Pyramidal 〈c + a〉 dislocations can be difficult to move due
to the combined effect of a relatively large Burgers vectors
(36–46 % longer than an 〈a〉 Burgers vectors) and some
atomic shuffling, as a consequence of the atomically rum-
pled pyramidal plane [20,21]. Based on Frank’s rule, it is
energetically preferable for a full {1̄1̄22} 〈c + a〉 dislocation
to dissociate into two equal partial dislocations rather than
remain whole by the following reaction [20]:

1
3 [21̄1̄3] → 1

6 [21̄1̄3] + 1
6 [21̄1̄3]. (1)

The products of this reaction, the two like-signed partials,
repel. In their attempt to glide away, their motion is limited
by the stacking fault they create across the glide plane. Their
equilibrium separation Re can be estimated by a balance of
their repulsive interaction energy and penalizing energy of
their stacking fault in between them [22]:

Re = Kb2

8π I
, (2)

where b is the magnitude of the Burgers vector of the undis-
sociated, compact dislocation, I is the intrinsic stacking fault
energy (SFE), and K is the anisotropic energy factor from
Ref. [23], which depends only on the dislocation character and
the five independent elastic constants.

The extent of the stacking fault Re plays an important role
not only in the partial dislocation mobility, but also in key
dislocation-based processes, such as grain boundary migra-
tion, interactions between grain boundaries and interfaces,
dislocation network formation, and dislocation-dislocation re-
actions [14,24–27]. They may be responsible for the choice
of prevalent dislocation reactions, preferred glide planes, and
mechanisms for overcoming obstacles, such as cross-slip or
climb [28–31]. Dislocation theory and atomistic simulations
suggest that dissociation of dislocations with relatively large
Burgers vectors, such as pyramidal dislocations, can play a
role in twin embryo formation or twin boundary migration in
HCP metals [32–35].

The dissociated core structure of the pyramidal-II {1̄1̄22}
plane is, in part, a consequence of its complex fault energy
landscape, the energy associated with shearing across the
glide plane. The energy along the 〈112̄3〉 slip direction, called
the generalized stacking fault energy (GSFE) curve, has a sin-
gle local minimum corresponding to I . The displacement, xI ,
to reach this local minimum is related to the Burgers vector of
the partials. Density functional theory (DFT) calculations for
the GSFE curve on the pyramidal-II plane have been reported
in a number of works for Mg [21,36,37], Ti [36,38,39], Zr
[36,38,40], as well as Cd, Zn, and Re [36]. For Mg, Dou et al.
[37] studied the peaks and valley in the relevant displace-
ment path, finding that the two peaks were unequal and the
local minimum I does not occur at half-shift between stable
points. The asymmetry suggests an asymmetric split of the
perfect dislocation and overall core structure, deviating from
the geometric model in Eq. (2). Recent DFT work on Mg, as
well as the other metals Zr, Ti, Cd, Zn, and Re, noted similar
asymmetries, but further indicated that these asperities varied
with the metal [36,38,40]. Kumar et al. [21,41] demonstrated
that allowing for additional relaxations, during the calculation
of the pyramidal GSFE curve, caused changes in the peaks
and local minimum and the displacements needed to achieve

them. In the case of pyramidal-II in Mg, the displacement shift
became closer to 0.5b, and consistent with Eq. (2). They ex-
plained that for the pyramidal planes in Mg and Zr, additional
atomic shuffles were needed to reach the lowest energy min-
imum state. The same was not true for the basal or prismatic
planes, whose atomic structures are flat and symmetric about
the glide direction. However, for other metals, curves from
fully relaxed DFT calculations still show that an asymmetry
persists [36,41].

A few experimental studies have identified moving or dis-
sociated 〈c + a〉 dislocations in Mg, otherwise identification
or characterization of dislocation cores is challenging and
requires high-resolution microscopy. Slip trace analyses of
deformed Mg and Mg alloy crystals have provided evidence of
profuse pyramidal slip [9,11,13,42,43]. In situ microscopy in
nanocrystalline Mg witnessed pyramidal slip dislocations in
motion [15]. Early room-temperature experimental observa-
tions from transmission electron microscopy (TEM) by Stohr
and Poirier [44] reported that pyramidal dislocations are dis-
sociated into two equal length (1/2)〈c + a〉 dislocations, in
agreement with the analytical picture in Eq. (1). More re-
cently, high-resolution TEM (HR-TEM) studies revealed the
stabilization of a single (1/2)〈c + a〉 partial dislocation on the
pyramidal-II {1̄1̄22} plane [21].

In addition to the {1̄1̄22} plane, pyramidal 〈c + a〉 dislo-
cations can possibly glide on the first-order {1̄1̄01} pyramidal
plane. The preferred pyramidal plane for a given HCP ma-
terial currently relies on experimental observation and is not
yet understood. Second-order (or type II) pyramidal glide is
commonly expected in most HCP metals with the exception
of Ti and Zr. However, pyramidal type II has been observed
in Zr [45–47] and Ti [48,49], while the other type I glide has
been reported more recently in Mg [43,50,51].

Computational studies of dislocation core structures have
been carried out via a number of methods. The large size
of Burgers vectors most often limits application of DFT for
calculating the equilibrium core structures of pyramidal dis-
locations. The relatively larger length scales accessible with
molecular dynamics methods makes it suitable; however, the
largest body of work to date focuses on the one HCP metal,
Mg, for which interatomic potentials have been developed
specifically for studying defects. Alternatively, a number of
continuum models based on continuum mechanics, such as
the phase-field microelasticity (PFM) [52], phase-field dislo-
cation dynamics (PFDD) [53], semidiscrete variational [54],
and generalized Peierls-Nabarro (GPN) models [55], have
been employed to compute dislocation core structures. They
are formulated to capture long-range stress fields of disloca-
tions, while sacrificing atomic-scale physics and fidelity. This
class of models is developed primarily for simulating dislo-
cation processes, involving one or more discrete dislocations,
and their application to core structures is one problem they
share with ab initio and atomistic methods [53,56].

The PF-based methods and GPN models minimize an en-
ergy functional at every point in the system, and the order
parameters are usually chosen to identify a slipped phase and
an unslipped phase. Dislocation core structures are calculated
by relating discrete atomic displacements with a contin-
uum disregistry field. The input parameters for the energies
associated with these displacements can be obtained from
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ab initio calculations, experimental measurements, molecular
dynamics, or molecular statics (MS), provided that reliable
potentials exist [57]. The PFDD model was recently extended
to determine the static and dynamic properties of discrete
dislocations belonging to all types of slip modes in the HCP
crystal, such as the basal 〈a〉, prismatic 〈a〉, and pyramidal
〈c + a〉 slip modes [38]. Previously, the PFDD methodology
was predominantly applied to dislocations in materials with
cubic crystal structures, namely face-centered cubic (FCC)
[57–59], and body-centered cubic (BCC) [60,61] structures.
The dissociation simulations using the HCP PFDD method in-
corporated directly DFT-calculated GSFE surfaces and curves
for the different HCP slip planes, and they employed isotropic
elasticity [38]. The results demonstrated good agreement with
available results from MS, DFT, or experimental observations
of dislocations structures in Mg.

Here, we employ an elastically anisotropic version of the
PFDD approach, developed in Ref. [58], to compute the equi-
librium structures of pyramidal-II {1̄1̄22}〈112̄3〉 dislocations
in ten HCP metals: Be, Co, Mg, Re, Ti, Zn, Cd, Hf, Y, and Zr.
All input parameters including the lattice parameters, elastic
constants, and GSFE curves are computed from first principles
to avoid any dependence on interatomic potentials. These ten
metals exhibit anisotropic elasticity to varying degrees [62].
For the DFT GSFE calculations, we apply the same method
with full relaxation to all ten and show that their energetic
landscapes exhibit a single local minimum and two unequal
maxima, featuring a wide range of intrinsic SFEs. We show
that achieving a single local minimum in the GSFE for Co
requires accounting for its ferromagnetic properties.

