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Abstract

Obstacles, such as voids and precipitates, are prevalent in crystalline materials. They strengthen crystals by serving as
arriers to dislocation glide. In this work, we develop a phase-field dislocation dynamics (PFDD) technique for investigating
he interactions between dislocations and second-phase obstacles, which can be either voids or precipitates. The PFDD technique
s constructed to account for elastic heterogeneity, elastic anisotropy, dissociation of the dislocation, and dislocation transmission
cross bicrystalline interfaces. Within the framework, we present a model for “pseudo-voids”, which are voids shearable by
islocations, in contrast to unphysical, unshearable voids in conventional phase-field dislocation formulations. We employ the
FDD technique to investigate the in-plane interactions between an edge dislocation and an array of nano-scale obstacles with
ifferent spacings. In this application, the interactions take place in glide planes of either a face-centered cubic (FCC) Cu or
body-centered cubic (BCC) Nb matrix, while the precipitates have a Cu1−x Nbx composition, with x varying from 0.1 to

.9. Our atomistic simulations find that the alloy precipitates can have an FCC, an amorphous, or a BCC phase, depending on
he compositional ratio between Cu and Nb, i.e., value of x . Among all types of obstacles, the critical stresses for dislocation
ypass are the highest for unshearable amorphous precipitates, followed by shearable crystalline precipitates, and then the
seudo-voids.
2021 Elsevier B.V. All rights reserved.
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1. Introduction

Many strengthening methods for crystalline solids, such as irradiated materials [1,2], metal matrix composites
3,4], precipitate-hardened materials [5,6], and rapidly quenched metals [7], have been closely connected to
islocation/obstacle interactions at the nanoscale. In the grain interior, nano-sized obstacles dislocations can
ncounter, apart from other dislocations, can be classified as one of three types: voids, shearable precipitates,
nd unshearable precipitates. The interactions of dislocations and obstacles are intrinsically multi-scale due to
he involvement of both long-range, linear elastic interactions and short-range, nonlinear atomic-scale ones [8,9].
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Discrete models such as the atomistic simulation method [5,10,11] have been employed to account for these
interactions.

While atomistic simulations have provided valuable insight on unit processes, they are ultimately limited in time
nd length scales, and hence in the obstacle sizes and dislocation numbers involved in the interactions. Continuum
odels, on the other hand, have the potential to achieve larger length scales. These methods include the coarse-

rained atomistic approach [12,13], discrete dislocation dynamics (DDD) [14,15], level-set method [16,17], and
eneralized Peierls–Nabarro model [18]. To date, they can account for the long range stress fields and interaction
nergies between dislocations and other obstacles, e.g., precipitates, solutes, interstitial atoms, grain boundaries,
nd bi-material interfaces, while importing selected pieces of atomic-scale information for short-range interactions.
mong these continuum models are those based on the phase-field (PF) method [19]. While originally developed

o treat phase transformations, the formulation was adapted to simulate dislocation dynamics by defining a system
nergy model as a function of order parameters that are associated with dislocation slips [20,21].

Since its inception over twenty years ago [22], PF dislocation modeling has been employed to study a series
f dislocation-mediated plastic problems in crystalline materials. A large body of studies have advanced the PF
echnique to better represent the properties of dislocations in a variety of material systems. In its most general
orm, the system energy includes an elastic energy for the long-range elastic field of a dislocation, a lattice energy
or the short-range dislocation core field, and a gradient energy for the transitional regions between the two fields.
ver the years, different choices have been made in terms of the model details, leading to a number of PF model
ariants. One popular PF dislocation model is the phase field microelasticity (PFM) model [22]. Using PFM for
ace-centered cubic (FCC) crystals, Shen and Wang [23] and Zheng et al. [24] modified the lattice energy term to
etter describe dislocation–dislocation interactions. In addition, Shen and Wang [25] incorporated the generalized
tacking fault energy (GSFE) surfaces into the lattice energy to account for the dissociation of a dislocation to its
quilibrium structure. Mianroodi and Svendsen [26] related the uniform gradient energy coefficient to the Shockley
artial dislocation core size in FCC metals to yield better predictions of dissociated dislocations with respect to
olecular statics simulations. Besides PFM, other PF dislocation models include the microscopic phase-field (MPF)
odel [27] and the phase-field dislocation dynamics (PFDD) model [28]. MPF confines all states of slip to pre-

efined slip planes and excludes the gradient energy from its system energy. The original PFDD model did not
nclude the gradient energy in its system energy either and assumed elastic isotropy for convenience. Recently,
FDD models were advanced for FCC crystals [29] by incorporating full anisotropic elasticity and the gradient
nergy, while separating the previously uniform gradient energy coefficient into two, one for the edge component
nd the other for the screw component. PFDD has also been extended to treat dislocations in body-centered cubic
BCC) [30,31] and hexagonal close-packed (HCP) materials [32,33]. All these methodological advancements in
FDD have enabled it to serve as a reliable tool for exploring dislocation dynamics in crystalline materials.

To date, PFDD has been applied to dislocations interacting with unshearable precipitates in FCC crystals [28,34],
n incoherent twin boundary in Cu [35], and solutes in multi-principal element alloys (MPEAs) [36,37]. All these
imulations assumed the material was elastically homogeneous. On the other hand, PFDD has also been applied to
lastically heterogeneous bodies, i.e., dislocation evolution close to a void [38] and slip transfer of dislocations across
i-metal interfaces [39]. In these heterogeneous material treatments, however, other properties of the dislocations or
aterials, such as elastic anisotropy or dissociated dislocation cores, were not taken into account. To quantitatively

ssess the dislocation/obstacle interactions, which is the main goal of this paper, it is beneficial for PFDD to include
ll these features – material heterogeneities, dislocation dissociation, and anisotropic elasticity – into the same
ramework.

In this work, we present a unified PFDD technique that is capable of simulating in-plane interactions of
islocations with shearable or unshearable obstacles. We focus the investigation on the Cu–Nb system, wherein the
atrix is either Cu or Nb while the obstacles are either voids or precipitates that are binary Cu1−x Nbx alloys. We

consider the full range of binary compositions, from precipitates with low concentrations of Nb that are FCC phases,
to those with amorphous mixtures, and finally to larger concentrations of Nb that are BCC phases. The remainder
of this paper is structured as follows. First, we introduce the PFDD formulation for an elastically homogeneous
body in Section 2. Then in Section 3, we present the extension of PFDD to a two-phase elastic material. Last, in

Sections 4, 5, and 6, the extended PFDD model is employed to study dislocation/obstacle interactions.
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2. PFDD formulation in a homogeneous medium

In this section, we briefly review the PFDD formulation for an elastically homogeneous medium. We assume
hat the medium is a crystal that deforms elastically and plastically, where plasticity is accommodated by the glide
f dislocations on preferred slip systems. An order parameter φα is introduced for each slip system α. The values
α = 0 and 1 represent the unslipped and slipped states, respectively. In the current work, φα is confined to be
on-zero only in the slip plane of α [40], i.e., the dislocation core is assumed to not spread on multiple slip planes.

