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A B S T R A C T

Voids of nanoscale dimensions in irradiated metals can act as obstacles to dislocation motion
and cause strengthening. In this work, nanovoid strengthening and the influences of void size,
void spacing and material properties, such as stacking fault energies, on dislocation bypass
mechanisms are investigated using Phase Field Dislocation Dynamics, a three-dimensional
mesoscale model that predicts the minimum energy pathway taken by discrete dislocations. A
broad range of face centered cubic metals (copper, nickel, silver, rhodium, and platinum) and
nanovoid sizes and spacings are treated, altogether spanning void size–to–dislocation stacking
fault width ratios from less than unity to ten. Material 𝛾-surfaces, calculated from ab initio
methods, are input directly into the formulation. The analysis reveals that the critical bypass
stress scales linearly with the linear void fraction, effective isotropic shear modulus, and ratio
of the intrinsic to unstable stacking fault energies. With only a few exceptions, the critical stress
is controlled by the stress required for the leading partial to impinge the voids (to move within
range of the attractive image stress field of the void). When the void diameter is nearly an
order of magnitude greater than the stacking fault width, the mechanism determining critical
strength shifts to the stress for the dislocation to breakaway after partially cutting the void.
This situation corresponds to that treated by line tension models and is realized here for Pt,
with a sub-nanometer stacking fault width.

. Introduction

Irradiated metals have unique damage considerations, with local regions that can have very high concentrations of nanovoids
nd other nanoscale defects, such as point defects and dislocation loops (Zinkle and Matsukawa, 2004; Wang et al., 2018, 2019; Liu
t al., 2020; Chen and Song, 2022). Voids traditionally studied, usually submicron in size or larger, act as stress concentrators that
row and coalesce, eventually causing severe damage or even failure (Sills and Boyce, 2020; Liu et al., 2021; Christodoulou et al.,
021). However, nanoscale voids can instead act as obstacles to dislocation motion (Scattergood and Bacon, 1982; Dérès et al.,
015; Bergner et al., 2015; Li et al., 2016), resulting in strengthening reminiscent of precipitation strengthening behavior (Fan
t al., 2022). Thus, the presence of such nanoscale defects in irradiated metal can cause strengthening, altering its behavior from
hat expected in its original design (Lucas, 1993; Li et al., 2012).

Nanovoids may not necessarily be isolated or dilute across the material, but can be generated in clusters, where local void spacing
s also nanoscale in dimension (Huang et al., 2015; Skoczeń and Ustrzycka, 2016). Nanovoids can develop in all types of nuclear

∗ Corresponding author.
E-mail address: amroach@ucsb.edu (A.M. Roach).
vailable online 1 July 2023
749-6419/© 2023 Published by Elsevier Ltd.

ttps://doi.org/10.1016/j.ijplas.2023.103684
eceived 3 March 2023; Received in revised form 14 June 2023

https://www.elsevier.com/locate/ijplas
http://www.elsevier.com/locate/ijplas
mailto:amroach@ucsb.edu
https://doi.org/10.1016/j.ijplas.2023.103684
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijplas.2023.103684&domain=pdf
https://doi.org/10.1016/j.ijplas.2023.103684


International Journal of Plasticity 168 (2023) 103684A.M. Roach et al.

i
A
d
r
1
s
d
i

f
f
s
𝜏
r
i

p
i
t
s
O
(
a

relevant metals, such as those with body centered cubic (bcc) structures, such as W or Ta (Fukuda et al., 2016; Bao et al., 2022),
or face centered cubic (fcc) crystals, like Cu and Ni alloys (Singh and Evans, 1995; Xu et al., 2020b) or stainless steels (Lucas,
1993; Huang et al., 2015). They are especially prevalent in the latter since the surface energy in fcc metals is exceedingly low (Wen
and Zhang, 2007). Dislocations in fcc metals can be extended, with core widths nearly as wide as the nanovoids with which they
interact (Hunter et al., 2014), suggesting more complex dislocation-void considerations.

As many of these dislocation-void interactions cannot be seen directly in-situ, simulations are called upon to predict how these
nteractions could proceed. These have traditionally included analytical modeling, atomistic simulations, and mesoscale calculations.
s a proxy for understanding bulk yielding behavior, many modeling methods have focused on the critical stress for a single gliding
islocation to bypass a nanovoid or linear array of equally spaced nanovoids. Convenient, analytical models have emerged that
elate the critical stress to bypass with geometric length scales of the void array. One of the earliest models (Scattergood and Bacon,
982) is based on the elastic line tension of a perfect dislocation segment piercing voids to a certain depth while the remaining
egments proceed to bow out in the material space between voids. The critical bypass stress was controlled by the stress for the
islocation to ‘‘break away’’ from the void and corresponds to a critical bow out angle. The critical stress scales directly with the
sotropic-effective shear modulus 𝜇, Burgers vector magnitude 𝑏, and 𝑙𝑛

(

𝐷̄
)

, where 𝐷̄ is the harmonic mean of the void diameter D
and array spacing S, given by

𝐷̄ = 1
1
𝐷 + 1

𝑆

. (1)

In more recent times, Crone et al. (2015) evolved the line tension model to fit calculations that more wholly considered image
orces. Functional forms were fitted to data from DD simulations that included complexities arising from elastic anisotropy, image
orces acting on dislocation segments sufficiently close to the void surface(s), self-interaction considerations for a bowing dislocation
egment, and the inherent stress concentration field due to the presence of a void in a material under external load. This led to
𝑐𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 =

𝜇𝑏
2𝜋𝐿𝑒𝑓𝑓

𝑙𝑛
(

𝐷̄
)

, where 𝐿𝑒𝑓𝑓 is the critical distance between intersection points on neighboring voids when the dislocation
eaches the maximum bowing angle. Additional work in bcc W (Wu et al., 2022) has built upon these analytical models in DDD to
nvestigate the hardening of a 3D random array of void clusters.

As mentioned earlier, dislocations in metals with an fcc structure are extended in the glide plane. They dissociate into Shockley
artial dislocations tethered together by an extended region of local hcp ordering, or a stacking fault. The stacking fault width (SFW)
s inversely proportional to the material intrinsic stacking fault energy (SFE), defined as the energy penalty associated with creating
he stacking fault between partials. Atomistic approaches can capture this Shockley partial dissociation in fcc metals. A number of
tudies (Hatano and Matsui, 2005; Osetsky and Bacon, 2005; Bacon and Osetsky, 2005; Osetsky and Bacon, 2010; Simar et al., 2011;
kita et al., 2014; Xiong et al., 2015; Xu et al., 2019a) have used molecular dynamics (MD) or Concurrent Atomistic-Continuum

CAC) methods to examine in detail the steps taken as dissociated dislocations shear and overcome nanovoid obstacles. They observe
positive correlation between obstacle strength and nanovoid D, although the influence of D is often coupled with varying S (and

hence different 𝐷̄). In Cu and Ni (Hatano and Matsui, 2005; Osetsky and Bacon, 2005; Bacon and Osetsky, 2005; Simar et al.,
2011), a shift in bypass mechanisms is observed to be generally sensitive to the void size, D, in relation to the SFW of the extended
dislocations. When D shifts from being smaller than the dynamic SFW to being larger a change in shearing mechanisms is often
observed, though the exact transition D varies. Generally, the critical obstacle strength shifts from being controlled by the trailing
partial to the leading partial. In these studies, however, the influence of SFW or SFE among different fcc metals was not the objective
of the investigation.

A few MD studies have aimed to isolate the role of SFE in nanovoid strengthening (Asari et al., 2013; Okita et al., 2014; Doihara
et al., 2018; Hayakawa et al., 2019). In these studies, a range of SFE were artificially varied in a Cu parent interatomic potential, with
all other material properties held constant. Doing so overcomes the difficulty in creating equally reliable interatomic potentials for
different fcc metals, albeit with the loss of the concurrent influence of all other properties, like lattice parameter and elastic constants.
They concluded that nanovoid obstacle strength is positively correlated with SFE, as well as other geometric considerations such
as where voids are bisected by the glide plane (Okita et al., 2014). Similar mechanism shifts from trailing partial to leading partial
dominated were again observed, now with a dependence on both D and SFE, as well as a higher-energy simultaneous partial shearing
mechanism (Doihara et al., 2018).