In all these metals, the 〈c + a〉 pyramidal dislocations
dissociate into two partials that separate in plane, creating
extended structures, with nm-sized splitting distances. For the
screw dislocation, Zn has the widest splitting distance and Ti
the narrowest, and for the edge dislocation, Hf has the widest
and Be the narrowest. Considering all ten metals, the sepa-
ration distances scale inversely with the normalized intrinsic
SFE, I/(Kb), where K is an anisotropic energy factor depen-
dent on elastic constants and dislocation character. In most
cases, the dislocation partial core widths and Burgers vectors
are not ideally equal. These asymmetries in the dislocation
structures can be explained by deviations in the {1̄1̄22} GSFE
landscape from that expected of a metal with an ideal c/a ratio
and symmetric landscape. Metals with higher levels of elastic
anisotropy have wider separation distances for both screw
and edge character dislocations than expected with effective
isotropic constants, being 20–35 % broader for Zn, which is
highly anisotropic but has no effect on Re, Y, and Mg, which
are all nearly isotropic. These findings on the equilibrium
structure of 〈c + a〉 pyramidal-II dislocations across a broad
range of HCP metals are important for understanding their
motion and interactions with other dislocations or interfaces.

II. COMPUTATIONAL METHODS

A. DFT methodology and calculations

For all DFT calculations here, we use the Vienna ab-initio
Simulation Package (VASP) [63,64] and we utilize the gen-
eralized gradient approximation for the exchange correlation

TABLE I. Number of valence electrons in pseudopotential used
in DFT calculations and dimensions of supercell for pyramidal-II
GSFE calculations in Å. Number of atoms is 60. Number of planes
along the z-direction is 30, which is sufficiently large according to
prior work in FCC [69] and BCC metals [70].

Material No. of valence electrons Supercell dimensions (x, y, z)

Be 2 (3.923, 4.226, 38.544)
Mg 2 (5.525, 6.089, 51.488)
Y 11 (6.316, 6.777, 58.547)
Ti 4 (5.063, 5.467, 51.960)
Zr 4 (5.596, 6.100, 51.392)
Hf 4 (5.529, 5.965, 52.832)
Re 7 (4.800, 5.264, 47.134)
Co (NM) 9 (4.259, 4.658, 42.835)
Co (FM) 9 (4.316, 4.746, 43.524)
Zn 12 (4.614, 5.594, 46.894)
Cd 12 (5.255, 6.410, 52.345)

functional with the Perdew-Burke-Ernzerhof parametrization
[65]. The interaction between valence electrons and ionic
cores is treated using projector augmented wave potentials.
The number of valence electrons for each material can be
found in Table I. A plane-wave energy cutoff of 400 eV
is employed and the structure is optimized until the force
on each atom becomes smaller than 0.01 eV/Å. We use a
19 × 19 × 19 �-centered Monkhorst-Pack k-point mesh to
integrate the Brillouin zone of the primitive HCP unit cells to
calculate the lattice parameters and elastic constants. For the
GSFE curves, we adopted a 17 × 13 × 1 k-point mesh. The
k-point mesh was sufficiently dense that the convergence of
total energy was less than 1 meV per atom with respect to a
change in mesh size [66,67]. We confirmed that higher values
of energy cutoff (up to 500 eV) and finer k-point grids do
not lead to significant differences in the constants or GSFEs.
All supercells contain a thick vacuum layer of 15 Å along
the z-direction. Among these ten metals, Co is a well-known
ferromagnetic material [68]. So we also identify the effect of
ferromagnetic (FM) ordering in Co on the lattice parameters,
elastic constants, and GSFE through comparisons with those
calculated without magnetism (NM).

The lattice parameters and elastic constants calculated via
DFT are presented in Table II. Overall, these quantities are in
good agreement with previous DFT calculations and experi-
mental measurements (see Table VIII in Appendix B) [21,40].
For all HCP metals, we confirmed that the calculated elas-
tic constants satisfy 2C66 = C11 − C12, indicating transversely
isotropic elasticity with five independent constants.

In addition to the lattice parameters and elastic constants,
PFDD also utilizes {1̄1̄22} GSFE curves in order to calculate
the equilibrium dislocation core structures. For this work, the
GSFE is the excess potential energy incurred when one crystal
half is sheared relative to the other half across the pyramidal-II
{1̄1̄22} plane. The relevant direction of shearing on this plane
is the 〈112̄3〉 direction, the slip direction along which the
local maxima and minimum usually lie. Many details of these
lattice energy curves can affect the core structure, and for
this reason we employ DFT for its calculation, as opposed to
MS or a hypothetical function. To do so, we use the relaxed
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TABLE II. Lattice parameters (in Å) and elastic constants (in GPa) for the ten HCP metals obtained from DFT and isotropic shear modulus
μ (in GPa), and Lamé parameter, λ (in GPa).

Material a c/a C11 C12 C13 C33 C44 C66 μ λ

Be 2.265 1.5760 303 36.7 12.5 380.1 165.2 133.2 154.35 20.38
Mg 3.190 1.6250 63.3 25.9 20.8 65.7 18 18.7 19.26 23.53
Y 3.648 1.5660 74 24.4 21.3 78.1 25.2 24.8 25.65 22.91
Ti 2.923 1.5810 159.4 108.9 83.9 191.7 37.6 25.2 35.67 94.43
Zr 3.231 1.6010 135.1 80.3 70.7 166.1 26.1 27.4 30.23 77.59
Hf 3.192 1.5790 183.4 83.1 72.5 206.1 52.6 50.1 54.05 78.31
Re 2.773 1.6130 617.9 281 233.4 678.6 165.4 168.4 177.61 260.48
Co (NM) 2.459 1.6090 424.2 161.1 151.6 457.6 84.8 131.6 116.35 170.72
Co (FM) 2.492 1.6208 359.2 164.8 109.3 406.4 93.1 97.2 106.11 139.44
Zn 2.664 1.8470 154.3 38.4 48.4 63.9 30.4 58 39.58 45.05
Cd 3.034 1.8610 76.8 42.1 34.1 45.6 7.8 17.3 12.51 38.31

method [21], wherein for each displacement step, minimiza-
tion of the energy of the system is ensured by fixing all atomic
positions along the glide direction and allowing those along
the plane normal and the in-plane direction lying normal to
the glide direction to relax. Fine displacement intervals were
used to precisely locate the local minimum. Note that with the
same DFT model design, the GSFE curves or surfaces for the
basal, prismatic, and two types of pyramidal planes in Mg,
Zr, and Ti have been previously calculated [21,38,71]. Here,
we extend the pyramidal-II GSFE calculations for all ten HCP
metals

Figure 1(a) presents the calculated GSFE curves for all ten
HCP metals. We observe that all curves have two pronounced
local maxima, denoted as the unstable SFEs, U1 and U2, and a
local minimum, well known as the intrinsic SFE I . To ensure
the local minimum indeed lies along the GSFE curve, the full
pyramidal-II GSFE surface of Mg was calculated with DFT
(see Fig. 10 in Appendix A). Compared to prior pyramidal-II
GSFE curves, the results in Fig. 1 are similar with the excep-
tion of Cd [36]. Differences could be attributed to more atoms
in the present supercell (≈60) but a coarser k-point grid.

The relative shear displacement xI/b across the plane cor-
responding to I leads to a metastable stacking fault. Table III
summarizes the values for I , U1, U2, and xI/b. In all metals,

the two peak energies, U1 and U2, belonging to the same land-
scape, are unequal with U2 > U1. The local minimum xI/b
displacement is shifted from the ideal xI/b = 0.5, a reflec-
tion of the anisotropy in bond length. In low-symmetry HCP
metals, the bond lengths are generally unequal for all planes.
When c/a = √

8/3 = 1.633, all 12 nearest neighbors of an
atom in the double lattice structure are equidistant. Only one
of the ten HCP metals, Mg, possesses a nearly ideal c/a ratio,
and accordingly, its xI/b = 0.49. Two metals, Zn and Cd,
have c/a ratios greater than ideal, leading to xI/b > 0.5. All
remaining metals have below ideal c/a ratios and xI/b < 0.5.