The total energy density ψ consists of three terms: elastic energy density ψela, lattice energy density ψlat, and
he external energy density ψext [40], i.e.,

ψ(ϵ,φ) = ψela(ϵ,φ) + ψlat(φ) − ψext(φ) (1)

here

ψela(ϵ,φ) =
1
2

[ϵ − ϵp(φ)] · C[ϵ − ϵp(φ)] (2)

ψlat(φ) =
γgsf(φ)

lgsf
(3)

ψext(φ) = σ app · ϵp(φ) (4)

here C is the elastic stiffness tensor, σ app is the applied stress tensor, and φ is the set of order parameters. The
train tensor field ϵ = sym β, where β = ∇u is the distortion field with u being the displacement field. The plastic
train field ϵp

= sym βp, where the plastic distortion βp is related to the order parameters φ by

βp(φ) =

nop∑
α=1

bαφα
dα

sα ⊗ nα (5)

where sα is the slip direction unit vector, bα is the slip vector magnitude, nα is the slip plane unit normal, and
α is the interplanar spacing between two adjacent slip planes, for slip system α. nop is the total number of order
arameters.

The lattice energy density ψlat is associated with γgsf, the potential energy expense with shearing a crystalline
alf over the other half, while lgsf is the spacing between the two halves. As a function of φα , γgsf is either an

energy surface (when nsp > 1) or an energy curve (when nsp = 1), where nsp is the number of order parameters
er slip plane. In PFDD, γgsf is usually provided by atomistic simulations [30,41] or ab initio calculations [42,43].

Among edge and screw dislocations in nine FCC metals, our recent studies [29,40,43] found that, in most cases,
f the gradient energy density was included in the master energy functional Eq. (1), it would yield a more accurate
escription of the dislocation core. However, the edge dislocation in Cu was a special case [43] because it was
hown to be more beneficial to exclude the gradient energy density. In the meantime, the gradient energy density
s usually not included for BCC metals [31]. Hence, the gradient energy density is not considered in this paper.

Once the energy functional is set and the order parameters are initialized, we minimize the total system energy
ith respect to each φα via the time-dependent Ginzburg–Landau (TDGL) equation, i.e.,

φ̇α = −m0∂φα (ψela + ψlat − ψext) (6)

here the superposed dot denotes the time derivative and the Ginzburg–Landau coefficient m0 is a non-negative
onstant.

. Extension of PFDD to a heterogeneous medium

In this section, we present the PFDD formulation for a heterogeneous medium, which consists of two materials,
espectively denoted by 1 and 2, with distinct anisotropic elasticity tensors C[1] and C[2]. We can express ψela(x)
Eq. (2)) as a scalar field in x, the position of a continuum point, i.e.,

ψela(x) =
1
2

Ci jkl(x)[ϵi j (x) − ϵ
p
i j (x)][ϵkl(x) − ϵ

p
kl(x)] (7)

In the meantime, employing Hooke’s Law to relate the stress tensor to elastic strain, we have
p

σi j (x) = Ci jkl(x)[ϵkl(x) − ϵkl(x)] (8)

3



S. Xu, J.Y. Cheng, Z. Li et al. Computer Methods in Applied Mechanics and Engineering 389 (2022) 114426

(

w

w

d

w

n

m
m

In an elastically homogeneous medium, Ci jkl(x) is a constant everywhere, and so the total elastic energy can
be calculated in the Fourier space, with the help of the Plancherel theorem [43]. In an elastically heterogeneous
medium consisting of two materials, however, Ci jkl(x) varies spatially, i.e.,

Ci jkl(x) =

{
C [1]

i jkl , x ∈ material 1

C [2]
i jkl , x ∈ material 2

(9)

Due to the spatial variation of Ci jkl , calculating the total elastic energy becomes more difficult because the
Plancherel theorem cannot be used directly. Eshelby [44] proposed that, if the strain caused by material 2 is uniform
within itself and is zero in material 1, the elastic field of the two-material medium would be equivalent to adding
a virtual strain ϵv to material 2, while assuming a uniform elastic tensor C [1]

i jkl in both materials. It follows that the
stress becomes

σi j (x) = C [1]
i jkl[ϵkl(x) − ϵ0

kl(x)] (10)

where the eigenstrain (i.e., inelastic strain) is given by

ϵ0
kl(x) =

{
ϵ

p
kl(x), x ∈ material 1
ϵ

p
kl(x) + ϵv

kl(x), x ∈ material 2
(11)

The virtual strain ϵv, which is zero in material 1 and non-zero in material 2, is defined such that Eqs. (8) and
10) equal each other. The equality is trivial in material 1. In material 2, however, their equality dictates that

C [2]
i jkl[ϵkl(x) − ϵ

p
kl(x)] = C [1]

i jkl[ϵkl(x) − ϵ
p
kl(x) − ϵv

kl(x)] (12)

Equivalently

− C [1]
i jklϵ

v
kl(x) = ∆Ci jkl[ϵkl(x) − ϵ

p
kl(x)] (13)

here ∆Ci jkl = C [2]
i jkl − C [1]

i jkl . Eq. (13) can be written in a more general form for both materials 1 and 2, i.e.,

C [1]
i jklϵ

p
kl(x) = C [1]

i jklϵ
0
kl(x) + ∆Ci jkl(x)[ϵkl(x) − ϵ

p
kl(x)] (14)

here

∆Ci jkl(x) = Ci jkl(x) − C [1]
i jkl (15)

The elastic energy density ψela(x) can then be written as the sum of the “equivalent” homogeneous elastic energy
ensity, ψeq

ela(x), and the “extra” elastic energy density, ψex
ela(x), i.e.,

ψela(x) = ψ
eq
ela(x) + ψex

ela(x) (16)

here

ψ
eq
ela(x) =

1
2

C [1]
i jkl[ϵi j (x) − ϵ0

i j (x)][ϵkl(x) − ϵ0
kl(x)] (17)

ψex
ela(x) =

1
2

Mi jkl(x)ϵv
i j (x)ϵv

kl(x) (18)

where

Mi jkl(x) = −C [1]
i jmn

[
∆Cmnpq (x)

]−1 C [1]
pqkl − C [1]

i jkl (19)

Derivation of Eq. (16) is presented in Appendix A. According to Eq. (11), ϵv
kl(x) is defined only in material 2,

ot in material 1. As a result, ψex
ela(x) is defined only in material 2.

Besides the elastic energy density, there are two other energy densities in Eq. (1). In the case of a heterogeneous
edium, the lattice energy density does not change its form, while the external energy density should be slightly
odified in material 2, from Eq. (4), to

v 0 v
ψext(φ, ϵ ) = σ app · ϵ (φ, ϵ ) (20)

4
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3.1. Dislocations are not permissible in material 2

In this section, we consider the case when dislocations are permissible in material 1 but not in material 2, e.g.,
hen material 2 is unshearable and/or amorphous. Note that the dislocation slip is the only plastic deformation
echanism in PFDD; other plasticity mechanisms such as twinning (in crystals) and shear transformation zone (in

morphous materials) are not considered. In this case, φ correspond to the order parameters only in material 1. It
follows that, the eigenstrain becomes

ϵ0(x) =

{
ϵp(φ(x)), x ∈ material 1
ϵv(x), x ∈ material 2

(21)

Therefore, the elastic energy density becomes

ψela(x) =

{
ψ

eq
ela(φ(x)), x ∈ material 1
ψex

ela(ϵv(x)), x ∈ material 2
(22)

he lattice energy density becomes

ψlat(x) =

⎧⎪⎨⎪⎩
γ

[1]
gsf (φ(x))

l [1]
gsf

, x ∈ material 1

0, x ∈ material 2

(23)

nd the external energy density becomes

ψext(x) =

{
σ app · ϵp(φ(x)), x ∈ material 1
σ app · ϵv(x), x ∈ material 2

(24)

Different from the homogeneous medium case, which uses Eq. (6), an additional set of TDGL equations is used
ere because the total energy should also be minimized with respect to each of the nine components of ϵv, i.e.,

φ̇α = − m0∂φα (ψela + ψlat − ψext) in material 1 (25)

ϵ̇v
ab = − mv

0∂ϵv
ab

(ψela − ψext) in material 2 (26)

here a, b = 1, 2, 3. Note that the Ginzburg–Landau coefficients m0 and mv
0 are not necessarily the same but should

oth be positive; the final equilibrium state is independent of the absolute values of these coefficients [39]. Also
ote that Eq. (26) minimizes the system energy only if

[
∆Cmnpq

]−1 is negative definite, i.e., when material 1 is
tiffer than material 2 [45]. If

[
∆Cmnpq

]−1
> 0, Eq. (26) will result in divergence of the virtual strain.