Like atomistic calculations, mesoscale or analytical dislocation models have also proven valuable for lending insight into
dislocation interactions with nanoscale obstacles. For dislocations, ‘‘mesoscale’’ implies access to longer time and/or length scales
than atomistic techniques, while still retaining the effects of dislocation stress fields and line character. Among these mesoscale
dislocation models, Phase Field Dislocation Dynamics (PFDD) (Beyerlein and Hunter, 2016; Xu, 2022) is a 3D, real-space technique
that predicts the pathways taken by dislocations with little to no rules or adjustable parameters. PFDD can treat longer dislocations
over longer glide distances interacting with more defects than typically considered in atomistic calculations. All material parameter
inputs can be obtained either via experimental measurement or density functional theory (DFT), limiting the use of empirical
potentials. PFDD enables representation of the dissociated core structure of dislocations in fcc metals, through the incorporation
of 𝛾-surfaces from DFT (Xu et al., 2019b; Hunter et al., 2014), and multiple phases in the same crystal (Xu et al., 2022b), such
as voids in a crystalline matrix. Thus, for this study, PFDD was chosen as the model framework because it can account for the
discreteness of the dislocation, the extended core structure, and elastic anisotropy. Here, we can apply it to evaluate a broad set of
fcc metals and void geometries with input from a consistent method without additional concerns of the varying degrees of reliability
of interatomic potentials. Previously, the PFDD model was used by Zeng et al. (2019) to predict alloy strengthening from nanoscale
2

particles of SFE lower than the matrix, building upon the (Hirsch and Kelly, 1965) stacking fault strengthening theory. They observed
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a size effect in peak strengthening for particle sizes approaching that of the average equilibrium SFW. PFDD was recently advanced
to model void cutting by moving dislocations (Xu et al., 2022a), where the authors investigated the critical stress for dislocations to
bypass a variety of nanoscale obstacles, including voids and both shearable and unshearable precipitates in Cu (fcc) and Nb (bcc).

In this work, we use PFDD to investigate the interaction between long extended dislocations in fcc metals and an array of
anovoids under an applied load. The idealized regular array is intended to represent a localized, highly concentrated region of
anovoids in an irradiated fcc crystal that dislocations originating from the surrounding bulk encounter. Five metals, Ag, Cu, Ni,
t, and Rh, are treated with material property input, 𝛾-surfaces and elastic constants from the same ab initio method. Calculations

are performed to reveal the extent to which stacking fault energies affect the critical stress to bypass an array of nanovoids and
the relationship between this critical stress and the geometry of the void array. To the authors’ knowledge, this is the first time
a mesoscale model has been applied to study the interaction of extended dislocation cores with nanovoids that incorporates the
role of material property variations, such as fault energies and anisotropic elasticity, known to affect core structure. It is revealed
that in most cases, in which the void sizes range from less than to greater than the extended core width, the critical stress occurs
when the sum total stress exerted on the dislocation during bowing equals that of the attractive image force of the void surface.
This contrasts with the conventional model for perfect dislocations, in which the stress for the dislocation to breakaway from the
void determines the critical stress. With the leading partial controlling bypass, the critical stress scales linearly with the ratio of the
intrinsic to unstable stacking fault energies, and directly scales with the linear void fraction. A few cases with Pt, with a very fine
core (∼ 1 nm), suggest that the bypass mechanism transitions to one similar to that of a perfect dislocation when the void diameter
is an order of magnitude greater than the width of the dislocation core.

This paper is structured as follows. We begin with a review of the PFDD method for biphase materials, with a focus on voids, and
summarize the metals treated here and relevant material input for them in Section 2. Section 3 presents findings on dislocation/void
interactions, including the sequence of events for shearing, critical stresses, and effects of SFE. In Section 4, the results are discussed
in comparison to line tension models and atomistic methods. An empirical model for the relationship between the critical stress and
material parameters, as identified by the calculations, is presented. Section 5 summarizes the salient findings of this work.

2. Material and methods

2.1. PFDD formulation

We first present the PFDD formulation for a biphase medium, containing two crystalline materials, 1 and 2, with different elastic
properties and fault energies. This is a brief account and more details can be found in Xu et al. (2022a,b). These simulations were
performed without thermal fluctuations, but this is expected to have minimal influence on fcc dislocation bypass behavior (Bacon
and Osetsky, 2005).

As with phase-field formulations, order parameters are introduced for the non-conserved variables that evolve. Let 𝝓 be the set of
order parameters and 𝝐v the virtual strain tensor. For each slip system 𝛼, the order parameter 𝜙𝛼 = 0 and 1 represents the unslipped
and slipped states, respectively. In the general formulation, dislocations can glide in material 1 and material 2, provided that they
are both crystalline.

The total energy density 𝜓 consists of four terms: elastic energy density 𝜓ela, lattice energy density 𝜓lat , gradient energy density
𝜓gra, and external energy density 𝜓ext (Xu et al., 2020a), i.e., at each point 𝒙,

𝜓(𝒙) = 𝜓ela(𝒙) + 𝜓lat (𝒙) + 𝜓gra(𝒙) − 𝜓ext (𝒙). (2)

For a biphase medium, the total elastic strain energy, 𝜓ela, consists of the sum of two terms. The first is the energy density of the
‘‘equivalent’’, homogeneous system without the inhomogeneity, 𝜓eq

ela(𝒙), and the second is the difference in energy density between
the inhomogeneous and homogeneous systems, dubbed the ‘‘extra’’ elastic energy density, 𝜓ex

ela(𝒙) (Xu et al., 2022a), i.e.,

𝜓ela(𝒙) = 𝜓eq
ela(𝒙) + 𝜓

ex
ela(𝒙) (3)

here

𝜓eq
ela(𝒙) =

1
2
[𝝐(𝒙) − 𝝐0(𝒙)] ⋅ 𝘾 [𝝐(𝒙) − 𝝐0(𝒙)] (4)

𝜓ex
ela(𝒙) =

1
2
𝝐v(𝒙) ⋅𝑴 [2](𝒙)𝝐v(𝒙) (5)

where we note that 𝜓ex
ela exists only in material 2. In the above expression, the 4th order tensor 𝑴 is modulus associated with the

elastic strain energy due to the presence of the inhomogeneity, i.e.,

𝑀 [2]
𝑖𝑗𝑘𝑙(𝒙) = −𝐶 [1]

𝑖𝑗𝑚𝑛

[

𝐶 [2]
𝑚𝑛𝑝𝑞(𝒙) − 𝐶

[1]
𝑚𝑛𝑝𝑞

]−1
𝐶 [1]
𝑝𝑞𝑘𝑙 − 𝐶

[1]
𝑖𝑗𝑘𝑙 (6)

Additionally, 𝘾 is the elasticity tensor and 𝝐 = sym𝜷 is the strain tensor, where 𝜷 = ∇𝒖 is the distortion with 𝒖 being the
displacement, and 𝝐0 is the eigenstrain tensor, i.e.,

𝝐0(𝒙) =

{

𝝐p(𝒙), 𝒙 ∈ material 1
p v

(7)
3

𝝐 (𝒙) + 𝝐 (𝒙), 𝒙 ∈ material 2
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where 𝝐p and 𝝐v are the plastic strain tensor and virtual strain tensor, respectively. The tensor 𝝐p is related to plastic distortion
tensor 𝜷p, and then to the order parameter 𝝓, i.e.,

𝝐p = sym𝜷p (8)

𝜷p(𝝓) =
𝑛op
∑

𝛼=1

𝑏𝛼𝜙𝛼
𝑑𝛼

𝒔𝛼 ⊗ 𝒏𝛼 (9)

here 𝑛op is the total number of order parameters, 𝒔𝛼 the slip direction unit vector, 𝑏𝛼 the slip vector magnitude, 𝒏𝛼 the slip plane
nit normal, and 𝑑𝛼 the interplanar spacing between two adjacent slip planes, for slip system 𝛼. Although the model permits an
rbitrary number of slip systems, for the goals of this work it is only necessary to focus on one slip system.