Figure 1(b) examines more closely the GSFE curves for
Co calculated with and without ferromagnetic ordering. The
effect of magnetism on the GSFE is found to be significant.
Without magnetism, the GSFE possesses no pronounced local
minimum, but with magnetism, it has a single local minimum
at xI/b = 0.45, like the other nine HCP metals. The peak
energy U2 also reduces with magnetism by 8%. Table II shows
that magnetism increased the lattice parameter a and the c/a
ratio and decreased the elastic constants C11, C13, and C33. A
similar effect of magnetism on a was reported in prior studies
of cubic metals, namely Cr [61], Fe [72], and Ni [69]. More
importantly, the values for the elastic moduli determined with
ferromagnetism achieve better agreement with the experimen-

FIG. 1. Comparison of GSFE profiles (a) for the pyramidal-II plane in ten HCP metals as determined by DFT, and (b) for Co with and
without magnetism considered in the DFT simulations. In (a), the GSFE curve for Co is shown with the effect of ferromagnetism considered.
The unstable SFEs, U1,2, and intrinsic SFE, I , are labeled in (b).
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TABLE III. The unstable SFEs, U1 and U2, and the intrinsic SFE,
I , for ten HCP metals. Their normalized locations are also shown. All
energies are expressed in units of mJ m−2, and positions are normal-
ized with the Burgers vector magnitude in the [112̄3] direction, b.

Material U1 I U2

mJ m−2 xU1/b mJ m−2 xI/b mJ m−2 xU2/b

Be 1335.7 0.23 678.2 0.47 1768.6 0.71
Mg 262.9 0.27 168.1 0.49 397.4 0.72
Y 380.1 0.27 352.3 0.42 565.6 0.71
Ti 617.8 0.21 332.1 0.44 764.2 0.68
Zr 538.5 0.21 260.2 0.44 658.2 0.69
Hf 730.2 0.20 411.9 0.43 919.6 0.69
Re 1468.1 0.27 1168.0 0.44 2088.8 0.74
Co (NM) 870.0 0.21 857.3 0.30 1502.5 0.69
Co (FM) 889.6 0.29 702.2 0.45 1381.2 0.71
Zn 324.3 0.35 150.3 0.52 393.4 0.78
Cd 174.4 0.36 78.2 0.53 202.3 0.79

tally measured values, which are presented in Table VIII in
Appendix B. Hereafter, PFDD calculations in this paper will
use the GSFE curve, lattice parameters, and elastic moduli
calculated for Co from DFT with ferromagnetism considered.

B. PFDD formulation

As is fundamental in phase field approaches, this method
relies on the evolution of one or more order parameters
through the minimization of the total system energy. For phase
field approaches formulated to study the motion and inter-
action of dislocations, the order parameters, ζ , represent the
location of and area traveled by dislocations within the system
[52,53,73]. The order parameters are defined by slip systems
within a material, and hence the number of order parameters
varies with the crystallography of the material under study.
Defined in this way, the set of ζ is used to describe the plastic
strain as

ε
p
i j = 1

2

Nop∑
α=1

bα

dα

ζα (x, t )δα (sα
i mα

j + sα
j mα

i ), (3)

where the sum is taken over all slip systems α from 1 to Nop

included in the material, bα is the magnitude of the Burg-
ers vector on the slip plane of interest, dα is the interplanar
distance for the active slip plane, δα is the Dirac distribution
supported on the slip plane, m is the slip plane normal, and s is
the normalized slip vector. In many crystals, multiple systems
share the same plane; therefore, while dα is defined with each
slip system α, slip systems on the same slip plane will share
the same dα .

In the PFDD method, the order parameters evolve through
the minimization of the total system energy density, E ,
dictated at each time step via the time-dependent Ginzburg-
Landau (TDGL) equation

∂ζα (x, t )

∂t
= −L

δE (ζ )

δζα (x, t )
, (4)

where L, which is related to the convergence speed of the
system, is a non-negative coefficient that is constant and set to
unity here for all order parameters. For calculations involving

multiple order parameters, Eq. (4) becomes a set of N coupled
integrodifferential equations that must be solved numerically
to evolve the system. In the dislocation problems of interest
for this work, the total free energy density of the system
consists of two contributions [53,59]:

E = E strain + E lattice, (5)

where E strain is the elastic strain energy density generated by
the presence of dislocations in the system and interactions
between these dislocations. The lattice energy density, E lattice,
describes the energy expended as a dislocation glides through
the crystal lattice breaking and reforming atomic bonds. Un-
der an external stress, a third term for the work done to the
system through an applied stress would be included. However,
for the problems in this work, no external stress is applied. In
addition, past PFDD formulations have included a gradient
energy term, representing the energy density stored in the par-
tial dislocation cores in FCC metals [57]. It tends to increase
the partial dislocation core size in better agreement with MS
[57,74]. With its basic effect qualitatively understood, we
refrain from adding the gradient energy term in the present
application since it requires an additional material-dependent
coefficient. We note that in this case, without the gradient
energy term, the PFDD formulation employed is equivalent to
a GPN model [55]. We emphasize that the GPN model has not
yet been applied to the problem of pyramidal-II dislocation
cores, to the best of our knowledge.

The elastic strain energy density, E strain, which is com-
monly expressed in terms of the elastic strain, can also be
expressed in terms of the plastic strain [53]:

E strain = 1

(2π )3
−
∫

1

2
Âmnuv (k)ε̂ p

mn(k)ε̂ p∗
uv (k)d3k, (6)

where a superposed ( ˆ ) denotes the Fourier transform,
Âmnuv (k) = Cmnuv − CkluvCi jmnĜki(k)k jkl , k is the wave-
number vector, Ĝki(k) is the Fourier transform of the Green’s
tensor of linear elasticity, −∫ denotes the principal value of the
integral, Ci jkl is the elastic moduli tensor, and the superscript
(∗) denotes the complex conjugation.

To examine the effect of HCP anisotropy, we will use
the elastic moduli tensor and the Green’s tensor for either a
transversely isotropic or ideally isotropic material in the cal-
culations. The elastic stiffness tensor for both a transversely
isotropic hexagonal system, Ca, and an isotropic system, Ci,
can be given in compact matrix notation by

Ca =

⎡
⎢⎢⎢⎢⎢⎣

C11

C12 C11

C13 C13 C33 Symm
C44

C44

C66

⎤
⎥⎥⎥⎥⎥⎦,

Ci =

⎡
⎢⎢⎢⎢⎢⎣

λ + 2μ

λ λ + 2μ

λ λ λ + 2μ Symm
μ

μ

μ

⎤
⎥⎥⎥⎥⎥⎦,

(7)
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TABLE IV. Interplanar spacing, d , normalized in terms of the Burgers vector magnitude b and the calculated coefficients for the lattice
energy periodic potential for the pyramidal-II [Eq. (11)] slip mode. All coefficients are shown in units of mJ m−2.

Material d/b p0 p1 p2 p3 p4 q1 q2 q3 q4

Be 0.22619 989.73 −295.15 −572.54 −45.07 −41.44 −178.95 143.29 6.682 −15.83
Mg 0.22318 217.98 −75.35 −116.48 −6.137 −9.728 −55.26 15.05 8.900 −1.228
Y 0.22680 332.03 −154.61 −137.14 −24.28 −4.422 −76.47 22.48 10.91 −1.145
Ti 0.22589 427.52 −165.06 −220.30 −22.96 −9.542 −52.33 118.72 −13.57 −16.63
Zr 0.22466 366.91 −127.64 −196.37 −21.80 −8.282 −48.31 105.95 −12.50 −12.27
Hf 0.22601 528.33 −184.61 −258.63 −41.86 −18.95 −82.81 131.01 −11.56 −15.33
Re 0.22392 1205.08 −482.64 −551.80 −92.09 −1.064 −269.59 46.20 42.31 24.93
Co (NM) 0.22416 875.19 −404.22 −306.22 −74.51 −38.14 −239.18 93.18 40.97 −17.05
Co (FM) 0.22344 770.05 −318.55 −360.51 −33.14 −23.72 −220.16 48.84 16.88 4.346
Zn 0.20934 214.57 −74.43 −115.09 −5.264 −15.33 −49.90 −56.68 23.13 8.863
Cd 0.20848 109.91 −41.06 −57.01 −2.154 −8.134 −25.06 −35.13 13.93 4.391

where 2C66 = C11 − C12, μ is the shear modulus, and λ is
Lamé’s first constant. We utilize a Voigt average to determine
the two isotropic constants from the five transversely isotropic
constants (Table II), using [22]

μ = 1
30 [7C11 − 5C12 + 2C33 + 12C44 − 4C13], (8)

λ = 1
15 [C11 + C33 + 5C12 + 8C13 − 4C44], (9)

whose values are also included in Table II.
The lattice energy E lattice depends on the material, and in

some cases, such as HCP and BCC metals, the lattice energies
of more than one type of crystallographic plane are of interest
[38,61]. In general, E lattice can be written as [38,53]

E lattice =
Np∑

β=1

∫
1

dβ

φβ (ζ1(x), ζ2(x), . . . , ζN (x))d3x, (10)

where φβ (ζ1(x), ζ2(x), . . . ) is a periodic potential for slip
plane β on up to Np planes.