.2. Dislocations are permissible in material 2

When both materials are crystalline and shearable by dislocations, each one has not only its own elastic moduli,
ut also its own lattice energy, lattice parameter, and set of order parameters. In the present model, we consider
ituations in which the mismatch between the two lattice constants are sufficiently low that the interface is coherent
r semi-coherent, with negligible coherency strains. Materials 1 and 2 are also assumed to have the same lattice
ype and slip system. Using φ and φ† to denote the order parameter sets in materials 1 and 2, respectively, the
lastic energy density becomes

ψela(x) =

{
ψ

eq
ela(φ(x)), x ∈ material 1
ψ

eq
ela(φ†(x)) + ψex

ela(ϵv(x)), x ∈ material 2
(27)

here

ψ
eq
ela(x) =

⎧⎪⎨⎪⎩
1
2

C [1]
i jkl[ϵi j (x) − ϵ0

i j (φ(x))][ϵkl(x) − ϵ0
kl(φ(x))], x ∈ material 1

1
C [1] [ϵi j (x) − ϵ0 (φ†(x))][ϵkl(x) − ϵ0 (φ†(x))], x ∈ material 2

(28)
2 i jkl i j kl

5
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Similarly, the lattice energy density becomes

ψlat(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ
[1]
gsf (φ(x))

l [1]
gsf

, x ∈ material 1

γ
[2]
gsf (φ†(x))

l [2]
gsf

, x ∈ material 2

(29)

nd the external energy density becomes

ψext(x) =

{
σ app · ϵp(φ(x)), x ∈ material 1
σ app · [ϵp(φ†(x)) + ϵv(x)], x ∈ material 2

(30)

Here, three TDGL equations are used, i.e.,

φ̇α = − m0∂φα (ψela + ψlat − ψext) in material 1 (31)

φ̇†
α = − m†

0∂φ†
α
(ψela + ψlat − ψext) in material 2 (32)

ϵ̇v
ab = − mv

0∂ϵv
ab

(ψela − ψext) in material 2 (33)

here a, b = 1, 2, 3. Again, the Ginzburg–Landau coefficients m0, m†
0, and mv

0 are not necessarily the same but
hould all be positive.

.3. Material 2 as a vacuum

As a special case of a heterogeneous bimaterial medium, we treat material 2 as a vacuum, in which case
[2](x) = 0. Then in material 2, ∆Cmnpq (x) = −C [1]

mnpq according to Eq. (15). It follows that

Mi jkl(x) = C [1]
i jmn[C [1]

mnpq ]−1C [1]
pqkl − C [1]

i jkl = δi pδ jqC [1]
pqkl − C [1]

i jkl = C [1]
i jkl − C [1]

i jkl = 0 (34)

Then,

ψela(x) =

{
ψ

eq
ela(φ(x)), x ∈ material 1

0, x ∈ material 2
(35)

nd Eqs. (23)–(26) hold.
This formulation accounts for the long-range interaction between a dislocation and a vacuum phase and has been

mployed in PFDD to study dislocation evolution near a void [38] and in PFM to study crack propagation in single
rystals [46] and polycrystals [47] as well as dislocation dynamics in thin films [48]. However, it does not account
or the short-range interactions between the dislocation and vacuum. In actuality, when a dislocation intersects with
vacuum, such as a free surface or a void, it leaves a ledge on the surface. An example can be seen in many prior

tomistic simulations, which show that when an edge dislocation bypasses a void via the shearing mechanism, it
eaves two steps on the void surface, where it enters and where it leaves. This phenomenon occurs in FCC [11,49],
CC [10,50], and HCP [51] materials. To account for both the short-range and long-range interactions, we model

he void as a crystalline material with the same lattice constant as the matrix but with exceedingly low elastic moduli
nd GSFEs, as will be outlined in Section 5.2. We refer to this shearable void as a “pseudo-void” and will study
ts interactions with a dislocation in Section 6.

. PFDD simulations

.1. Model parameters

In this work, matrices and crystalline precipitates are either FCC or BCC phases. Since we focus on a single
lip plane in this paper, nsp = nop. In FCC metals, the preferred slip plane is {111}, in which there are three slip
ectors, i.e., nsp = 3, each of which lies along a ⟨110⟩ direction with bα =

√
2a0/2 [41]. Hence, γgsf is represented

by a GSFE surface, and lgsf = dα =
√

3a0/3. In BCC metals, there are three possible types of glide planes: {110},
{112} and {123} [31]. Here, we focus on the {110} slip plane, for which l = d =

√
2a /2. Since the dislocation
gsf α 0

6
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Fig. 1. Schematic of the simulation box set-up for an edge dislocation dipole interacting with two arrays of obstacles.

Table 1
Grid spacings along each direction in the FCC and BCC matrix materials. The values
for a0, the lattice parameter, are summarized in Table 2.

hx h y hz

FCC
√

2
4 a0

√
3

3 a0

√
6

4 a0

BCC
√

3
2 a0

√
2

2 a0

√
6

3 a0

is not dissociated, nsp = 1 and γgsf is represented by a GSFE curve along the ⟨111⟩ direction. The only slip vector,
with bα =

√
3a0/2 [30], lies along the same direction.

4.2. Simulation set-up

As illustrated in Fig. 1, a dislocation dipole consisting of two edge dislocations with opposite Burgers vectors
is built into a 3D periodic simulation box, which has lattice orientations

(i x , i y, i z) =

(√
2

2
[1̄10],

√
3

3
[111],

√
6

6
[112̄]

)
(36)

n an FCC matrix, and

(i x , i y, i z) =

(√
3

3
[111],

√
2

2
[1̄10],

√
6

6
[1̄1̄2]

)
(37)

n a BCC matrix. Let L x , L y , and L z be the edge length of the simulation cell along the x , y, and z directions,
espectively. Within each dipole, the two dislocation lines are along the z axis, lie on the mid-y plane, and are
eparated by L x/2 along the x direction. Grid spacings along the three directions, hx , h y , and hz , are summarized
n Table 1. Along the x , y, and z directions, 256, 64, and 128 grid points are employed, respectively. To assess the

odel size effect, we doubled the grid point number along all three directions and found that the critical stresses
aried by less than 2%.

Two arrays of spherical obstacles are placed on the mid-y plane and separated by 3L x/4 along the x direction.
n each case, all obstacles are either unshearable voids, shearable voids (i.e., pseudo-voids), unshearable amorphous
recipitates, or shearable, coherent crystalline precipitates. The crystallographic orientations of a shearable obstacle
ollow Eq. (36) or Eq. (37), depending on its lattice. Regardless of the obstacle type, each obstacle has a diameter
f approximately 2.5 nm, and each array contains 1, 2, 4, 6, or 8 equally spaced obstacles, with the spacing L
llustrated in Fig. 1.