Besides 𝜓ela, the other three energy densities in (2) are

𝜓lat (𝒙) =
𝛾 [𝑁]
gsf (𝝓(𝒙))

𝑙[𝑁]
gsf (𝒙)

(10)

𝜓gra(𝒙) =
𝑛sp
∑

𝛼,𝛽=1
𝜂[𝑁]
𝛼𝛽 ∇𝜙𝛼(𝒙) ⋅ 𝜩𝛼𝛽 (𝒙)∇𝜙𝛽 (𝒙) (11)

𝜓ext (𝒙) = 𝝈app ⋅ 𝝐0(𝒙) (12)

where 𝑁 = 1 or 2, denoting different materials, 𝛾 [𝑁]
gsf is the generalized stacking fault energy (GSFE) (Xu et al., 2019b), 𝑙[𝑁]

gsf is the
spacing between the two adjacent slip planes based on which 𝛾 [𝑁]

gsf is calculated, 𝜂[𝑁]
𝛼𝛽 is the gradient energy coefficient for the order

parameter sets 𝛼𝛽 in material 𝑁 (Xu et al., 2019c), 𝝈app is the applied stress tensor, and

𝜩𝛼𝛽 =
𝒃𝛼 ⋅ 𝒃𝛽
𝑑𝛼𝑑𝛽

[(𝒏𝛼 ⋅ 𝒏𝛽 )𝙄 − 𝒏𝛽 ⊗ 𝒏𝛼] (13)

here 𝙄 is the identity tensor.
Once the energy functional is set and the order parameters initialized, the total system energy is minimized with respect to each

rder parameter 𝜙𝛼 and each virtual strain component 𝜖𝑎𝑏 (where 𝑎, 𝑏 = 1, 2, 3) via the time-dependent Ginzburg–Landau (TDGL)
quation, i.e.,

𝜙̇𝛼(𝒙) = −𝑚0[𝜕𝜙𝛼 (𝒙)(𝜓ela(𝒙) + 𝜓lat (𝒙) − 𝜓ext (𝒙)) − ∇ ⋅ 𝜕∇𝜙𝛼 (𝒙)𝜓gra(𝒙)] (14)

𝜖̇v𝑎𝑏(𝒙) = −𝑚v
0𝜕𝜖v𝑎𝑏(𝒙)(𝜓ela(𝒙) − 𝜓ext (𝒙)) (15)

where the superposed dot denotes the time derivative. The Ginzburg–Landau coefficients 𝑚0 and 𝑚v
0 are not necessarily the same

but should both be non-negative. Note that (14) is applied to both materials while (15) is applied to only material 2.
Lastly, to properly consider the short-range dislocation/void interactions, we treat a void as a second crystalline phase with a

set of non-zero order parameters and exceedingly low elastic moduli, generalized stacking fault energies, and zero gradient energy
coefficients, where prior work has confirmed bypass stress convergence with these values (Xu et al., 2022a,b), i.e.,

𝐶void
𝑖𝑗𝑘𝑙 = 𝐶matrix

𝑖𝑗𝑘𝑙 ∕105, 𝛾voidgsf = 𝛾matrix
gsf ∕105, 𝜂void𝛼𝛽 = 0 (16)

Representing the inhomogeneity of the void as an eigenstrain of an equivalent problem (Lei et al., 2013) enables an accurate
representation of the stress field produced by the void under far-field loading, and the elastic moduli mismatch between the matrix
and void creates image forces on dislocations in the vicinity of the void surface.

2.2. PFDD model setup

Fig. 1 illustrates the simulation cell used here. It contains a [110]-type edge dislocation dipole on a (111)-type plane. Each
dislocation has the same line type but opposite Burgers vector direction to force net zero displacement of a Burgers loop around the
cell. Periodic boundary conditions are applied to all three directions, and dipole placement centers the two dislocations equidistant
from each other across the cell, as well as over the periodic boundary to guarantee initial equilibrium of interaction forces. On each
half of the cell a linear periodic array of voids, oriented parallel to the dislocation line direction, are placed in the path of each
dipole and equidistant from their respective dislocation and the cell boundary to minimize the influence of inherent stress fields on
the initial dissociation response. A non-zero cell height into and out of the slip plane allows for 3D spherical voids bisected by the
(111) plane. Dislocation slip is confined to the (111) plane.

The material is oriented with 𝑥 defined as [11̄0], 𝑦 as [112̄], and z as [111]. When expressed in terms of the Burgers vector 𝑏,
the grid spacing is 0.50𝑏 in x, 0.87𝑏 in y, and 0.82𝑏 in z. This is done to maximize compute time efficiency, but results in the voids
being slightly ellipsoidal. The simulation cell dimensions range between 768–2048 voxels along x, alternate between 128, 256, or
384 voxels along y, and are 64 voxels along z. Dimensions along 𝑥 are varied to prevent bowing dislocations from interacting across
the periodic boundaries, and are varied along 𝑦 to achieve desired void obstacle spacings. The FFT simulation approach involves a
regular grid of voxels. As such, a minimum void size is set by the number of voxels needed to form an adequately spherical void —
4

below this size limit nanovoids are more cuboidal than spherical.
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Fig. 1. General simulation cell and dislocation dipole with an example void array. The slip plane is (111) and dislocations are edge character with perfect
Burgers vectors. Both dislocations have dissociated into two partials. The left one [1̄10] dissociates into [1̄21̄] and [2̄11], and the right one [11̄0] dissociates
into [21̄1̄] and [12̄1]. External shear stress is applied perpendicular to the dislocation line direction, causing the dislocations to shear away from each other and
towards the voids. The cell is colored in blue (un-slipped regions), red (slipped regions) and white (stacking fault regions). Below is a plot of the plastic strain
order parameter across the length of the cell, tracking the shearing progress of the dislocation dipole as external stress is applied. Slipped regions are indicated
by an order parameter of 1, un-slipped by an order parameter of 0, and the intermediate 0.5 are stacking faults. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Table 1
Nanovoid sizes and spacings in the linear arrays considered here.
Obstacle label Void size D (𝑏) Void spacing S (𝑏) Void fraction F (%)

D6F6 6.1 104.8 5.5
D6F13 6.1 49.4 10.9
D6F26 6.1 21.7 21.9
D6F41 6.1 12.4 32.8
D6F60 6.1 5.0 54.7

D8F6 7.8 103.0 7.0
D8F13 7.8 47.63 14.1
D8F26 7.8 19.9 28.1
D8F41 7.8 10.7 42.2
D8F60 7.8 6.1 56.3

D16F13 16.5 94.4 14.8
D16F26 16.5 39.0 29.7
D16F41 16.5 20.5 44.5
D16F60 16.5 11.3 59.4

D25F13 25.1 224.3 11.3
D25F26 25.1 85.7 22.7
D25F41 25.1 30.3 45.3
D25F60 25.1 11.8 68.0

Void sizes D ranging from 6-25𝑏 were chosen, Table 1, with spacings S ranging from ≈ 5–300𝑏. D and S are intended to be
both smaller and larger than the SFW of the dislocations in the metals modeled here. Our D and S ranges were informed by ranges
measured from experiment (Li et al., 2012; Bergner et al., 2015), and chosen to encompass and extend beyond the ranges tested
in atomistics (Hatano and Matsui, 2005; Simar et al., 2011; Asari et al., 2013; Osetsky and Bacon, 2010). These values correspond
to linear void fractions of ≈ 5–60%, and different nanovoid obstacle geometries have similar void fractions with different void
diameters. Linear void fraction F in Table 1 is defined as the fraction of void space present along the line of obstacles,

𝐹 = 𝐷
𝐷 + 𝑆

. (17)

The naming convention for void arrays in Table 1 is as follows: void diameter grouping is given as ‘‘DX’’, with X in units of (𝑏),
and void fraction grouping as ‘‘FY’’, where Y is the target linear void fraction F in percent. Due to computational efficiency, for the
two largest void sizes, D16 and D25, the smallest F is F13. Actual F values vary from target ‘‘FY’’ families because of geometric
constraints on allowable cell size dimensions; the FFT solver requires the cell 𝑦 dimension to be a multiple of the z dimension,
limiting available intervals of S.

Under a prescribed external shear stress the system is allowed to evolve to a minimum energy state. For each simulation, this
shear stress is constant and does not evolve. Next, the stress is incrementally increased to identify the critical stress, measured as
5
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Fig. 2. 𝛾-surfaces from density functional theory (DFT) within the (111) plane along the general partial dislocation direction [1̄1̄2] for all five materials in this
study.
Source: Replotted from Figure 2 of Su et al. (2019).

the value between the increment that moves the dislocation and one increment below, where it does not move. This critical stress
is first identified for a dislocation in a void-free crystal to move three lattice vectors, and for the sake of brevity this is called the
zero-temperature Peierls stress 𝜏𝑝𝑒𝑖𝑒𝑟𝑙𝑠.1 The critical bypass stress for a void obstacle, 𝜏𝑐 , is defined similarly but with the nanovoids
present. The stress increments used for determining these critical stresses are refined until 𝜏𝑝𝑒𝑖𝑒𝑟𝑙𝑠 and 𝜏𝑐 have a maximum error of
±10MPa. To minimize periodic image effects, the dimensions of the cell are varied along 𝑥 to reach converged 𝜏𝑝𝑒𝑖𝑒𝑟𝑙𝑠 and 𝜏𝑐 for all
materials and void obstacle geometries.