C. PFDD model for 〈c + a〉 pyramidal dislocations

Here we consider a straight dislocation belonging to a
pyramidal-II 〈c + a〉 slip system. Hence, Nop = 1, Np = 1,
and α = β = 1. In what follows, we drop the subscripts α

and β. For the periodic potential of the pyramidal-II plane,
the following continuous function, proposed in Ref. [38], is
adopted:

φ(ζ ) = p0 + p1 cos(2πζ ) + p2 cos(4πζ ) + p3 cos(6πζ )

+ p4 cos(8πζ ) + q1 sin(2πζ ) + q2 sin(4πζ )

+ q3 sin(6πζ ) + q4 sin(8πζ ), (11)

where the coefficients p0, . . . , p4, q1, . . . , q4 are calculated
from the GSFE curves using the MATLAB curve-fitting tool
[75]. The continuous GSFE curves are shown in Fig. 1(a) and
the corresponding coefficients are presented in Table IV.

The explicit Euler method is employed for the time inte-
gration in the TDGL equation. The order parameter at time
ti + �t is formulated explicitly based on its value at time ti
according to Eq. (4). A recent PFDD work [74] found that
the explicit Euler method requires the time-step size �t to be

small enough for numerical stability, so �t = 0.01 is used in
our work.

Figure 2(a) shows the three-dimensional (3D) cuboidal
periodic simulation cell. As part of the fast Fourier trans-
form method for calculating the strain energy density, periodic
boundary conditions are employed. All order parameters ζ =
0 (perfect direct lattice) at each grid point, except those that
lie on the plane z = N/2 and between x = N/4 and x = 3N/4
(in the darker shaded area) where ζ = 1 (perfect direct lattice
translated by one Burgers vector) for all grid points in this
region. Since dislocations are not explicitly defined in the
PFDD model, but rather are inferred as a structurally neces-
sary defect along boundaries between regions with different
order parameter integer values, two perfect dislocations are

FIG. 2. Schematics showing (a) the initial simulation setup for
the PFDD computational cell with two infinitely long parallel dis-
locations forming a dipole. In (b), the HCP unit cell is oriented
(shown for an initial edge dislocation) such that the pyramidal-II
glide plane lies parallel to the xy-plane in the simulation cell in (a).
The simulation setup for a screw dislocation would have the same
initialization shown in (a), while the HCP unit cell in (b) would be
rotated around the z-axis by 90◦. For clarity, the x-, y-, and z-axis in
our simulation cell correspond to the x-, y-, and z-axis, respectively,
in our HCP unit cell when initializing for an edge dislocation, and
to the y-, x-, and z-axis, respectively, when initializing for a screw
dislocation. Thus, the slip plane lies parallel to the simulation cell
surface, the dislocation line sense lies parallel to the y-axis, and the
Burgers vector (and unit cell) orientation is reflective of the desired
dislocation character.
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initialized in our simulation cell, one at x = N/4 and the other
at x = 3N/4, forming a dipole. We chose this setup as opposed
to initializing the order parameter step from 0 → 1 at x = N/2
to avoid placing an unintentional dislocation along the peri-
odic boundary. Along each direction of the simulation cell,
there are N = 640 grid points. Several simulation cell sizes
were tested, and this size was determined to be sufficiently
large such that the final equilibrium state was unaffected by
the image dislocations in the periodic cells.

The grid spacing in all x, y, and z directions is set as
the interplanar distance d for the pyramidal-II plane nor-
malized by the Burgers vector magnitude b. Note that b is
for the 〈112̄3〉 direction and d is for the {1̄1̄22} plane. In
the (hkl ) Miller-Bravais notation, the interplanar spacing is
1

d2 = 4
3

h2+hk+k2

a2 + l2

c2 . Thus, the interplanar spacing accounts
for the lattice spacing in both the 〈a〉 and 〈c〉 directions and
changes with the material c/a ratio. By using the interplanar
spacing as the grid spacing, the calculations account for the
differences in the c-axis length among the HCP materials.
Table IV summarizes the normalized interplanar spacing d/b
for each material. In addition, the DFT calculated elastic con-
stants and lattice parameters, shown previously in Table II, are
used to inform the material parameters for each simulation.

Each simulation begins with a perfect edge or screw dislo-
cation dipole placed on the glide plane, as shown in Fig. 2(a).
The dipole consists of a pair of dislocations with equal and op-
posite sign, which produces a net zero Burgers circuit around
the simulation cell. The lines of the pair lie at N/4 and 3N/4
along the x-axis, and the line sense is oriented parallel to the y-
axis, which is the [11̄00] direction, as shown in Fig. 2(b). For
the edge dislocation, the Burgers vector is oriented parallel to
the x-axis ([112̄3] direction), and for the screw dislocation it
lies parallel to the y-axis. It can be demonstrated that as the
system relaxes to its equilibrium state, the two dislocations in
the dipole behave independently and identically. Accordingly,
we focus the analysis hereafter on the positive dislocation,
which is on the left in Fig. 2(a).

III. RESULTS

A. Disregistry across the core structure

To determine the structure of the dislocation at all times
during the relaxation process, we extract in-plane values of
the order parameter, ζ , and compute the disregistry bζ across
the plane where the dislocation lies. Given that b is a constant
for each metal, the latter quantity can be simplified as the
order parameter density dζ/dx. Initially the full dislocation
is compact and its dζ/dx profile corresponds to a narrow
peak at the initial position x = 0. If the dislocation dissociates
during relaxation into smaller, distinct partial dislocations, the
order parameter density profile would transform in time to
one comprised of relatively shorter peaks where these partials
are located, as illustrated in Fig. 3. The viewing plane of
this illustration lies transverse to the dislocation line. The
two peaks correspond to the two partial dislocations on the
glide plane, and the locations of these peaks correspond to the
positions of the center of the cores. To conserve the Burgers
vector, the partials will have the same sign and thus repel one
another, causing the left partial to displace to the left and the

FIG. 3. A schematic of the gradient of the order parameter,
dζ/dx. The labels indicate the equilibrium SFW, Re, and their core
widths, wl and wr , respectively.

right one to the right from the dissociation site. If the cores
of these partials were compact, then they would appear as
two narrow peaks. Yet, in actuality, the cores of the partials
assume a finite width w in response to the energetic expense
associated with creating a fault. Adopting the approach used
commonly in analyses of diffraction data, we establish the
widths of the partial cores, wl and wr, as the full width at
half-maximum (FWHM) of each peak in the dζ/dx profile.
Over the years, the size of the extended dislocation cores has
been most prominently characterized by the equilibrium dis-
tance between the two partials, which has also been variously
called the equilibrium stacking fault width (SFW) or splitting
distance. Here, we define the equilibrium splitting distance as
the distance between the centers of the two partial, denoted as
Re, as illustrated in Fig. 3.