.3. Energy minimization and critical stresses

The elastic energy density ψela is calculated by the fast Fourier transform method with the help of Green’s
unctions. All Ginzburg–Landau coefficients are set to unity and the timestep size ∆t = 0.02. In a heterogeneous

edium, at each timestep, Eqs. (25)–(26) or Eqs. (31)–(33) are solved sequentially. Specifically, Eq. (25) or Eq. (31)

7
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a

Table 2
Lattice parameters a0 (in Å), elastic constants C11, C12, and C44 (in GPa), and
isotropic shear modulus in Voigt form µ (in GPa) in Cu and Nb. Values of a0 are
from prior DFT calculations in Cu [52] and Nb [31], while those of elastic constants
are from experiments [53].

a0 C11 C12 C44 µ

Cu 3.634 169 122 75.3 54.58
Nb 3.324 245 132 28.4 39.64

is first iterated for all φα in material 1, resulting in new energy densities. Then Eq. (32) is iterated for all φ†
α in

material 2, again updating the energy densities. Finally, Eq. (26) or Eq. (33) is iterated for all ϵv
ab in material 2.

In the simulations that follow, two critical stresses will be determined. One is the Peierls stress, σP, the critical
local stress required for a dislocation to move on its plane without any obstacles. The procedure used in PFDD
to calculate it can be found in Ref. [40]. The other stress is σc, the critical stress for the dislocation to bypass
the obstacle array. The minimum applied stress subject to which the critical event happens is recorded as σ0,
nd the critical stress (either σP or σc) is σ0 − ∆σ0/2, where ∆σ0 is the incremental resolved shear stress. Here,
∆σ0 = 10−4µ, where µ = (3C44 +C11 −C12)/5 is the isotropic shear modulus in Voigt form for the matrix. Values
of µ are summarized in Table 2. In particular, the xy and yx components of the stress tensor σ app are non-zero. For
each resolved shear stress, iterations are terminated when the Euclidean norm of the difference in global vector of
each order parameter and each virtual strain between successive iterations is smaller than 10−5. Static dislocation
core structures and Peierls stresses in Cu and Nb in the absence of any obstacles are presented in Appendix B,
while the critical stresses for dislocation/obstacle interactions will be discussed in details in Section 6.

4.4. Disregistry

To identify the dislocation core structures, the continuum disregistry field ξ is calculated as an instantiation of
the discrete atomic displacements [41], i.e.,

ξη =

nsp∑
α=1

φαbα · sη (38)

where η is the direction of ξη. In an FCC metal, η can be 1 or 2, representing respectively, the directions along
and normal to the perfect dislocation Burgers vector. In other words, ξ1 and ξ2, respectively, are disregistry fields
for the ⟨110⟩ and ⟨112⟩ directions. In a BCC metal, η can only be 1 and ξ1 is the disregistry field for the ⟨111⟩

direction.

5. Material parameters

5.1. Matrices

Two matrices, Cu and Nb, are considered in this work. For each matrix, the material parameters needed for
PFDD include lattice parameter a0, elastic tensor C, and GSFE surface/curve. Lattice parameters and GSFEs are
based on prior density functional theory (DFT) calculations in Cu [52] and Nb [31]. Elastic constants are from prior
experiments [53]. These relevant input are summarized in Table 2.

5.2. Pseudo-voids

As discussed in Section 3.3, in prior PF dislocation models involving vacuums (e.g., voids, cracks, and free
surfaces), the short-range dislocation/vacuum interactions were not considered. As a result, the vacuum was
unshearable by dislocations. In this work, the interest lies in representing the effect voids have on dislocation glide
and so the void needs to be shearable by the dislocation. To this purpose, we treat a void as a second crystalline
8
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Fig. 2. (a) Critical bypass stress for a pseudo-void in (a) Cu and (b) Nb as a function of N for void spacing L = 6hz .

hase with a set of non-zero order parameters and exceedingly low moduli and GSFEs. Since an actual void has
ero ψela and ψlat, the shearable void can be considered a “pseudo-void”.

We first ensure that the critical stresses calculated are affected negligibly by the choice of pseudo-void properties.
or the sake of simplicity, we reduce all elastic constants and lattice energies uniformly, via

Cpv
i jkl = Cmatrix

i jkl /N , γ
pv
gsf = γmatrix

gsf /N (39)

here N is a positive integer. For this test, we consider the case with the greatest void volume fraction studied here,
here the void spacing L = 6hz . Fig. 2 shows the change in the critical stress as N increases, or equivalently as the

nergy densities in the void decrease. It is found that the critical stress for a dislocation to bypass eight pseudo-voids
ecreases with N , suggesting that obstacles with smaller elastic constants and lower GSFEs are weaker barriers to
islocation glide. We find that when N = 10 000 and 20 000, respectively, the critical stress converges in Cu and
b. These two values of N , which depend on the matrix material but not on the pseudo-void spacing, will be used

n subsequent PFDD simulations.

.3. Precipitates

The precipitates considered in this paper are Cu1−x Nbx alloys, where x varies from 0.1 to 0.9. Depending on
he composition, the precipitate in its stable form is either an amorphous or a crystalline solid. Due to the high
omputational cost of DFT, we resort to atomistic simulations, using LAMMPS [54], to determine the material
arameters for precipitates. In Section 5.3.2, we will identify the most stable phase of Cu1−x Nbx and calculate the
attice parameters of the crystalline phases. Then in Sections 5.3.3 and 5.3.4, respectively, we will calculate the
lastic constants of all precipitates and GSFEs of the crystalline precipitates.

.3.1. Interatomic potentials
The embedded-atom method (EAM) potential developed by Zhang et al. [55] is used for the Cu–Nb system. The

otential was recently used to study the confined layer slip in Cu/Nb nanolaminates [56]. In prior works, it was
emonstrated that this potential can reproduce lattice parameters and elastic constants in Cu and Nb in agreement
ith DFT [57,58]. Here, using the EAM potential we also calculate the relaxed GSFE curves in Cu and Nb and

ompare them with prior DFT calculated curves in Refs. [31,52]. The method to calculate the relaxed GSFE curves
ollows Ref. [59] on the {111} plane in Cu and Ref. [60] on the {110} plane in Nb. Results, shown in Fig. 3,
ndicate that EAM potential is reasonably accurate in predicting GSFEs in the two metals. In Nb, the {110}⟨111⟩

curve has one maximum, according to DFT [31], while the EAM potential slightly overestimates the peak energy
and produces a shallow local minimum. Similar discrepancy was found between the two {112}⟨111⟩ GSFE curves

[58].

9
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Fig. 3. Relaxed GSFE curves (a) for two crystallographic directions on the {111} plane in Cu and (b) for the {110} plane in Nb. DFT
results are taken from Ref. [52] for Cu and Ref. [31] for Nb.

Fig. 4. Atomistic structures of the eight materials listed in Table 3: (a) FCC Cu, (b) FCC Cu0.9Nb0.1, (c) FCC Cu0.8Nb0.2, (d) amorphous
Cu0.7Nb0.3, (e) amorphous Cu0.5Nb0.5, (f) amorphous Cu0.3Nb0.7, (g) BCC Cu0.1Nb0.9, and (h) BCC Nb. Visualization is enabled by OVITO
[65]. Red and blue atoms are Cu and Nb, respectively. For better display, the simulation cells in (d), (e), and (f) are reduced in size by
50% in all three directions, with respect to the remaining five structures. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

5.3.2. Identification of the most stable phase of Cu1−x Nbx
Eleven chemical compositions are considered, as x increases from 0 to 1, in increments of 0.1. For a given x ,

where x ̸= 0 and ̸= 1, special quasi-random structures (SQS) [61] in FCC and BCC phases are built using ATAT
[62]. Each SQS contains 60 atoms. When x = 0 or 1, atomic structures of pure metals, including FCC Cu, FCC
Nb, BCC Cu, and BCC Nb, each of which contains 60 atoms, are built. For each crystalline structure, we calculate
the lattice parameter a0 via the volume-energy method [63,64], with the cohesive energy as a byproduct. Selected
atomistic crystalline structures are presented in Fig. 4(a,b,c,g,h).