Lastly, the locations of the leading and trailing partials are tracked. Their core positions are defined by projecting the disregistry
fields, 𝜁1 and 𝜁2, along the partial Burgers vectors, Eqs. (18) and (19) as follows (Xu et al., 2019b)

𝜁1𝑝𝑎𝑟𝑡𝑖𝑎𝑙 = 𝜁1𝑐𝑜𝑠
(

30◦
)

+ 𝜁2𝑠𝑖𝑛
(

30◦
)

(18)

𝜁2𝑝𝑎𝑟𝑡𝑖𝑎𝑙 = 𝜁1𝑐𝑜𝑠
(

30◦
)

− 𝜁2𝑠𝑖𝑛
(

30◦
)

(19)

where 𝜁1 and 𝜁2 are the disregistry fields oriented parallel and perpendicular to the perfect dislocation Burgers vector, respectively.
The disregistry is defined as the difference between the in-plane displacement above and below the glide plane caused by the
presence of a dislocation (Hunter et al., 2011). A dislocation is located at the boundary where the disregistry changes from 0 to 1.
The location of a partial corresponds to where its projection equals 𝜁𝑋𝑝𝑎𝑟𝑡𝑖𝑎𝑙 of

√

3
4 𝑏 (Xu et al., 2019b). Disregistry fields are related

to order parameters through 𝜁𝛽 = ∫ 𝑛𝑠𝑝𝛼=1 𝜙𝛼𝒃𝛼 ⋅ 𝒔𝛽 , where 𝑛𝑠𝑝 is the number of order parameters within a slip plane, 𝒃𝛼 is the Burgers
vector of order parameter 𝛼, and 𝒔𝛽 is the slip direction vector component in the direction 𝛽.

The distance between the partial cores and the void surfaces can be calculated at each y-slice along the simulation cell. By fitting
a spline to the dislocation segment localized around each void obstacle, a tangent angle at each y-slice of the cell is measured and
the bowing angle evolution explicitly monitored (see Fig. 3d for schematic illustration).

2.3. Material parameters

Five pure fcc transition metals are chosen: platinum (Pt), silver (Ag), copper (Cu), rhodium (Rh), and nickel (Ni). These metals
vary widely in their intrinsic stacking fault energies (ISFE or SFE) and unstable stacking fault energies (USFE) (Fig. 2). PFDD
incorporates the entire 𝛾-surface and as such can replicate the dissociation of fcc dislocations in Shockley partials (Beyerlein and
Hunter, 2016). 𝛾-surfaces are input from density functional theory (DFT) (Su et al., 2019) and are unique for each material. The
ISFE/USFE ratios are reported in Table 2 to enable better cross-material comparison. For example, Pt has a very shallow GSFE
minimum compared to all other fcc metals chosen, suggesting a reduced driving force to fully dissociate. An artificial material,
platinum-copper or 𝑃 𝑡𝐶𝑢, was also created by swapping the Cu 𝛾-surface into the Pt material to investigate the influence of this
shallow GSFE minimum. The equilibrium SFW varies inversely (Hunter et al., 2014) with ISFE. Stress-free, or equilibrium, SFW
values for edge dislocations, calculated from PFDD by taking the distance between partial core locations found with Eqs. (18) and
(19) in a stress-free cell, are given in Table 2 along the [11̄0] Burgers vector direction in the (111) plane.

The master energy functional used here in PFDD includes a gradient coefficient input parameter unique to each material. Eq. (11),
a gradient energy term, is used to characterize the energy density of the dislocation core, and a coefficient 𝜂[𝑁]

𝛼𝛽 must be applied
to this term to anchor this core structure to a physical value. Molecular Statics (MS) results of the dissociated fcc dislocations are

1 It is recognized that the Peierls stress has been rigorously defined as the stress required for a dislocation to move one lattice vector (Schoeck, 2001; Peierls,
1940) and varies depending on the computational or analytical approach used.
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Table 2
Stacking fault energies from DFT 𝛾-surfaces and zero-stress equilibrium stacking
fault widths calculated from PFDD.
Metal Intrinsic SFE

(mJ/m2)
ISFE/USFE
ratio (unitless)

Stacking fault
width (𝑏)

Silver 14.49 0.16 17.67
Copper 41.83 0.28 10.99
Rhodium 208.67 0.44 5.73
Nickel 152.13 0.51 4.98
Platinum 280.87 0.94 2.17

Fig. 3. General shearing sequence for representative case of D8F26 (see Table 1) in Cu for the right dipole (shears left to right). Voids are black, the leading
partial is magenta and the trailing partial is cyan. Fluctuations in SFW along the extended dislocation line are tracked in (a). The distance between the partial
dislocation core centers and the leftmost edge of the voids are tracked in (b), where the point of minimum distance to the void is located in (d), as a blue dot,
for each partial. Maximum bowing angles at each simulation step are tracked in (c). A spline, in red, is fit to each partial in (d) to locate and measure the
point of max bowing. All (a)-(c) are plotted versus every 200th simulation timestep. The timestep 𝛥𝑡 is normalized by 𝛥𝑡 = 𝑚0𝜇𝛥𝑡𝑟𝑒𝑎𝑙 where 𝑚0 is the mobility
coefficient (Eq. (14)), and 𝛥𝑡𝑟𝑒𝑎𝑙 the real time. In (a)-(c), significant steps are indicated with snapshots given in i-vii: (i) approximate start to crawling period, (ii)
maximum bowing angle for leading partial, (iii) leading partial contact with void surface, (iv) leading partial shears void, (v) trailing partial contact with void
surface, (vi) trailing partial maximum bowing angle, and (vii) trailing partial shears void. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

used for comparison, and the gradient coefficient is identified as that which enables the PFDD calculated dislocation core to agree
with the MS core. In this work, the gradient coefficient was adjusted until the MS and PFDD dislocations had equivalent partial
dislocation core widths, measured using Eq. (20) adapted from Xu et al. (2019b) for the case of 𝛽 = 1,

𝑙1 =
∣ 𝜁1 (+∞) − 𝜁1 (−∞) ∣

∣ 𝜕𝑥𝜁1 (𝑥 = 0) ∣
(20)

The partial core is measured along 𝜁1 (parallel with Burgers vector, 𝛽 = 1). The value 𝜁1 (+∞) is the disregistry at the transition
from the unslipped region (𝜁1 = 0) to the partial, and 𝜁1 (−∞) is at the transition from the partial to the stacking fault region. The
value 𝜕𝑥𝜁1 (𝑥 = 0) is at maximum slope for 𝜁1.

Lastly, other material properties are required, such as the full elastic modulus tensor and lattice vector, as reported in Table 3.
Modulus values were taken from Warlimont and Martienssen (2018), with cubic symmetry applied to the tensor. Isotropic shear
modulus, calculated with the Voigt average (Voigt, 1889) rewritten as Equation 36 in Xu et al. (2019d), is reported in Table 3
for material comparisons. Finally, the Zener Anisotropy Ratio 2𝐶44∕(𝐶11 − 𝐶12) and Burgers vector magnitude in nanometers are
summarized for the chosen metals.

With all intricacies considered, a typical run-time for these simulations is on the order of 1–10 days and depends on cell size
and material, and not the number of dislocations. In past work, it has been demonstrated that the PFDD code can be made multiple
times faster using GPUs, if larger cell sizes are of interest (Eghtesad et al., 2018).
7
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Table 3
Elastic anisotropic constants, isotropic effective shear modulus, Zener ratio and Burgers vector for the studied metals.
Metal C11 (GPa) C12 (GPa) C44 (GPa) Shear modulus 𝜇

(GPa)
Zener anisotropy
ratio

Burgers
vector (nm)

Silver 122 92 45.5 33.3 3.03 0.29366
Copper 169 122 75.3 54.6 3.20 0.25696
Rhodium 413 194 184 154.2 1.68 0.27089
Nickel 247 153 122 92.0 2.60 0.24883
Platinum 347 251 76.5 65.1 1.59 0.28058

3. Results

3.1. Dislocation-void interaction behavior across several metals

3.1.1. Shearing sequence for Ag, Cu, Ni and Rh
In this section, we examine the interactions with a void array for dislocations in Ag, Ni, Cu, and Rh. For these metals, the

islocation first dissociates into two Shockley partials before gliding towards the voids. Pt is treated separately in the next section
ecause, while the dislocation dissociates into a leading and trailing partial, the SFW in Pt is much narrower than the other metals
2.17𝑏) and boundaries between the partials and intervening stacking fault are diffuse.