The Burgers vector decomposition between the two partials
can also be determined from ζ and its density dζ/dx. The
magnitude of the Burgers vectors for the partial dislocations
can be expressed as a fraction of the magnitude of the full
pyramidal-II Burgers vector. The magnitude of the Burgers
vector of the left partial is related to the value of the order
parameter ζ0 = ζ (x0) where the position x0 is the minimum
value of the gradient within the stacking fault (i.e., between
the two peaks). The magnitude of the Burgers vector for
the right partial dislocation is the remainder 1 − ζ0. Having
identified ζ0, we can calculate the Burgers vector of the two
partials bl and br via

b = ζ0b + (1 − ζ0)b = bl + br. (12)

B. Be, Mg, and Y

We begin with the group II and III HCP metals, Be, Y,
and Mg. The GSFE curve of Be stands out from the others
in Fig. 1(a) with the largest unstable SFEs U1,2, as well as a
distinct local minimum at the stable energy I . In the GSFE
curves for Y and Mg, however, the differences among U1,2

and I are relatively small, and hence their local minima lie in
a relatively shallow energy well.

Figure 4 shows the order parameter ζ and its density dζ/dx
after the equilibrium structure is achieved for dislocations in
these metals. These profiles focus on a smaller region of the
model crystal and ζ is represented by the dotted lines and
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FIG. 4. The order parameter, ζ (dotted lines), and its density, dζ/dx (solid lines), along the [112̄3] slip direction for initialized edge (a,b,c)
and screw (d,e,f) dislocations in Be, Mg, and Y. Both isotropic (red) and anisotropic (blue) elastic considerations are compared. The vertical
lines represent the location of the two partials before the dissociation, when they are one unstable perfect dislocation at zero position, and at
the end of the simulation, when equilibrium is achieved.

dζ/dx by the solid lines. The initial position of the disloca-
tion before the dissociation process is zero (as indicated with
vertical dashed line). In all three metals, the dislocation was
observed to dissociate into two partials with a stacking fault
in between. The partial dislocations appear as the two broad
peaks in the order parameter density, and the stacking fault is
the intervening, nearly flat region between them.

Table V summarizes the Burgers vectors of their partials
as well as their splitting distances Re. The Burgers vectors in
each partial dislocation are nearly, but not exactly, equal in
value, with the left one being slightly smaller than the right
one. For Be, Mg, and Y, their final splitting distances are, re-
spectively, 18.17, 25.81, and 21.52 Å for the edge dislocations
and 18.17, 17.66, and 16.91 Å for the screw dislocations. The
edge dislocations have larger Re than the screw dislocations.
This trend only confirms the stronger edge repulsion force
generated between two like-edge dislocations than two like-
screw dislocations.

For validation, we turn to available DFT calculations,
which only exist for Mg. DFT calculations reported 16.6 and
18.3 Å, respectively, for screw and edge dislocations [76] and
14 Å for the screw dislocation [29]. MS simulations calculated
15 and 20.72 Å, respectively, for screw and edge dislocations
[77] and 22.6 Å for the edge dislocation [21]. Differences
are small considering likely variations in the definition of
Re, elastic constants, and fault energies among these studies.
Further, as noted earlier, without the gradient term, partial core
widths tend to be narrower than those from DFT or MS [57].

The estimates for the widths of the partial cores w for Be,
Y, and Mg are listed in Table V. The energetic formulation

TABLE V. The equilibrium SFW, Re, the left and right partial
dislocation core widths, wl and wr , and the left and right Burgers
vector magnitude, bl and br , respectively, for perfect edge and screw
dislocation dissociation in ten HCP materials. Due to the grid spac-
ing, the partial dislocation core widths have error bars of ±0.1b.
Values of Re, wl, wr , bl, and br are normalized by b.

Material Dislocation b (Å) Re wl bl wr br

Be Edge 4.228 4.298 0.45 0.48 0.45 0.52
Screw 4.228 4.298 0.68 0.48 0.68 0.52

Mg Edge 6.087 4.240 0.89 0.49 0.45 0.51
Screw 6.087 2.901 0.89 0.46 0.47 0.51

Y Edge 6.778 3.175 0.68 0.48 0.45 0.52
Screw 6.778 2.495 0.91 0.46 0.45 0.54

Ti Edge 5.468 4.065 0.45 0.44 0.45 0.56
Screw 5.468 2.259 0.45 0.44 0.45 0.56

Zr Edge 6.099 4.717 0.45 0.44 0.45 0.56
Screw 6.099 2.696 0.45 0.44 0.45 0.56

Hf Edge 5.966 4.971 0.45 0.44 0.68 0.56
Screw 5.966 3.389 0.45 0.44 0.68 0.56

Re Edge 5.262 5.599 1.79 0.46 0.67 0.54
Screw 5.262 3.807 1.34 0.46 0.67 0.54

Co (FM) Edge 4.746 4.916 1.79 0.47 0.89 0.53
Screw 4.746 3.576 1.34 0.47 0.67 0.53

Zn Edge 5.595 4.815 0.42 0.52 0.42 0.48
Screw 5.595 4.397 0.42 0.52 0.42 0.48

Cd Edge 6.410 4.168 0.42 0.53 0.42 0.47
Screw 6.410 2.710 0.42 0.53 0.42 0.47
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TABLE VI. The ratio between the left and right partial disloca-
tion cores, wl/wr , for both edge and screw dislocations, and the ratio
between the unstable SFEs, U2/U1, and the ratio, D2/D1. Values of
wl and wr are from Table V.

Material wl/wr (edge) wl/wr (screw) U2/U1 D2/D1

Be 1.0 1.0 1.324 1.252
Mg 1.98 1.89 1.512 1.600
Y 1.5 2.02 1.488 5.156
Ti 1.0 1.0 1.237 1.223
Zr 1.0 1.0 1.222 1.170
Hf 0.66 0.66 1.259 1.267
Re 2.67 2.0 1.423 2.157
Co (FM) 2.0 2.0 1.553 2.390
Zn 1.0 1.0 1.213 1.151
Cd 1.0 1.0 1.160 1.112

in the model expects that the larger U1,2 would lead to the
narrower w. As expected, we observe that the cores of the
partials are generally wider in dislocations of Mg and Y, with
the smaller peak energies than those of Be, which has the
highest U1 and U2 of this group.

We see that, in Mg and Y, the dislocation structures are
asymmetric with the width wl of the left partial generally
larger than wr for the right one. The asymmetry can be quan-
tified by the ratio of wl/wr, which is also given in Table VI.
In the case of the edge dislocation, in Mg, the asymmetry is
noticeable with wl/wr slightly less than 2.0, and less so in Y
with wl/wr = 1.5. These differences result primarily from the
different energetic pathways on the GSFE curve correspond-

ing to their displacement. The energetic path for the left partial
as it displaces in the negative 〈112̄3〉 direction follows the
right-hand portion of the GSFE and is affected by the second
peak U2. This path is different from that taken by the right
partial, which displaces in the positive 〈112̄3〉 direction and
is, hence, dictated by U1.

We performed a second set of calculations considering
isotropic elasticity in place of the more realistic anisotropic
elasticity. The split distances Re and asymmetries between the
two partials are not noticeably affected by elastic anisotropy.
Exceptions are a slight decrease in Re for the edge dislocation
in Be from 18.17 to 16.26 Å and a slight increase for the screw
dislocation in Mg from 17.66 to 19.02 Å when isotropy is
assumed.

C. Ti, Zr, and Hf

In this section, the equilibrium structures of dislocations
for group IV HCP metals (Ti, Zr, and Hf) are examined. The
GSFE curves for this group have similar shapes with a distinct
local minimum located at xI/b = 0.43–0.44, which deviates
significantly from the ideal 0.5. In each case, the two local
maxima, U1 and U2, are not significantly different in value.