Compared with crystalline structures, constructing amorphous structures is less straightforward. For each
composition, six steps are taken. First, Cu and Nb atoms at specified compositions are randomly assigned to a
simulation cell sized approximately 10 nm × 10 nm × 10 nm. Second, the structure is energy minimized via
the conjugate gradient method, while the simulation cell size is allowed to change to zero all three normal stresses.
In each energy minimized structure, if two atoms are closer to each other than 1.1 Å, one of them is deleted.
Each structure contains 42 000 ∼ 70 000 atoms, depending on the composition. Third, under an NPT ensemble,
the structure is then heated at a rate of 3.5 × 1014 K/s to 3500 K, well above the liquidus line on the phase
diagram specified by the EAM potential [55]. Fourth, the temperature is kept at 3500 K for 10 ps under an NPT
ensemble. Fifth, the structure is cooled down from 3500 K to 1 K at a rate of −1012 K/s. Last, energy minimization

is conducted using the conjugate gradient method, while all normal stresses are again zeroed. Selected atomistic

10



S. Xu, J.Y. Cheng, Z. Li et al. Computer Methods in Applied Mechanics and Engineering 389 (2022) 114426

Z

a
fi
a
s

c
a
0

Fig. 5. EAM-based cohesive energies for Cu1−x Nbx as x varies from 0 to 1, in increments of 0.1. In regions 1, 2, and 3, FCC, amorphous,
and BCC phases, respectively, have the lowest cohesive energy.

Fig. 6. EAM-based elastic constants C11, C12, and C44 of Cu1−x Nbx , as x varies from 0 to 1. The Voigt isotropic shear moduli µ and
ener anisotropy indices Ac are also presented. In regions 1, 2, and 3, FCC, amorphous, and BCC, respectively, are the most stable phases.

morphous structures are presented in Fig. 4(d,e,f). The cohesive energy is then calculated. For each composition,
ve random samples are considered and the resultant cohesive energies differ within 1%. For selected compositions,
lower cooling rate of −1011 K/s is tried and the results differ within 0.5%. In all dynamic simulations, a timestep

ize of 1 fs is used.
Fig. 5 shows the cohesive energies of Cu1−x Nbx , for x varying from 0 to 1 in increments of 0.1. For each

omposition, cohesive energies based on an FCC, a BCC, and an amorphous phase are compared. Three regions
re identified. Region 1 spans x ≤ 0.2, wherein the FCC phase has the lowest cohesive energy. Region 2 covers
.3 ≤ x ≤ 0.8, and corresponds to the amorphous phase with the lowest cohesive energy. Finally, region 3 spans

x ≥ 0.9, where the BCC phase has the lowest cohesive energy. In other words, the Cu1−x Nbx alloy is amorphous
in the range of 15–75 at.% Cu, which agrees with the experimental result of 35–74 at.% Cu relatively well [66].

5.3.3. Elastic constants
The elastic constants C11, C12, and C44 of Cu1−x Nbx in their stable phases, for x varying from 0 to 1, are
calculated via the stress–strain method [63,64] and presented in Fig. 6. According to the Zener anisotropy index

11
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Table 3
EAM-based lattice parameters a0 (in Å) and elastic constants C11, C12, and C44 (in GPa) of the
six Cu1−x Nbx precipitates studied in this work. Isotropic shear modulus in Voigt form µ (in GPa)
and Zener anisotropy index Ac are also presented. EAM-based values for Cu and Nb, which are
not used for input in the present PFDD simulations, are included here to show that they are close
to the DFT-based values (Table 2). Atomistic structures used in all calculations here are presented
in Fig. 4.

Phase a0 C11 C12 C44 µ Ac

Cu FCC 3.613 169.9 122.6 76.2 55.18 3.22
Cu0.9Nb0.1 FCC 3.699 187.25 135.8 81.88 59.42 3.18
Cu0.8Nb0.2 FCC 3.759 195.16 128.44 79.32 60.94 2.38
Cu0.7Nb0.3 Amorphous 185.9 128.1 29 28.96 1
Cu0.5Nb0.5 Amorphous 193.7 135.9 30.8 30.04 1.07
Cu0.3Nb0.7 Amorphous 217.2 143.1 36.7 36.84 0.99
Cu0.1Nb0.9 BCC 3.274 221.58 141.63 40.63 40.37 1.02
Nb BCC 3.3 246.9 133.4 28.3 39.68 0.5

Fig. 7. Relaxed GSFE curves in the (a) ⟨110⟩ direction and (b) ⟨112⟩ direction on {111} plane in FCC Cu0.9Nb0.1. DFT data for Cu from
ef. [52] are presented for reference.

Ac = 2C44/(C11 − C12), Cu, Nb, and two FCC precipitates, Cu0.9Nb0.1 and Cu0.8Nb0.2, are highly elastically
anisotropic, while all other precipitates, whether BCC or amorphous, are nearly elastically isotropic. The latter
results are expected because the amorphous materials are elastically isotropic.

In subsequent PFDD simulations, we will consider the following four precipitate compositions: (i) FCC
Cu0.9Nb0.1, (ii) FCC Cu0.8Nb0.2, (iii) amorphous Cu0.7Nb0.3, (iv) amorphous Cu0.5Nb0.5, in a Cu matrix. In a
Nb matrix, we will presume the precipitates are one of these three compositions: (iv) amorphous Cu0.5Nb0.5, (v)
amorphous Cu0.3Nb0.7, and (vi) BCC Cu0.1Nb0.9. The values of a0, C11, C12, and C44 of the six distinct compositions
are summarized in Table 3. Comparison of the moduli between precipitates and matrices reveals an elastic moduli
mismatch, an effect that is directly taken into account in the present PFDD formulation. Comparison of the lattice
parameters between crystalline precipitates and matrices reveals that the interfaces are coherent or semi-coherent,
justifying our choices of neglecting the coherent strain made in Section 3.2.

5.3.4. GSFEs
As mentioned in Section 4.1, γgsf is represented by a GSFE surface and a GSFE curve, respectively, in FCC and

BCC crystals. For an alloy, the fraction of solutes in adjacent to different, parallel crystallographic planes can vary,
deviating from the atomic volume fraction. For heavily alloyed metals, like MPEAs, the variation can be significant
[67–69]. For the dilute alloys here, the variation is smaller, yet we still repeat the GSFE calculations for all parallel
planes within the same SQS.

In FCC alloys, i.e., Cu0.9Nb0.1 and Cu0.8Nb0.2, the SQS for each precipitate composition contains 30 {111} planes
⟨ ⟩ ⟨ ⟩
(Fig. 4(b,c)), for which we calculate 30 GSFE surfaces. Selected GSFE curves along 110 or 112 direction are
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Fig. 8. Relaxed GSFE curves in the (a) ⟨110⟩ direction and (b) ⟨112⟩ direction on {111} plane in FCC Cu0.8Nb0.2. DFT data for Cu from
ef. [52] are presented for reference.