Fig. 3 tracks the right dislocation of the dipole with the D8F26 void array as a representative case. To capture the entire shearing
equence, the applied stress in this case corresponds to the 𝜏𝑐 , where the dissociated dislocation can approach and cut through the

voids and glide away. In Fig. 3a, the minimum and maximum SFW values along the length of the extended dislocation are tracked.
Fig. 3b tracks the position of the leading partial with respect to the closest void surface as it moves towards the void array, illustrated
in Fig. 3d. The bowing angles are measured from a straight dislocation position as shown in Fig. 3d, and Fig. 3c tracks the maximum
bowing angles along the lines for the leading and trailing partials as the shearing sequence evolves.

In under-driven conditions, when the applied stress is just below 𝜏𝑐 , the dislocation first glides towards the array under the
externally applied shear stress. The dislocation arrests at a finite distance from the void surface corresponding to step i (Fig. 3i).
Depending on the material, the trailing partial either remains straight or bows with a lower bowing angle than the lead partial. The
leading partial is still continuous, as no part of its line has sheared the voids, yet its line morphology is wavy bowing around the
voids. The instantaneous SFW has compressed below the starting SFW, particularly in the regions where a void is located directly
in the path.

When the stress is raised to the 𝜏𝑐 , the leading and trailing partials start to move, but only minimally. This begins the crawling
period, over which the extended dislocation maintains a steady, relatively slow velocity towards the voids that is much slower than
the initial approach. During this time, repulsive long-range forces due to the void are counteracted by the partials bowing. While
the two partials are crawling towards the voids, the leading partial bowing angle increases, but at a slower pace as well. It reaches
its maximum at step ii (Fig. 3ii). The crawling period ends when the leading partial comes within the so-called capture radius of the
void, where the dislocation is attracted under the image stress of the void (Anderson et al., 2017) and, together with the dislocation
bowing, overpowers the repulsive Peach-Koehler forces. This capture radius is very fine in dimension and varies mildly among the
metals and void array geometries, within 0.5–1.5b. As this is a meso-scale technique, this distance is on the order of the spatial
resolution of the model and a rigorous quantification of the capture radius is not possible. However we observe that this capture
radius is inversely proportional to isotropic shear modulus, and shows a dependency on void geometry.

Once within this radius, the leading partial accelerates towards the void and begins to shear it (Fig. 3iii). Almost immediately
afterwards, the leading partial fully shears the void array (Fig. 3iv) and the trailing partial moves forward to also pierce the void
array (Fig. 3v) with no detectable delay. The bowing angle of the trailing partial continues to increase as its shears the void until
its maximum bowing angle is reached (Fig. 3vi). Finally after fully shearing the void array, the extended dislocation straightens
(Fig. 3vii) and the SFW is then restored to that before it encountered the nanovoids.

Our simulation results show that this basic sequence of events for the leading and trailing partials applies to all four metals
and all studied void array geometries. The peak stress in this sequence corresponds to the stress needed to push the leading partial
within the capture radius of the void, after which it immediately impinges the void. Thus, 𝜏𝑐 is controlled by the leading partial
impingement stress and not the leading partial or trailing partial breakaway stresses after contact. A few MD studies considering
the intersection of an extended dislocation in Cu and Ni (Hatano and Matsui, 2005; Osetsky and Bacon, 2005; Bacon and Osetsky,
2005; Simar et al., 2011) for certain void geometries reported a bypass mechanism similarly controlled by the leading partial. They
found a sensitivity to the void diameter in relation to the SFW to an extent that varied slightly among studies. Here, the dislocation
subtly constricts before cutting the void and each partial bows under the external stress when it cuts the void, as shown in Fig. 3ii
for the leading and Fig. 3vi for the trailing partials. The maximum bowing angles of the partials can reach angles in excess of
30–60 degrees, depending on material and obstacle geometry. For this study, the range of metals and void arrays altogether cover
situations in which the void sizes or spacings vary from less than and close to the SFW to around ten times the SFW (see Tables 1
and 2). Thus, for a wide range of D and SFW, the leading partial impingement remains the controlling mechanism by which the
dislocation bypasses the void array.
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Fig. 4. Detailed shearing sequence in Pt. For D8F26 void obstacle, (a) gives fluctuations in SFW along the dislocation line, (b) shows the max bowing angles
of each partial at each simulation step, and two significant simulation snapshots are given in (c). Snapshot (ii) is the max bowing angle of the leading partial
and (v) is the trailing partial piercing the void. Additional steps of interest identified in (a) are (i) start to an abbreviated crawling period, (iii) leading partial
void piercing, (iv) trailing partial max bowing, (vi) full obstacle shearing. For the D16F26 void obstacle, (d) tracks the SFW, (e) tracks the bowing angle, and
(f) gives two significant simulation snapshots for (ii’) the maximum bowing angle of both partials and (iii’) trailing void piercing. Additional simulation steps of
interest in (d) are (i’) leading partial void piercing, and (iv’) full shearing.

3.1.2. Shearing sequence for platinum
Fig. 4 shows the shearing sequence in Pt at the 𝜏𝑐 . A few characteristics distinct from those of the other metals are observed. First,

the interaction depends on void size. With the smaller void sizes, i.e., D6 and D8, the leading and trailing partial follow the same
motion. The two partials slow as they near the voids, although an extended crawling period could not be perceived as in the other
metals. The leading partial achieves a maximum bowing angle (Fig. 4c, snapshot ii), followed by the trailing partial. Afterwards they
shear the void rapidly as a unit. The capture radius was not discernible by tracking the distance between partials and the closest
void surface. The 𝜏𝑐 is instead controlled by the stress needed for both partials to approach and first shear the void together. This
critical step is similar to that of the other tested metals, except both partials act together, with SFW varying ≈ 1𝑏 in the process.

With larger void sizes, D16 and D25, simulations reveal that the critical step has changed. In under-driven conditions below 𝜏𝑐
the leading partial dislocation is able to cut into the void, while the trailing partial stays behind. In this state, the bowing angles
of both partials increase. The dislocation then fully arrests. At 𝜏𝑐 , both the leading and trailing partials bow out simultaneously
and their bowing angles reach a global maximum at which point the trailing partial also cuts the void. Immediately, the partials
fully shear the void. Afterwards, the extended dislocation straightens and restores the SFW prior to encountering the voids. Thus,
for larger nanovoids, 𝜏𝑐 is controlled by the stress needed for the partials to breakaway from the void after the leading partial has
already partially sheared it. This is similar to what has been proposed by conventional dislocation/void models (Crone et al., 2015)
and in some instances in MD for dissociated dislocations (Simar et al., 2011), though only for the leading partial in this study.

3.2. Critical stress and void fraction

Fig. 5 shows the critical stress 𝜏𝑐 needed to fully cut through the voids versus the linear void fraction F. All measured 𝜏𝑐 are
normalized by isotropic shear modulus 𝜇 to enable comparison of trends across different materials. While it is expected that larger
void sizes would require higher 𝜏𝑐 , the linear relationship with F across all materials and void sizes is remarkable. Void fraction F
encompasses in one measure two characteristic length scales: void size and void spacing. This result implies nanovoid strengthening
depends on void diameter and spacing but only through their combined effects on void fraction, without any additional independent
influences on 𝜏𝑐 . As another advantage, void fraction F can be measured via microscopy.

Of significance, the coefficient of the linear relationship found in Fig. 5a depends on the material. To help assess the material
dependence, Fig. 5c plots the calculated linear regression slopes with the effective isotropic shear modulus 𝜇∕100 for each metal.
The strong scaling reveals the importance of 𝜇, with arguably the exception of Pt. The increased scatter around the linear regression
curve for Pt in Fig. 5a suggests a higher-order dependence of 𝜏𝑐 on void size beyond what is captured in F. Fig. 5b confirms this,
with 𝜏 - F slopes varying between void size data sets.
9
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Fig. 5. 𝜏𝑐∕𝜇 versus 1D void fraction F (Eq. (17)) for all materials. In (a) all void diameter data sets, shown as bullet points, collapse to a single curve taken
as a simple linear regression of the data. The exception is Pt, where higher order void size dependencies are evidenced by increased spread in data points. (b)
shows Pt data grouped by void size data sets compared with the artificial platinum-copper material, 𝑃 𝑡𝐶𝑢, for which all data sets have collapsed to a single
shared slope. In (c) linear regression slopes, calculated from a 𝜏𝑐 (GPa) versus F plot, are plotted against a scaled isotropic shear modulus 𝜇 (GPa), showing good
agreement with all materials but Pt and, to a lesser extent, the artificial 𝑃 𝑡𝐶𝑢. The dashed line represents 𝑦 = 𝑥 to illustrate the extent of agreement between
regression slopes and scaled 0.01μ.