Figure 5 presents ζ and dζ/dx for screw and edge dis-
locations in these metals after equilibrium is achieved. Like
the previous metals, the dislocations in this group do not
maintain a compact core. They dissociate into two distinct
partials, which for all three metals are unequal in value,
with the left one being noticeably smaller, by 18%, than the
right one. This uneven split is an outcome of the relatively
short critical shear displacement of 0.43b–0.44b needed to
achieve the local minimum fault in all their GSFE curves. The

FIG. 5. The order parameter, ζ (dotted lines), and its density, /dx (solid lines), along the [112̄3] slip direction for an initialized edge and
screw dislocation in Ti, Zr, and Hf. The coloring follows Fig. 4.
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(a) (b)

(c) (d)

FIG. 6. The order parameter, ζ (dotted lines), and its density, dζ/dx (solid lines), along the [112̄3] slip direction for an initialized edge and
screw dislocation in Re and Co (FM). The coloring follows Fig. 4.

separation distances Re of these partials belonging to the edge
dislocations are 28.77, 22.23, and 29.66 Å for Zr, Ti, and Hf,
respectively. Compared to the edge dislocations, in all metals
in this group, Re for screw dislocations are smaller, 16.44,
12.35, and 20.22 Å for Zr, Ti, and Hf, respectively.

Table V lists the partial widths, w, as defined by the
FWHM method in the two peaks in ζ . Two of the metals, Zr
and Ti, feature a symmetric core structure with wl/wr = 1.0.
Hf, on the other hand, exhibits an asymmetric core, unlike Zr
and Ti, with wl/wr = 0.66.

The same calculations under the assumption of elastic
isotropy are also shown in the same plots for comparison.
Elastic anisotropy of Ti and Zr leads to wider Re than when the
anisotropy is removed. The edge dislocation in Ti exhibits the
greatest increase in Re from 17.29 Å (isotropic) to 22.23 Ar-
ing; (anisotropic). For Hf, on the other hand, elastic anisotropy
does not lead to significant changes in Re or its asymmetric
structure.

D. Re and Co

Next, we study the equilibrium core structures of disloca-
tions in the group VII and IX HCP metals: Re and Co. Their
GSFE curves were compared to others previously in Fig. 1(a).
An important distinguishing feature of their energetic land-
scapes compared to the other eight metals is their significant
differences between their two peak energies U1 and U2. U2 is
30% higher than U1 in Re and 36% higher than U1 in Co.

Figure 6 presents their equilibrium dislocation structures.
These two metals share many common features, with the most
prominent one being their asymmetric structure, compared to
the dislocation structures of other metals. They both dissociate
into two partials that are unequal in Burgers vector value and
core width. The Burgers vector left partial is approximately
15% smaller in length than that of the right one and its width
is twice as large. The widths of the partial cores are some of
the largest compared to the other metals, even though their
lattice parameters are not. Re has the larger Re of 29.46 and
20.03 Å for the edge and screw dislocations, respectively. Co
has a smaller Re of 23.33 and 16.97 Å for the two dislocations,
respectively.

For comparison, the calculated structures using their
isotropic equivalent elastic properties are also included in
these profiles. Elastic anisotropy has a negligible effect on
the splitting distance of both the edge and screw dislocations.
Only a very slight increase is seen in the Re for the screw
dislocation in Co due to elastic anisotropy; Re = 15.91 Å for
isotropy compared to 16.97 Å for anisotropy.

E. Zn and Cd

The last two metals studied are Zn and Cd, which are group
XII metals. The GSFE curves for these materials were pre-
sented previously in Fig. 1(a). Compared to the other metals,
they have the lowest unstable SFEs U1 and U2. Also, unique to
this group, their c/a ratios are larger than the ideal value, and
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FIG. 7. The order parameter, ζ (dotted lines), and its density, dζ/dx (solid lines), along the [112̄3] slip direction for initial edge and screw
dislocations in Zn and Cd. The coloring follows Fig. 4.

the displacement xI/b at which the local minimum is achieved
is greater than 0.5 (located at 0.52–0.53). The displacements
corresponding to the unstable SFEs are also larger than those
of the other metals.

Figure 7 shows the calculated ζ and dζ/dx profiles for the
equilibrium cores for the edge and screw dislocations in Zn
and Cd. Their splitting distances, Re, are 26.94 and 24.60 Å for
the edge and screw dislocations for Zn, and 26.73 and 17.37 Å
for Cd.

The dislocation structures of these two metals are nearly
symmetric. The widths of their two partials are nearly equal.
Although, like the other metals, the Burgers vectors of the two
partials are not precisely equal in length, the difference is not
significant (within ±0.02 Å). Due to the larger displacement
offset of the local minimum in their GSFE curves, the value
of the Burgers vector of the left partial is slightly larger than
the right one.

Figures 7(a)–7(d) show that anisotropy has a significant
effect on the equilibrium splitting distances for both Zn and
Cd. These group XII elements are the only materials here
to exhibit a much narrower dζ/dx peak separation distance
when anisotropy is taken into consideration. In Zn, for the
edge dislocation, Re reduces to 26.94 Å under elastically
anisotropic conditions from an isotropic one of 42.17 Å; for
the screw dislocation, Re reduces to 24.60 Å under elastically
anisotropic properties from Re of 30.45 Å under isotropic
ones. Cd shows a similar trend, with Re values of 26.73 and
37.42 Å for the edge dislocation with elastic anisotropy and

isotropic isotropy, respectively. Finally, in the screw case in
Cd, we see Re equal to 17.37 and 22.72 Å for the elastic
anisotropic and isotropic cases, respectively.

IV. DISCUSSION

From the DFT calculations, we find that these metals bear
different levels of elastic anisotropy and different maxima and
minima in their GSFE curves. In PFDD calculations, these
properties are directly taken into account, and as the results
have shown, the dissociation process leads to dislocation cores
that deviate from the ideal picture, particularly showing partial
dislocations with noncompact cores that are unequal in their
widths and Burgers vectors. With all ten HCP metals in hand,
we identify in the next few sections the material properties
that govern their core structure.

A. Scaling of core size with the intrinsic stacking fault energy

The analytical model in Eq. (2) expects that the intrinsic
SFE, I , has the most pronounced effect on the Re/b. Figure 8
presents the variation in the PFDD calculated distances when
considering anisotropy, Re/b, with I/(Kb), as expected from
the analytical model in Eq. (2). Re/b shows a strong inverse
scaling with I/(Kb). Metals Ti and Y have the largest I/(Kb)
and also the narrowest Re/b ≈ 2–3, while Zn and Be with
the smallest I/(Kb) have the widest Re/b ≈ 5–6. The inverse
scaling reflects the same basic principle used in the analytical

043602-11



CLAIRE ALBRECHT et al. PHYSICAL REVIEW MATERIALS 5, 043602 (2021)

FIG. 8. The equilibrium partial separation distance Re, calculated using PFDD plotted against (a) the intrinsic SFE I normalized by Kb,
and (b) the unstable SFE U2, also normalized by Kb. Expressions for K are given in Ref. [23].

model, namely that an SFW at low I comprises a large fraction
of the entire core structure, and I has a dominant effect on the
equilibrium split distance.

Figure 8(b) examines the relationship between Re and the
higher maxima U2 in the GSFE curve. A remarkably strong
inverse scaling in U2/(Kb) emerges. A similar analysis with
U1/(Kb) does not show a strong trend, and it can be found
in Fig. 11 in Appendix C. In the dissociation process, the
partial dislocations move apart, and evidently it is the higher
maximum U2 that affects the resistance.

To date, the analytical model in Eq. (2) was the only
application used to predict Re/b for the pyramidal-II dislo-
cations for just some of the HCP metals studied here. This
work quantifies the equilibrium stacking fault width as well
as other inherent features of the dislocation structure on the
pyramidal-II plane for all ten HCP materials. Results indi-
cate that as expected from theory, Re/b scales inversely with
I/(Kb) and is minimally impacted by U1/(Kb) and U2/(Kb).
The key difference is that the scaling is not as strong as the
analytical model predicts and is not profoundly affected by the
anisotropy in its elasticity properties inherent to HCP metals.