Fig. 9. Relaxed GSFE curves along the ⟨111⟩ direction on the {110} plane in BCC Cu0.1Nb0.9. DFT data for Nb from Ref. [31] are given
for reference.

presented in Figs. 7 and 8. In each alloy, the GSFEs vary significantly and most of them are lower than those
in Cu. The median and minimum values of the peak GSFE value along the ⟨110⟩ curve, γ p

110, are, respectively,
470.04 mJ/m2 and 334.42 mJ/m2 in Cu0.9Nb0.1, which are about 9% and 36% lower than that in Cu, 519.05 mJ/m2.

he minimum γ
p
110 in Cu0.8Nb0.2 is even lower, 330.89 mJ/m2. Similar trends are found for local minima and

axima on the GSFE curve along the ⟨112⟩ direction, including unstable SFE γusf, intrinsic SFE γisf, and aligned
FE γasf. These SFEs, defined in Ref. [52], are summarized in Table 4. Despite the wide variation in the GSFEs
mong different planes and alloys, the shape of the GSFE surfaces remains largely unchanged, similar to a prior
nding in an FCC MPEA [67].

To analyze the effects of the GSFE on dislocation/precipitate interactions, the median or minimum GSFE surfaces
n the two alloys will be used in Section 6.2.1. Values of the four GSFE surfaces roughly follow

Cu0.9Nb0.1-median > Cu0.8Nb0.2-median > Cu0.9Nb0.1-minimum > Cu0.8Nb0.2-minimum (40)

In the BCC alloy, i.e., Cu0.1Nb0.9, the SQS contains 20 {110} planes (Fig. 4(g)), for which we calculate 20
SFE curves along the ⟨111⟩ direction. Selected GSFE curves are presented in Fig. 9. The median and minimum

usf values are 703.46 mJ/m2 and 416.96 mJ/m2, respectively, which are 4% higher and 38% lower than that in Nb,
2
76.78 mJ/m . Despite the large variation, the shape of the GSFE curves among different planes are similar, in line
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Table 4
Peak GSFE value along the ⟨110⟩ curve γ p

110, unstable SFE γusf, intrinsic SFE γisf, and aligned SFE γasf of the
three Cu1−x Nbx crystalline precipitates studied in this work. Values of Cu [52] and Nb [31] based on prior DFT
calculations are presented for reference. All are in units of mJ/m2.

Phase γ
p
110 γusf γisf γasf

Cu FCC 519.05 160.52 41.83 891.28
Cu0.9Nb0.1-median FCC 470.04 155.19 40.67 752.91
Cu0.9Nb0.1-minimum FCC 334.42 51.41 8.45 524.2
Cu0.8Nb0.2-median FCC 463.52 151.18 38.17 732.62
Cu0.8Nb0.2-minimum FCC 330.89 50.05 6.37 518.5
Cu0.1Nb0.9-median BCC 703.46
Cu0.1Nb0.9-minimum BCC 416.96
Nb BCC 676.78

Fig. 10. Comparison between the critical bypass stresses for pseudo-voids and unshearable voids in (a) Cu and (b) Nb.

ith a prior finding in two BCC MPEAs [68]. The artificial local minimum at γusf seen in pure Nb diminishes or
even disappears in some of the GSFE curves in Cu0.1Nb0.9.

6. PFDD results

6.1. Unshearable vs. pseudo-voids

When voids are present in the matrix, they are expected to act as obstacles to dislocation motion. The resistance
they impose depends on the mechanism by which the dislocation uses to circumvent them. Fig. 10(a) compares the
calculated critical stresses for the dislocation to bypass a row of pseudo-voids or unshearable voids in Cu for a range
of void spacings L . For L ≥ 54hz , the differences between the critical stress for the pseudo-voids and unshearable
voids diminish. These critical stresses are no longer dependent on L , as well, and reduce to 0.00265µCu. They draw
close in value to the Peierls stress σP, 0.00255µCu. Voids are such weak obstacles to dislocation motion that once
their spacing becomes much larger than the dislocation core width (for Cu, 2.31 nm) that they become ineffective
at hindering the glide of a dislocation.

As L reduces to 22hz and below, the effect of the pseudo-void becomes more pronounced. In this fine range of
spacing, the critical bypass stress for the pseudo-void is lower than that for an unshearable one. At a given fine L , σc

for pseudo-voids are about 39% lower than those for unshearable voids. For either the pseudo-void or unshearable
void, as L decreases further, σc increases, a trend that agrees with atomistic simulations [51,70] and elasticity theory
[71,72]. Also, when the spacing is fine, voids become formidable obstacles. In Cu, for the finest L of 6hz , which
is smaller than the stress-free stacking fault width, σc for pseudo-voids have increased by 317% compared with the
Peierls stress.

Fig. 10(b) presents σc for the edge dislocation in Nb to bypass a row of pseudo-voids or unshearable voids for
the same range of void spacings L . For the two largest L , 54h and 118h , σ are almost the same, ≈ 0.034µ , for
z z c Nb
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Fig. 11. Snapshots of critical configurations for an edge dislocation bypassing eight (a) unshearable voids in Cu, (b) pseudo-voids in Cu,
(c) unshearable voids in Nb, and (d) pseudo-voids in Nb. The void spacing L = 6hz . All snapshots are taken at applied stresses that are
slightly lower than the corresponding critical stresses and are colored by the disregistry ξ1 (Eq. (38)), where blue and red correspond to
ξ1 = 0 and b, respectively. Voids are denoted by dashed green circles. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

pseudo-voids and unshearable voids, and are slightly higher than the Peierls stress σP, 0.03355µNb. As L decreases
below 54hz , values of σc as well as differences between the pseudo-voids and unshearable voids increase. When
L = 22hz , σc for pseudo-voids is about 3% lower than that for unshearable voids; when L = 6hz , the reduction is
even greater, 15%. Compared with σP, at L = 6hz , σc for pseudo-voids is 30% higher.

To further compare unshearable voids with the shearable ones, Fig. 11 shows the critical configuration of the
dislocation as it attempts to bypass an array of closely spaced voids L = 6hz , the finest spacing studied here. Without
voids, the edge dislocation in both Cu and Nb remains straight as it glides since lengthening the dislocation would
incur an increase in the system energy. With voids, however, the dislocation needs to balance between either bowing
out between them, thereby increasing its length, or cutting through them, largely maintaining its length. In the case
of unshearable voids, the critical configuration involves the dislocations extruding between voids. In contrast, in the
case of pseudo-voids, the dislocation bows out to a lesser extent between the voids, before cutting them.

6.2. Crystalline precipitates

As summarized in Table 3, we consider three crystalline precipitates in this work: FCC Cu0.9Nb0.1, FCC
Cu0.8Nb0.2, and BCC Cu0.1Nb0.9. The first two are in a Cu matrix while the last one is in a Nb matrix.

6.2.1. Crystalline precipitates in a Cu matrix
Here, we consider two crystalline precipitates in a Cu matrix: one composition is FCC Cu0.9Nb0.1 and the other

FCC Cu0.8Nb0.2. As shown in Table 4, the GSFEs within these precipitates are lower than that of the Cu matrix.
The lower the lattice energy, the easier it is for the partial dislocations to glide in the precipitate than that in Cu. To
study representative examples, the simulations are carried out with precipitates with a median-level GSFE surface
and those with a minimum-level GSFE surface, respectively. Compared to Cu, their effective isotropic shear modulus
is higher (Table 3), which would cause the dislocation to resist transmitting through them.