As we have seen, Pt has a unique dislocation core compared to the other metals tested, and as a result it undergoes a different
interaction with the nanovoids. Instead of discrete, well-defined Shockley partials separated by a stacking fault, Pt has a very narrow
SFW, and consequently more closely resembles an un-dissociated (compact) dislocation. Further, the shear across the SFW is diffuse,
spread with no sharp boundaries between the intrinsic fault and the two partials. This results from its distinct 𝛾-surface compared to
the other metals. As seen in Table 2, Pt has the unique characteristic of an 𝐼𝑆𝐹𝐸∕𝑈𝑆𝐹𝐸 ratio nearing unity, indicating a reduced
driving force to dissociate. To isolate the role of the Pt core, a calculation was repeated for a hypothetical ‘‘platinum-copper’’
material, or 𝑃 𝑡𝐶𝑢, in which the Pt 𝛾-surface was swapped for Cu. Apart from the 𝛾-surface, this artificial 𝑃 𝑡𝐶𝑢 has all material
properties of Pt. The dislocation in 𝑃 𝑡𝐶𝑢 is extended, with a distinct stacking fault width of 12.8𝑏 between the two Shockley partials.
As shown in Fig. 5b, 𝜏𝑐 for 𝑃 𝑡𝐶𝑢 scales linearly with F, and no higher order void size dependencies are apparent, in agreement with
all other fcc materials studied. In Fig. 5c, it is observed that 𝑃 𝑡𝐶𝑢, with an artificially extended dislocation introduced by swapping
in the Cu 𝛾 surface, aligns more closely with other metals in the trend of 𝜏𝑐∕𝐹 vs 𝜇 than actual Pt. Thus, the deviation in this trend
observed for Pt results from its weakly dissociated core. This also implies that the extended core structure underpins the strong
linear 𝜏𝑐 - F relationship seen in Fig. 5a.

4. Discussion

4.1. Role of void array geometry in nanovoid strengthening

We have found a strong role of void geometry represented by F on 𝜏𝑐 that is not anticipated by conventional analytical models
to date. Before probing material dependencies in our results, the performance of the geometric scaling of some analytical models
is examined. We recall from the Scattergood and Bacon (SB) and Crone Munday and Knapp (CMK) analytical models, a geometric
parameter 𝐷̄ (Eq. (1)) was proposed to combine the effects of spacing and size of an obstacle array into a single term. Fig. 6a
compares the calculated critical stresses, 𝜏𝑐 , versus 𝐷̄ from the SB analytical model. Following the analytical model formulation, the
stress plotted 𝜏𝑆𝐵𝑐 is normalized by the unitless parameter of combined material and void geometry properties (𝜏𝑆𝐵𝑐 = (𝜏𝑐∕𝜇)(𝑆∕𝑏)). On
this semi-log plot, the SB model predicts a linear relationship, yet no such relationship is observed in the simulation results of this
study. Rather the scaling varies not only with materials but also length scales of the void array.

Fig. 6b compares the scaling relationship of the CMK model with the 𝜏𝑐 values calculated here. In accordance with the CMK
formulation, we plot 𝜏𝐶𝑀𝐾

𝑐 = (𝜏𝑐∕𝜇)((𝑆 + 𝑅)∕𝑏) versus 𝐷̄, where 𝑅 = 𝐷∕2 is the void radius, all in units of 𝑏. For all materials and all
void array geometries, no perceptible trend or master curve emerges. Data for each material is grouped by void size, and a strong
void size dependence (or void size effect) is observed, where 𝜏𝐶𝑀𝐾

𝑐 is inversely related to 𝐷̄ within each D grouping. Overall the
critical stresses increase with increasing D across sets, though there is no continuity across void size data sets contrary to the CMK
model.

4.2. Critical stress and material properties

4.2.1. ISFE
An important material parameter not taken into account in most dislocation/nanovoid interaction models is the intrinsic stacking

fault energy. Our study of a suite of fcc metals provides the opportunity to identify the role of SFE on 𝜏𝑐 to bypass nanovoids. Fig. 7
shows 𝜏𝑐∕𝜇 versus ISFE and SFW for a representative case of void size 𝐷 = 7.8𝑏. A weak positive trend is observed for 𝜏𝑐∕𝜇 versus
ISFE, and a moderate inverse trend for 𝜏𝑐∕𝜇 versus SFW. These relationships are marginally strengthened with increasing F. A
Spearman’s rank correlation coefficient of ≈ 0.63 for ISFE and ≈ −0.75 for SFW confirm these observations. The spread inherent
in each material data set is more dominant than the positive or inverse trends with material properties, suggesting changing void
obstacle geometry F has a much stronger impact than changing SFE.
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Fig. 6. Analytical solutions plotted together with PFDD data, colored by material and grouped by void size data sets, on a logarithmic 𝐷̄ scale in units of 𝑏,
where (a) the Scattergood and Bacon (SB) solution for voids is in black with the equation given below for offset 𝛥 = 1.52 for voids (Scattergood and Bacon,
1982). Critical stress values are normalized by (𝜇𝑏∕𝑆). In (b) the analytical solution from Crone Munday and Knapp (CMK) is in black with the equation above,
and critical stress values are normalized by (𝜇𝑏∕𝑆 + 𝑅).

Fig. 7. 𝜏𝑐∕𝜇 for a representative void size 𝐷 = 7.8𝑏 plotted versus (a) Intrinsic Stacking Fault Energy (ISFE) in (𝑚𝐽∕𝑚2), and (b) static Stacking Fault Width (SFW)
in units 𝑏. Within the D8 void obstacle family, data points are colored by void fraction F. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

4.2.2. ISFE/USFE ratio
The analysis thus far has shown nanovoid strengthening 𝜏𝑐 has a geometric component, F, and a constant material component

M, which affects the scaling between 𝜏𝑐 and F, i.e.,
𝜏𝑐
𝜇

=𝑀𝐹 (21)

It has also been made clear that no one material property dominates 𝜏𝑐 influence, as evidenced by weak to moderate trends with
both ISFE and SFW in Fig. 7, although 𝜇 and the dislocation core structure play a role.

Our results suggest 𝜏𝑐 scales with F for all metals when M follows:

𝑀 = 𝛼
( 𝐼𝑆𝐹𝐸
𝑈𝑆𝐹𝐸

+ 𝛽
)

. (22)

where 𝛼 and 𝛽 are coefficients that provide the best fit to this linear trend, with 𝛼 taken as approximately 1∕100 and 𝛽 as 𝜋∕4. As a
first attempt to identify operative material properties, the finding points to 𝐼𝑆𝐹𝐸∕𝑈𝑆𝐹𝐸 as the influential property of the material
𝛾-surface, and effective moduli 𝜇 as the other dominant material property. The level of agreement between our simulation results
and Eqs. (21) and (22) can be seen from Fig. 8.

Eqs. (21) and (22), named the Linear Fraction (LF) model, predict the relationship between the critical stress and void F for all
metals in Fig. 8, with the exception of the two smallest voids in Pt. Beyond PFDD, the LF model captures very well the relationship
in critical stress versus void F for dislocations with low SFE values as predicted by atomistic simulation (Asari et al., 2013) in
Fig. 9. This series of pseudo-SFE MD studies (Doihara et al., 2018; Okita et al., 2014; Asari et al., 2013) investigated the influence
of dissociation on nanovoid strengthening by discretely varying the SFE value of a base material with a parent structure set by the
Cu EAM (Embedded Atom Method) interatomic potential. As discussed in the Introduction, MD literature is limited in the number of
reliable EAM potentials for fcc materials, and as a result a sweeping study of nanovoid strengthening across different fcc materials
11
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Fig. 8. Breakdown of comparison between predictive slope from Eqs. (21) and (22), forming the LF model, and PFDD calculations. All five materials are plotted
in color from (a)-(e), with the predictive equation in black. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 9. A comparison is given between Eqs. (21) and (22), analytical trends as predicted by the CMK model (Crone et al., 2015), and the 100K MD study of
the influence of SFE on nanovoid strengthening through the pseudo-SFE technique, where [*] indicates reference to Asari et al. (2013).

would introduce additional uncertainties in results due to the varying quality of these material inputs. It is important to note that
these MD studies have isolated the influence of SFE on nanovoid strengthening, while USFE is held constant and the additional
effects of elastic constants (and resulting elastic anisotropy), shear modulus, and Burgers vector that accompany different materials
are not taken into account.