B. Origin of the asymmetric cores

The analysis so far has indicated that the asymmetry in
the dislocation structures is not a consequence of elastic
anisotropy. The dislocation cores from the anisotropic and
isotropic equivalent calculations exhibit very similar, if not the
same, asymmetries. The properties of the GSFE curves of the
individual metals, on the other hand, are highly influential.
In particular, the core widths of the partials are affected by
the depth of the local minimum in the GSFE. Shallow energy
wells, for instance, would suggest that a broad partial core, in
which the partial Burgers vector is distributed in plane, is more
energetically favorable than the formation of the compact par-
tial core bordering a minimum energy intrinsic stacking fault.

Here we observe that the GSFE curves of all ten HCP
metals exhibit some degree of asymmetry about the local
minimum state. The two local maxima, U1 and U2, are
unequal, and hence the local minimum lies at different depths
with respect to U1 and U2. The left partial, as it displaces

left in the negative slip direction, is affected by D2, and the
right one, as it displaces in the positive slip direction, by
D1. With depth quantified by D = (U − I )/U , their differ-
ences can be measured by comparing D1 = (U1 − I )/U1 and
D2 = (U2 − I )/U2 in each GSFE curve. Table VI summarizes
the ratios U2/U1 and D2/D1 for each metal. A correlation
can be identified by comparing D2/D1 with wl/wr. The more
symmetric core widths have nearly equal depths within 20%.
Those metals with GSFE curves with greater differences,
where D2/D1 is large, such as Mg, Y, and Re, have highly
asymmetric cores.

C. Effect of elastic anisotropy

The equilibrium core structures calculated assuming ef-
fective isotropic or actual anisotropic elastic properties are
similar in many features. For instance, many of the asym-
metric properties of the core are retained even when the
anisotropy is removed by using the effective isotropic con-
stants. The primary effect of anisotropy is, in some cases,
either to narrow or widen the equilibrium split distance, Re.
Qualitatively, these effects only confirm that the dominant
contribution of elasticity is to control the elastic repulsive
interactions between the two partials.

In theory, the ratio of the anisotropic to isotropic Rani
e /Riso

e
should scale with the ratio of the preenergy factors, K/μ from
Eq. (2), the analytical calculation for the stacking fault widths.
Figure 9(a) shows the variation in the ratio of Rani/Riso, de-
termined using PFDD, with the calculated preenergy factor
K/μ for both edge and screw dislocations. The calculations
follow the expected scaling, although we see that cases in
which the anisotropic and isotropic separations were nearly
equivalent correspond to a range of K/μ = 1.05–1.2. Yet we
still find that in most cases, the anisotropic Re is wider than
the isotropic one when K/μ is much greater than unity and
vice versa when it is much less than unity.

Over the years, many factors have been proposed to quan-
tify the level of elastic anisotropy in HCP metals, some of
which we have included in Appendix D for completeness.
Knowing which anisotropic indexes best capture certain mate-
rial behavior could be important to larger length scale models,
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FIG. 9. The ratio of the anisotropic to the isotropic equilibrium SFW Rani
e /Riso

e plotted against (a) the anisotropic energy factor, K ,
normalized by the shear modulus, μ, and (b) the logarithmic Euclidean anisotropy index, AL , for both edge and screw dislocation dissociation.

which cannot model discrete deformation behaviors. There
have been many different anisotropic indexes (see Table IX
for the calculations of α, β, and γ , as well as Fig. 12 depict-
ing their relationship, if any, to the ratio Rani/Riso for edge
and screw dislocations) that do not consistently describe the
impact elastic anisotropy can have on the equilibrium stacking
fault width.

Recently, however, a measure of the distance between the
upper and lower bounds of the fourth-ranked elasticity tensor
was used to develop an index AL, applicable to all classes of
elastic anisotropy [78]. Here we apply AL to quantify the level
of anisotropy among the ten HCP materials. AL is defined as

AL =
√[

ln

(
κV

κR

)]2

+ 5

[
ln

(
μV

μR

)]2

, (13)

where the bulk (κV, κR) and shear moduli (μV, μR) are cal-
culated following the Voigt and Reuss averages, respectively.
By definition, for an ideally isotropic material, AL = 0.

Table VII shows the AL factors, as well as the other indi-
cators, for all metals here. According to AL, Y is the most
isotopic HCP metal and Zn the most anisotropic. Figure 9

TABLE VII. Log-Euclidean anisotropy index, AL , calculated us-
ing Eq. (13), and the bulk (κV, κR) and shear moduli (μV, μR) as
defined by Voigt and Reuss, are calculated for the ten HCP materials.
All values are determined using DFT calculated elastic constants
shown in Table II.

Material AL κV κR μV μR

Be 0.033 123.28 122.69 154.35 152.13
Mg 0.018 36.37 36.35 19.26 19.10
Y 0.005 40.01 40.01 25.65 25.58
Ti 0.173 118.21 118.17 35.67 33.01
Zr 0.092 97.74 97.36 30.23 29.01
Hf 0.021 114.34 114.26 54.05 53.55
Re 0.028 378.89 378.86 177.61 175.42
Co (FM) 0.075 210.18 210.16 106.11 102.61
Zn 0.509 71.43 60.11 39.58 31.95
Cd 0.341 46.64 42.01 12.51 10.82

plots the ratio of the anisotropic to isotropic Re against AL. The
effect of anisotropy on the deviations is greater in the edge
case than the screw case. It can be anticipated that the edge
dislocations would be more sensitive to the level of anisotropy
due to the more complex elastic stress state generated by edge
dislocations than screw dislocations.

Significantly, Fig. 9(b) shows that the closer Rani
e /Riso

e is
to unity, the smaller is the value of AL, and vice versa. For
instance, metals like Y, Re, and Mg, with the relatively lower
values of AL, have Re values that are unchanged when isotropy
is assumed in place of their actual anisotropy. It captures the
fact that, while Mg may be nearly isotropic, it is not exactly
isotropic, explaining the slight deviation of Rani

e /Riso
e of the

screw dislocation from unity. As AL for the metal increases up
to 0.2, Rani

e becomes increasingly greater than Riso
e . Likewise,

the Rani
e of Cd and Zn, which have the highest AL (>0.3), de-

viate the most from their isotropic Riso
e counterpart, although

the effect is to shrink Rani
e with respect to Riso

e .
The value for the preenergy factor K/μ in Fig. 9(a) does

not adequately reflect the variation of Rani/Riso. We find in
Fig. 9(b) that the closer AL is to zero, the closer the ratio
Rani/Riso is to unity, and, vice versa, the higher the value of
AL, the greater the ratio Rani/Riso diverges from unity. In this
regard, the K/μ prefactor does not work as well as AL.

The correlation is a significant result in light of the fact
that three common indices are poor indicators of the de-
gree of anisotropy. In Fig. 12(a), shown in Appendix D, we
plot the Rani

e /Riso
e versus the other anisotropic indicator α

[Eq. (D1)]. This factor is defined by only four of the five
constants. Similar to AL, for both the edge and screw character
dislocations, larger α corresponds to higher deviations from
ideally isotropic. Mg, Y, and Re present the lowest degree
of anisotropy with the α indicator, and Zn and Cd show the
highest deviation from isotropy. However, Be has a negative
value for this indicator and is an outlier. We also test, in
Appendix D, the performances of the other anisotropic indi-
cators β [Eq. (D2)] and γ [Eq. (D3)], as shown in Figs. 12(b)
and 12(c). As shown, the differences in the anisotropic and
isotropic Re exhibit no correlation with these other HCP
anisotropy indicators for either the edge or screw-character
dislocations. At least for dislocations, these anisotropy indi-
cators do not gauge well the anisotropic effects on Re.
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FIG. 10. The standard (a) and relaxed (b) GSFE surfaces for the pyramidal-II plane in Mg. The x- and y-axis values are normalized by the
magnitude of a direct lattice translation vector along the 〈112̄3〉 and 〈1̄100〉 directions, respectively.