Fig. 12 presents snapshots at different moments as an edge dislocation bypasses an array of Cu0.8Nb0.2 precipitates
when the applied stress is slightly higher than the critical one, σc. In this case the spacing between adjacent
precipitates (2.51 nm) is close to that of the intrinsic stacking fault width (2.31 nm). We observe that the portions of

the leading partial dislocation that directly impinge on the precipitates are at first held back by the precipitates and
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Fig. 12. Snapshots of selected configurations for an edge dislocation bypassing six FCC Cu0.8Nb0.2 precipitates with the median GSFE
urface in a Cu matrix. The precipitate spacing L = 11.3hz . The applied stress is constant and is slightly higher than the critical stress,
.00795µCu. All snapshots are colored in the same way as Fig. 11.

Fig. 13. In a Cu matrix, critical dislocation bypass stress as a function of the obstacle spacing L in the cases of (a) FCC Cu0.9Nb0.1 and
b) FCC Cu0.8Nb0.2 precipitates with the median or minimum GSFE surface. Results for pseudo-voids are presented as references.

he remaining parts extrude between them, as shown in Fig. 12(a,b). Next, the leading partial transmits through a pair
f precipitates while being held back every third one in the array (Fig. 12(c)). Once the transmission is completed,
he partial continues to glide, bowing out between every third precipitate. During this stage, the trailing partial
emains more or less straight and thus the extruding dislocation causes the stacking fault to expand. Eventually, the
eading partial transmits through the other precipitates and glides away, while the trailing partial approaches and
mpinges on the precipitate array in Fig. 12(d). It bows out between every precipitate (Fig. 12(e)) and eventually
ransmits through the latter. It follows that both the leading and trailing partial dislocations are able to continue
liding (Fig. 12(f)). Throughout this sequence, the critical stress is determined by the stress required for the leading
artial to transmit through the first set of precipitates (between Fig. 12(b) and (c)).

For all precipitate spacings and compositions, the dislocation cuts through the precipitates in the sequence shown
n Fig. 12. If the applied stress is sufficiently high for the leading partial dislocation to shear the precipitates, it is
lso sufficient for the trailing partial to shear them. It is interesting to note that the sequence of events for precipitates
s different from that of the same dislocation meeting an array of pseudo-voids with the same L . First, the leading
artial bows out further between the precipitates before transmitting through them. Second, the leading partial does
ot shear all precipitates at once, as it does in the case of the pseudo-void array. Both are consequences of the
reater resistance to shear posed by the precipitates than the voids.

Fig. 13 compares the calculated σc for an edge dislocation to bypass an array of crystalline precipitates with their

edian and minimum GSFE surfaces for a broad range of L from 6hz to 118hz . For large spacings, L ≥ 54hz , σc is
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Fig. 14. In a Nb matrix, critical dislocation bypass stress as a function of the obstacle spacing L in the cases of pseudo-voids, BCC
Cu0.1Nb0.9 precipitates with the median GSFE curve, and BCC Cu0.1Nb0.9 precipitates with the minimum GSFE curve.

nearly the same for both precipitate compositions: Cu0.9Nb0.1 and Cu0.8Nb0.2. These widely spaced obstacles pose
little resistance against dislocation glide and differences in their elastic constants and GSFE due to composition
have a negligible influence. For precipitates that are more finely spaced, L = 22hz , the differences in precipitate
GSFE and moduli emerge. Since these two alloys have similar isotropic shear modulus (Table 3), the differences
in σc reflect those in their GSFE surfaces. Comparing Fig. 13(a) and (b) shows that σc increases with higher γusf in
the precipitates. The influence of GSFE on σc increase as the spacing further decreases. When L = 6hz , the highest
value of 0.0158µCu is for the median GSFE in Cu0.9Nb0.1 while the lowest of 0.012µCu for the minimum GSFE in
Cu0.8Nb0.2.

The critical stresses for bypassing pseudo-voids of the same size and spacing are superimposed in Fig. 13 for
reference. Precipitates have non-negligible lattice energy and stiffness and are expected to be more formidable
obstacles. Cu matrix that contains crystalline precipitates is strengthened, more so than that contains pseudo-voids.
For example, when L = 6hz , the critical stress for the weakest crystalline precipitate, i.e., Cu0.8Nb0.2 with the
minimum GSFE surface, is about 13% and 371% higher than the critical stress for the pseudo-voids and the Peierls
stress, respectively.

6.2.2. Crystalline precipitates in a Nb matrix
In this section, we consider one type of precipitate, Cu0.1Nb0.9, in a Nb matrix. We consider the precipitates

having either a median-level or minimum-level GSFE curve. As shown in Fig. 9, the median GSFE in Cu0.1Nb0.9 is
higher than the GSFE of Nb, while the minimum GSFE in Cu0.1Nb0.9 is lower. In addition, the Cu0.1Nb0.9 precipitate
is slightly stiffer than Nb (Table 3).

Fig. 14 shows the critical stress σc for an edge dislocation to bypass an array of Cu0.1Nb0.9 precipitates in a Nb
matrix, while varying their spacing L from 6hz to 118hz . It is shown that the Nb matrix is strengthened by crystalline
precipitates more than shearable pseudo-voids for all L . For large spacings, L > 22hz , the effects of variation in
GSFE diminish and their σc are nearly equal. For finer spacings, L ≤ 22hz , the effects of precipitate GSFE on σc
are heightened and their differences in σc grow as L reduces. As before, we observe that σc increases with γusf. σc
for the precipitate with the median GSFE is 2% higher than that for the minimum GSFE when L = 11.3hz , but
even higher (6%) for L = 6hz . When L = 6hz and with the median GSFE, σc is about 12% and 45% higher than
the critical stress for the pseudo-voids and the Peierls stress, respectively.

Fig. 15 shows selected snapshots during the passage of an edge dislocation by widely spaced BCC Cu0.1Nb0.9
precipitates under a constant applied stress slightly higher than σc. The precipitates have the median GSFE, and
thus, both the GSFE and shear moduli of the precipitates are higher than those of Nb. When the dislocation glides
to the array (Fig. 15(a)), the portions that directly meet the precipitate are first held back at the precipitate, while
the segments in between them bow out (Fig. 15(b)). As the dislocation continues to bow further, the portions held

back at the precipitates partially wrap around them, as shown in Fig. 15(c,d). At some critical point, the dislocation
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Fig. 15. Snapshots of selected configurations for an edge dislocation bypassing two BCC Cu0.1Nb0.9 precipitates with the median GSFE
curve in a Nb matrix. The precipitate spacing L = 54hz . The applied stress is constant and is slightly higher than the critical stress,
0.03555µNb. All snapshots are colored in the same way as Fig. 11.

Fig. 16. Normalized critical stress for a dislocation to bypass a pseudo-void or a crystalline precipitate in Cu and Nb, with respect to the
normalized unstable SFE of the obstacles. The obstacle spacing L = 118hz , which closely represents an isolated obstacle. The dashed lines
re linear fits: σc/σ

matrix
P = 0.019γusf/γ

matrix
usf + 1.012 for Cu and σc/σ

matrix
P = 0.031γusf/γ

matrix
usf + 1.007 for Nb.

o longer bows further and transmits through the precipitates (Fig. 15(e)). Finally, it straightens and glides away
Fig. 15(f)).

To identify a general relationship between σc and obstacle properties, the normalized critical stresses for the
islocation to bypass a pseudo-void or crystalline precipitate in Cu or Nb are plotted with respect to the normalized
nstable SFE of the obstacle in Fig. 16. As shown, the two normalized quantities scale positively with each other
n both matrices, with similar linear fit coefficients.