With this PFDD study enabling a more complete investigation into material and void size effects on strengthening than was
available in MD, we are able to identify a key transition for fcc metals. Fig. 9 shows three representative SFE cases from Asari et al.
(2013) plotted together with our LF model and the analytical CMK model, which does not change from Fig. 9a-c. Two remarkable
phenomena are identified: first, this LF model is capable of predicting nanovoid strengthening for fcc metals in atomistics, and
second, a transition in strengthening trends exists and is dependent on material SFE. The MD data follows the LF model at low to
moderate SFE and the CMK model at high SFE values. Only for the highest SFE value and higher void F values is the CMK model
the more effective descriptor, which may be due to the fact that the dislocation is assumed to be perfect and not extended in the
SB and CMK models, as it is in the PFDD and atomistic calculations. Dissociation has a measurable impact on strengthening trends,
and while SFE alone does not strongly influence obstacle strength, it contributes substantially in the context of the ISFE/USFE ratio.
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Fig. 10. Variation in shearing behavior for representative case of Cu for void fractions F6, F26, and F41 for void size D8. Approximate crawling regions are
shaded, and one should note the different 𝑥-axis scalings between void fractions.

4.3. Shearing response

4.3.1. Controlling mechanism in light of prior theories and simulations
To understand the mechanisms behind the remarkable linear trend captured by the LF model seen in Fig. 9, we analyze the

dominant factors at play for the critical step which determines 𝜏𝑐 . First, the critical step for 𝜏𝑐 in this study is observed to be the
crawling period before the dislocation pierces the void, and 𝜏𝑐 is set by the leading partial impingement stress. This is the case for
all void geometries and all materials (including 𝑃 𝑡𝐶𝑢) except Pt. Below 𝜏𝑐 , when under-driven, the dislocation arrests at a finite
distance from the void surface. At an applied stress of 𝜏𝑐 , the leading and trailing partial dislocations are able to glide towards the
voids, but at a slow and steady pace during the crawling period. This ends when the leading partial moves within the capture radius
from the void surface, where image forces dominate and draw the partial to the void. After this point, no further increment in stress
is needed for the leading and trailing partials to sequentially shear the void, straighten, and restore their initial SFW.

This critical step in PFDD deviates from what has been reported previously in analytical models for undissociated dislocations,
and with MD for dissociated Cu dislocations. Line tension models, such as the SB and CMK models (Scattergood and Bacon, 1982;
Crone et al., 2015), on the other hand, associate 𝜏𝑐 with the stress for the dislocation to breakaway away from the void after initially
and partially cutting it. These models evolved from those originally developed to understand compact, undissociated dislocation
interactions with weak precipitates. Key parameters relating this critical stress to void dimensions are the penetration depth for the
dislocation and the angle of incidence at the immediate void surface. As dislocations cannot exist inside voids, the penetration depth
in the case of a void refers to the distance between the point of intersection of the dislocation line with the void surface and the void
array centerline. For these models, the incidence angle at this intersection point is measured from the direction normal to the void
array centerline. After the dislocation has partially penetrated the void, a higher 𝜏𝑐 corresponds to lower incidence angles, which
brings it closer to the Orowan shearing mode (Scattergood and Bacon, 1975) for impenetrable obstacles. We also recall that the
dislocation configuration in cases reported from MD take on a different geometry than at the critical step in this study. In Hatano
and Matsui (2005), Osetsky and Bacon (2005), Simar et al. (2011), the dislocation configuration at maximum applied stress mirrors
that of the analytical models in principle, with dislocation segments that pierce neighboring void surfaces while bowing out in the
material space between obstacles. However, Fig. 9 confirms that these minute differences at the void surface are not controlling 𝜏𝑐 ,
with Asari et al. (2013), Doihara et al. (2018) studies following nicely with the LF model for low SFE materials. In other words, the
controlling mechanism for 𝜏𝑐 is unrelated to these configurational differences.

We propose that 𝜏𝑐 is associated with the critical stress to constrict the SFW below its dynamic value in the presence of an
obstacle. In Fig. 10, for the case of Cu with D held constant and F increasing from 6% to 41%, the maximum and minimum SFW
and bow angles along the dislocation line are tracked in time as the dislocation intersects the voids. These sequences occur at the
corresponding 𝜏𝑐 and follow the dislocation from the beginning, on approach, to the end after it shears the voids. The crawling period
has been highlighted in yellow, with minimum, maximum, and average SFW reported in this range. As F increases, we find that 𝜏𝑐
increases five fold while both the average SFW and the leading partial bowing angle decrease. Conventional models (Scattergood and
Bacon, 1982) would instead associate the increase in 𝐷∕𝑆 and consequential decrease in maximum bowing angle with a decrease
in 𝜏 , which is not observed even when normalizing 𝜏 by the relevant factor used in the SB model. Instead, this decrease in average
13
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Fig. 11. Variation in shearing behavior for a representative case of Cu for void sizes D8, D16, and D25 for nominal void fractions F41. For D8F41 the actual
void fraction is 42.2%, for D16F41 the actual fraction is 𝐹 = 44.5%, and for D25F41 the actual fraction is 𝐹 = 45.3%. Approximate crawling regions are shaded.

Fig. 12. Relationship between 𝜏𝑐 and the average SFW constriction in percent along the entire dislocation line as it bows around the void obstacle in the
crawling period. All materials but Rh are represented, which behaves very similarly to Ni. Linear regression curves are plotted and scatter regions highlighted
to illustrate a slight broadening at lower SFW constriction, correlating with higher D, lower F cases. Pt is segmented into two data sets, with a regression line
for lower 𝐷∕𝑆𝐹𝑊 ratio values, and higher 𝐷∕𝑆𝐹𝑊 ratios showing a nearly constant SFW constriction for all 𝜏𝑐 .

SFW, which can also be considered an increase in average SF constriction along the dislocation line, is linearly correlated with the
increase in 𝜏𝑐 . The other cases not shown follow a similar trend.

Fig. 11 shows the complementary case for Cu of varying D values, and F values nearly fixed at the target value of 41%. Within
the crawling period, again highlighted in yellow, the maximum and minimum values of the instantaneous SFW evolve with D, but
the average SFW constriction is held constant while F is held constant. In contrast, the bowing angles of both leading and trailing
partials increase substantially with D. For these three cases, 𝜏𝑐 only mildly varies, much like the small variations in actual F in
relation to target F values. Clearly 𝜏𝑐 does not correlate with the substantial changes in bowing angles of the partials in either
Fig. 10 or Fig. 11, as would be expected from the simplified compact dislocation SB and CMK models. Taken together, Figs. 10 and
11 make a case for average SFW constriction as the critical step determining the obstacle critical stress. This is a feature both PFDD
and MD can be expected to capture, and hence would explain why estimates of 𝜏𝑐 from both follow the LF model.

In Fig. 12, 𝜏𝑐 is plotted as a function of the amount of SFW constriction averaged along the dislocation as it bows at the critical
step, i.e., the crawling period, for all materials and void geometries tested in this study (excluding Rh, which behaves very similarly
to Ni). A compelling linear relationship is observed across non-Pt materials and void sizes, with a possible increase in spread for
14
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small SF constriction in cases with larger void sizes and low F. Considering Figs. 9–12, the results of our calculations suggest that
ranslating the analytical models from perfect dislocations to extended ones may not be appropriate for low SFE materials, and that
ur LF model may instead be the preeminent trend for these cases.

.3.2. Platinum size effect influenced by shift in critical shearing stage
The outlier to the aforementioned shearing behavior is Pt. In Pt, the dislocation glides approximately as a perfect dislocation. In

ig. 4, the leading and trailing partials behave nearly identically at each step in the sequence. Further, throughout the interaction
ith the nanovoids, the SFW along the length of the extended dislocation line varies by only ≈ 1𝑏 in Fig. 4a and 4d.

These differences in Pt from the other cases manifest as a void size, D, dependence. For smaller voids, D6 and D8, the void
iameter is a few times that of the SFW. At sub-critical stresses, the dislocations stop short of the void surface. As in the other
etals, this is the critical configuration controlling 𝜏𝑐 , except here both partials are involved instead of just the leading partial. The

ypass mechanism for larger D in Pt is similar to that anticipated by analytical models, which treat a perfect dislocation, because we
ee the dislocation begin to both bow out and pierce the void at the critical step. In the work of Crone et al. (2015), for sub-critical
onditions, the dislocation pierced the voids and was pinned at an intermediate location without fully cutting them. An increase in
xternal stress would bow the dislocations further until they could successfully shear the obstacle array.