V. CONCLUSIONS

In this work, we use phase-field dislocation dynamics
(PFDD) to calculate the size and structural properties of
pyramidal-II 〈c + a〉 dislocations in ten HCP metals: Be, Cd,
Co, Hf, Mg, Re, Ti, Y, Zn, and Zr. These metals vary widely in
their c/a ratio and degree of elastic anisotropy. As part of the
formulation, the calculation incorporates generalized stacking
fault energy (GSFE) curves for the pyramidal-II plane cal-
culated from density functional theory (DFT). Among these
metals, the GSFE curves are similar in shape but vary signifi-
cantly in the location and value of their two local maxima and
local minimum I . In addition, for Co, magnetism is shown to
play a vital role in achieving a local minimum energy in its
GSFE. With DFT informed PFDD simulations of the disso-
ciation process of both perfect screw and edge dislocations
to their low energy, equilibrium structures are obtained. For
all metals, the equilibrium dislocation structures of both edge
and screw character are not compact, but they extend bounded
by two partial dislocations. Their splitting distances, Re, are
found to range from 1.2 to 3 nm. We show that Re/b scales
inversely with the local minimum I/(μb). For some metals,
the structures are asymmetric, wherein the core widths of the
two partial dislocations are not exactly equal, deviating from
the classic picture from dislocation theory. The asymmetries
in these cases can be explained by significantly unequal max-
ima in the GSFE curves. The elastic anisotropy is shown to
not affect asymmetry between the partial Burgers vectors or
core widths. We show that the stronger the degree of elastic
anisotropy, as measured by the AL factor, the stronger the ef-
fect on Re. The influence, whether widening or narrowing the
core relative to isotropy, depends on the degree of anisotropy
and the screw/edge character of the dislocation.

ACKNOWLEDGMENTS

C.A. was supported by the Department of Defense
(DoD) through the National Defense Science & Engineer-
ing Graduate Fellowship (NDSEG) Program. A.H. gratefully
acknowledges support from the Materials project within the
Physics and Engineering Models (PEM) Subprogram element
of the Advanced Simulation and Computing (ASC) Program
at Los Alamos National Laboratory (LANL), USA. I.J.B.

acknowledges financial support from the National Science
Foundation (NSF CMMI-1728224). Use was made of com-
putational facilities purchased with funds from the National
Science Foundation (CNS-1725797) and administered by the
Center for Scientific Computing (CSC). The CSC is supported
by the California NanoSystems Institute and the Materials Re-
search Science and Engineering Center (MRSEC; NSF DMR
1720256) at UC Santa Barbara.

APPENDIX A: GSFE SURFACE

Figure 10 shows 2D GSFE surfaces for the pyramidal-II
plane in Mg calculated with standard and x-relaxed methods
for determining GSFEs [21,41] using DFT. In the standard
method, we shift the upper half of the crystal with respect
to the lower half of the crystal on the pyramidal-II plane in
small displacements and only allow atomic positions along the
z-direction to relax. In the x-relaxed method, we also allow for
an additional relaxation along the 〈1̄100〉 direction. Additional
relaxation normal to 〈112̄3〉 allows for local rearrangement of

FIG. 11. The equilibrium SFW Re plotted against the unstable
SFE, U1, normalized by the anisotropic energy factor, K , and the
Burgers vector, b.
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FIG. 12. The ratio of the anisotropic to the isotropic equilibrium SFW Rani
e /Riso

e plotted against the anisotropy indices (a) α, (b) β, and (c) γ

for both edge and screw dislocation dissociation.

the atoms near the glide plane, which leads to a well-defined
local minimum compared to a shallow minimum for the stan-
dard (unrelaxed) GSFE surface [41].

The lowest energetic path on the pyramidal-II GSFE sur-
faces, obtained using both the standard [Fig. 10(a)] and
x-relaxed [Fig. 10(b)] methods, lies along the 〈c + a〉 edge,
collinear to the 〈112̄3〉 direction, energetically indicating that
the partials will have only parallel components. This allows
us to simplify the input for the periodic potential φ, used in
the E lattice calculation, Eq. (10), of the PFDD model, from the
GSFE surface to the GSFE curve, that describes the governing
energetics for the pyramidal-II plane. For this reason, we
justify calculating only the GSFE curves for the remaining
HCP materials, which would otherwise be too computation-
ally time-consuming when using DFT to calculate the full
GSFE surface. The full GSFE surface could be calculated
with MS, however this method is dependent on interatomic
potentials and could impact the position of the minima, and
thus impact the PFDD results.

APPENDIX B: EXPERIMENTAL ELASTIC CONSTANTS

The experimentally determined elastic constants are pre-
sented in Table VIII. The elastic constants calculated using

TABLE VIII. Experimentally determined elastic constants (in
GPa) for the ten HCP metals [62] for comparison with the DFT
derived values in Table II.

Material C11 C12 C13 C33 C44

Be 299.40 27.60 11.00 342.20 166.20
Mg 63.48 25.94 21.70 66.45 18.47
Y 83.40 29.10 19.00 80.10 26.90
Ti 176.10 86.90 68.30 190.50 50.80
Zr 155.40 67.20 64.60 172.50 36.30
Hf 190.10 74.50 65.50 204.40 60.00
Re 634.40 266.00 202.00 701.60 169.10
Co (FM) 319.50 166.10 102.00 373.60 82.40
Zn 179.09 37.50 55.40 68.80 45.95
Cd 129.23 39.99 40.95 56.68 24.20

DFT in Table II are in good agreement with these experimen-
tally determined elastic constants.

APPENDIX C: VARIATION OF Re WITH THE LOWER
UNSTABLE STACKING FAULT ENERGY

We compared the equilibrium SFW Re against the three
critical energetic values on the GSFE curve (U1, I , and U2).
Previously shown in Fig. 8(a), Re inversely scales with the
local energetic minimum, the intrinsic stacking fault energy I ,
in accordance with the predictions from the analytical model
[Eq. (2)], which doesn’t take into consideration either of
the unstable stacking fault energies. Interestingly, we found
the strongest inverse scaling trend with the global energetic
maximum U2, shown in Fig. 8(b). For completeness, Fig. 11
shows the equilibrium SFW Re plotted against U1, the lesser
of the two unstable stacking fault energies on the GSFE curve
(U1 < U2). This analysis with U1 does not show as strong a
trend as can be found in the comparison with I and U2.

APPENDIX D: ADDITIONAL MEASURES OF ELASTIC
ANISOTROPY

Figure 11 shows the equilibrium SFW Re plotted against
the unstable SFE, and Table IX presents the traditionally used
anisotropic indices α, β, and γ , calculated in Eqs. (D1)–(D3).

TABLE IX. Traditionally used anisotropic indices α, β, and γ ,
calculated in Eqs. (D1)–(D3). All values are determined using DFT
calculated elastic constants shown in Table II.

Material α β γ

Be −3.232 0.806 1.008
Mg 1.130 1.039 1.272
Y 0.953 0.984 1.120
Ti 0.913 0.670 1.401
Zr 0.697 1.050 1.681
Hf 0.833 0.952 1.230
Re 0.944 1.018 1.332
Co (FM) 1.076 1.044 1.610
Zn 2.661 1.908 0.564
Cd 2.150 2.218 1.390
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Here we present results for the measures of elastic
anisotropy in HCP materials conventionally referred to as α,
β, and γ , and they are related to the elastic constants by [79]

α = C11 + C12 − C33

C13
, (D1)

β = C66

C44
, (D2)

γ = 1

2C44

[
C33 + C11 + C12

2
− C13

√
α2 + 8

2

]
. (D3)

We note that only the last anisotropy factor, γ , contains all
five independent elastic constants of an HCP metal.

Figure 12 presents the ratio of the anisotropic to isotropic
equilibrium SFW Rani

e /Riso
e compared to these anisotropic in-

dices: α (a), β (b), and γ (c). The points where Rani
e /Riso

e = 1
are spread out across various index values, demonstrating
the inefficiency of these indices at predicting the scal-
ing effect of elastic anisotropy on the equilibrium SFW
between materials. When compared to the Log-Euclidean
anisotropy index AL in Fig. 9(b), we can see that points
where Rani

e /Riso
e = 1 are densely packed and that the greater

the value of AL, the more likely Rani
e /Riso

e will diverge from
1, making it a more suitable index for predicting the ef-
fect of elastic anisotropy on the equilibrium SFW for each
material.
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