Fig. 12 shows the distinction between small and large D datasets emerges in the case of Pt for SFW constriction as well. Low
∕𝑆𝐹𝑊 values (< 6) show the same trend as observed with the other metals. 𝜏𝑐 increases linearly with the amount the SFW

onstricts when intersecting the voids. The only difference is that the already narrow Pt core constricts less than the other metals.
t higher 𝐷∕𝑆𝐹𝑊 cases (> 6), however, the amount the Pt SFW constricts becomes negligible and independent of void geometry.

n these cases, the void diameters D16 and D25 are nearly an order of magnitude greater than the Pt SFW, approaching the limit
n which the dislocation can be represented as an undissociated perfect dislocation cutting a void and constriction is negligible. No
ther metal studied here achieved this condition for the same range of nanovoid sizes. Yet still, the 𝜏𝑐 for Pt scales with F for the
ull range of D, even these larger sizes.

.4. Nanovoid strengthening within the broader scope of strengthening mechanisms

The question remains: how does strength scaling revealed in this study relate to bulk behavior? One could use these trends to
nform a strengthening model for fcc metals with slip strengths related to local nanovoid density. The one dimensional void fraction

can be geometrically related to void densities of local void clusters in two- and three-dimensions, according to:

𝐹2𝐷 = 𝜋
4
𝐹 2.

𝐹3𝐷 = 𝜋
6
𝐹 3.

(23)

From the F6 to the F60 void fraction groups in this study, the localized 2D void obstacle densities range between 0.3% and
early 30%. Increasing the dimensionality of the problem further, the localized 3D void obstacle density ranges between 0.01% to
round 10%. It is an open question which extrapolated density, 2D or 3D, is more relevant to experiment. As obstacles to shearing,
2D void density may be relevant to slip within a single plane. As a more complex network of microstructural obstacles, the 3D

ensity may be relevant if multiple slip systems are active or dislocations are being distorted and pinned due to other defects in this
ocalized region of high void density, causing them to interact with the nanovoids more through a 3D volume than a 2D plane.

A case study on the appropriate dimensionality of F can be done by comparing these results with those of irradiated austenitic
tainless steels (Lucas, 1993). For neutron irradiation at elevated temperatures in austenitic stainless steels, which are expected to
ave SFE values (Schramm and Reed, 1975; Bampton et al., 1978) anywhere between those for Ag and Cu used in the present
tudy, a localized volumetric void density of up to 8%–9% was observed at doses of 10dpa assuming a void diameter of 20 nm.
t this dosage, an associated increase in yield stress is observed between 3 and 5 fold from the expected response of the pristine
aterial. These yield stresses include influences from all irradiation-induced microstructural defects present, of which nanovoids

re important contributors.
For our study, the sensitivity to relative local void densities varies significantly across the five fcc metals. At the correlated 3D

oid density of 11% (from the F60 data), our calculations show that Ag strengthening scales to over 100 fold increase from 𝜏𝑝𝑒𝑖𝑒𝑟𝑙𝑠,
while Cu scales to nearly 20 fold increase from 𝜏𝑝𝑒𝑖𝑒𝑟𝑙𝑠. For reference, Pt sees over 10 fold increase from 𝜏𝑝𝑒𝑖𝑒𝑟𝑙𝑠. Clearly the 3D void
density overestimates the strengthening effects for localized high-density nanovoid obstacles by an order of magnitude compared
to results obtained by Lucas (1993). Reducing the void density to the calculated 2D values, the F26 grouping corresponds to a 2D
density of 5%, while the F41 grouping scales to a 2D void density of 13%. Between these two densities, the PFDD calculations
show a 50–75 fold increase in 𝜏𝑐 from 𝜏𝑝𝑒𝑖𝑒𝑟𝑙𝑠 for Ag and a 8–13 fold increase from 𝜏𝑝𝑒𝑖𝑒𝑟𝑙𝑠 in Cu. These strengthening trends follow
more closely with experimental austenitic stainless steel values (Lucas, 1993); some of the over-estimation could be attributed to
the relatively large void diameters in the experimental data (20 nm) compared to the voids in this study (≈1-−7 nm).

Additionally, it is important to differentiate the nanovoid strengthening in this work from any subsequent hardening response. A
point was made by Scattergood and Bacon (1982) that voids do not act as effective dislocation density multipliers because no loops
are left encircling them after shearing, and thus initial yield strength may be increased but work hardening behavior analogous to
what is seen in precipitate hardening is not expected. In fact, the strengthening effect of nanovoids actually decreases once they
are sheared by a dislocation, as seen for fcc (Xu et al., 2019a) and bcc (Yu et al., 2022). So, while nanovoids may have the effect
15
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of increasing bulk yield strength, they also may contribute to a reduction in bulk hardening, or even bulk strain softening, during
loading.

Lastly, Scattergood and Bacon suggested nanovoids are strong obstacles similar to impenetrable obstacles, while Crone Munday
nd Knapp corrected these values down but still largely overestimated the obstacle stresses for voids in Fig. 6. This question has been
xplored by Xu et al. (2022a), where it was found that shearable voids, such as those in this study, were the weakest of all obstacles
y a factor of nearly 1.5 for the tightest obstacle spacing, and shearable precipitates and voids were both weaker than impenetrable
recipitates and voids, respectively. However, as obstacle spacing was increased the difference in bypass stress between the type of
bstacles became negligible, meaning voids and unshearable precipitates both acted as identical obstacles at low volume fractions,
uggesting a sensitivity to obstacle volume fraction that could not have been predicted by either the CMK or the SB model. These
isagreements between analytical trends and previous PFDD results help explain the continued inability of current analytical models
o approximate both the orders of magnitude and the observed spread in critical obstacle stresses for nanovoids.

Taking the technique as a whole, PFDD maintains the position held in literature that nanovoids in fcc are potent strengtheners,
f not as strong as unshearable inclusions. Future work with this technique can consider a number of complexities that PFDD is well
uited to explore, including either the geometric distribution of nanovoid obstacles in 2D and 3D, or the influence of temperature
n the sensitivity of this work to both SFE and ISFE/USFE material properties. The incorporation of temperature into PFDD has
ecently been achieved in Albrecht et al. (2023).

. Conclusions

Many materials of interest for nuclear power applications have fcc cubic structure. After irradiation, nanovoids can form in
ocal regions of the material, greatly affecting their deformation behavior, such as yield strength and strain hardening behavior.
he underlying mechanism has been associated with the interaction of these voids with moving dislocations, since their length
cales are comparable. In this work, a phase field dislocation dynamics (PFDD) model was used to study the interaction of extended
islocations in many fcc metals with a local array of nanovoids. The PFDD model is a mesoscale model that predicts the minimum
nergy pathway taken as the dislocation shears the voids. In this framework, the entire ab initio calculated 𝛾-surface is imported
nd the full anisotropic elastic tensor is used. As such, dislocation cores are dissociated into two Shockley partials with a stacking
ault in between. The diameters and spacings among the nanovoid array varied respectively from 6𝑏 to 25𝑏 and from 5𝑏 to ≈ 300𝑏,

where 𝑏 is the value of the Burgers vector of the metal. Both the critical stress 𝜏𝑐 to bypass the array and the critical stage that
controls it are investigated. The main findings from this study are given below.

• The critical stress 𝜏𝑐 is controlled by the stress needed for the leading partial to impinge the void. It is required to push the
leading partial within the capture radius, where it is attracted to the void. This condition applies to most metals and local
nanovoid concentrations tested, with very few exceptions.

• When dislocation bypass is controlled by the leading partial impingement stress, 𝜏𝑐 directly scales with the linear void fraction
rather than exhibiting individual dependencies on void size or void spacing. A best fit Linear Fraction (LF) model is constructed
from the calculations.

• Regarding the role of material properties, 𝜏𝑐 scales linearly with the ratio of the unstable and intrinsic stacking fault energies
and the shear modulus.

• For low SFE values, as many fcc metals have, nanovoid strengthening trends follow the LF model well. From comparison with
atomistics, a transition to more closely following analytical model trends is expected at high SFE values.

• When the void diameter is an order of magnitude larger than the width of the dislocation core, the critical stress is determined
by the stress for the dislocation to breakaway from the void after it has partially sheared it. This bypass mechanism is similar to
the conventional case, anticipated by line tension models and observed in atomistic simulations. Here this situation manifests
with Pt, which has a very fine core (∼ 1 nm), and the relatively larger nanovoid sizes tested.
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