.3. Amorphous precipitates

As summarized in Table 3, we consider three amorphous precipitates in this work: Cu0.7Nb0.3, Cu0.5Nb0.5, and
u0.3Nb0.7. The first two are in a Cu matrix while the last two are in a Nb matrix. The isotropic shear modulus of

hese amorphous precipitates (29–37 GPa) are much lower than that of Cu (55 GPa) and slightly lower than that of
b (40 GPa). Unlike the shearable pseudo-voids and crystalline precipitates, dislocations cannot glide within the
morphous precipitates.
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c

Fig. 17. Snapshots of selected configurations for an edge dislocation bypassing six amorphous Cu0.5Nb0.5 precipitates in a Cu matrix. The
precipitate spacing L = 11.3hz . The applied stress is constant and is slightly higher than the critical stress, 0.01105µCu. All snapshots are
olored in the same way as Fig. 11.

Fig. 18. In a Cu matrix, critical dislocation bypass stress as a function of the obstacle spacing L in the cases of pseudo-voids, Cu0.7Nb0.3
amorphous precipitates, Cu0.5Nb0.5 amorphous precipitates, and FCC Cu0.9Nb0.1 crystalline precipitates with the median GSFE surface.

6.3.1. Amorphous precipitates in a Cu matrix
Selected snapshots for a dislocation bypassing six Cu0.5Nb0.5 amorphous precipitates when L = 11.3hz are

presented in Fig. 17. The applied stress in this case is slightly above the threshold value for the dislocation to
overcome the array. Since these precipitates are impenetrable by the dislocation, the dislocation is expected to bow
around the precipitates rather than cutting them. The bypass of both leading and trailing partial dislocations follows
the Orowan mechanism, in which a shear loop is left around the precipitate after both partials glide away.

Fig. 18 compares σc for an edge dislocation in Cu to bypass an array of Cu0.7Nb0.3 and Cu0.5Nb0.5 precipitates
for a range of L . As with pseudo-voids and crystalline precipitates, σc increases with a decreasing L . Similar to
other obstacles, effects of any differences in precipitate properties emerge only for fine spacing L ≤ 22hz . Between
the two amorphous precipitates, those made of Cu0.7Nb0.3 require a higher σc for dislocation bypass than those
made of Cu0.5Nb0.5. The differences in their σc are within 5% for L = 6hz , a consequence of small differences in
their isotropic shear moduli: Cu0.7Nb0.3 has a slightly lower shear moduli (29 GPa) than Cu0.5Nb0.5 (30 GPa). As
a result, the former has a slightly greater shear modulus mismatch with respect to the matrix Cu (55 GPa). These
results suggest that the higher strengthening in Cu0.7Nb0.3 arises from a large shear modulus mismatch.

The strengthening by amorphous precipitates can be compared to those in pseudo-voids or crystalline precipitates
of the same size and spacing. For the latter two types of obstacles, an important distinction is the bypass mechanism,
i.e., the dislocation can eventually cut through the pseudo-voids and crystalline precipitates rather than bowing
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Fig. 19. Snapshots of selected configurations for an edge dislocation bypassing two amorphous Cu0.5Nb0.5 precipitates in a Nb matrix. The
precipitate spacing L = 54hz . The applied stress is constant and is slightly higher than the critical stress, 0.03595µNb. All snapshots are
colored in the same way as Fig. 11.

Fig. 20. In a Nb matrix, critical dislocation bypass stress as a function of the obstacle spacing L in the cases of pseudo-voids, Cu0.5Nb0.5
amorphous precipitates, Cu0.3Nb0.7 amorphous precipitates, and BCC Cu0.1Nb0.9 crystalline precipitates with the median GSFE curve.

entirely around them. Consequently, among all obstacles studied, the amorphous precipitates present the highest
resistance to bypass. Fig. 18 shows for comparison σc for FCC Cu0.9Nb0.1 precipitates with the median GSFE
surface and pseudo-voids in same matrix Cu. σc for either amorphous precipitate are still higher. When L = 6hz ,
for example, σc for the Cu0.5Nb0.5 amorphous precipitates is 7% and 59% higher than those for the Cu0.9Nb0.1

crystalline precipitates and pseudo-voids, respectively.

6.3.2. Amorphous precipitates in a Nb matrix
Finally, we examine the interaction of an edge dislocation in Nb with amorphous precipitates. For the example

shown in Fig. 19, the applied stress is slightly above the threshold σc needed for this dislocation to bypass two
precipitates. As when this same precipitate lies in a Cu matrix, the dislocation bypasses these amorphous Cu0.5Nb0.5

precipitates following the Orowan mechanism, in which it bows between neighboring precipitates, leaving a shear
loop around each one.

Fig. 20 presents the variation in σc with L for two compositions of amorphous precipitates in Nb: Cu0.5Nb0.5

and Cu0.3Nb0.7. Compared with the Cu matrix, the effects of modulus differences on σc among the unshearable
amorphous precipitates in the Nb matrix are more noticeable. Between the two types of amorphous precipitates,
Cu Nb requires a higher σ for dislocation bypass than those made of Cu Nb . Note that Cu Nb precipitate
0.5 0.5 c 0.3 0.7 0.5 0.5
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has a much lower shear modulus than Cu0.3Nb0.7 (30 GPa vs. 37 GPa) and hence a much greater shear modulus
mismatch with respect to Nb (40 GPa). As seen before in the Cu matrix, the precipitate having a higher modulus
mismatch with the matrix is a better strengthener. A similar trend was reported in recent DDD simulations [73].

As a result of the shear loop formation around the precipitates, the amorphous precipitates are much stronger
barriers to dislocation glide than crystalline precipitates. For the same range of L , Fig. 20 includes also σc for the
crystalline Cu0.1Nb0.9 precipitates and pseudo-voids of the same size in the same Nb matrix. When L = 6hz , for
instance, σc for the Cu0.5Nb0.5 amorphous precipitates is 4% and 16% higher than those for the Cu0.1Nb0.9 crystalline
precipitates with the median GSFE curve and pseudo-voids, respectively.

7. Conclusions

In this work, we develop a PFDD model that takes into account elastic heterogeneity, elastic anisotropy, and
dissociated dislocations. Dislocations are able to glide in each phase as well as transmit across coherent boundaries
between two crystalline phases. The model is applied to study the in-plane interactions between a gliding edge
dislocation and an array of obstacles with different spacings in either an FCC Cu or a BCC Nb matrix. For the
obstacles, we consider both voids and crystalline or amorphous precipitates. The precipitates are binary alloys,
varying in composition, Cu1−x Nbx , where x varies from 0.1 to 0.9. We quantify the effects of obstacle spacing and
composition on the critical stresses for the dislocation bypass. The main findings of this study are as follows:

• Using atomistic simulations, we identify the stable phase of the random binary Cu1−x Nbx as x increases,
finding that it ranges from FCC to amorphous and to BCC. We calculate the elastic moduli for all structures,
and specifically for the crystalline structures, their lattice parameters and GSFEs.

• All atomistic simulations have shown that the voids are shearable by dislocations. Yet in prior PF dislocation
models, the voids were unshearable. We develop a model for shearable pseudo-voids in our PFDD framework.
We show that, for the same void spacing and in the same matrix material, the critical stress for a dislocation
bypassing pseudo-voids is lower than that for unshearable voids.

• Compared with pseudo-voids, shearable crystalline precipitates are stronger barriers to dislocation glide. In
the same matrix material and for the same precipitate spacing, crystalline precipitates with higher GSFEs are
stronger obstacles.

• Compared with the crystalline precipitates, the amorphous precipitates are unshearable and are bypassed by a
dislocation following the Orowan mechanism, leaving behind a shear loop around the precipitates.

• As a result, among all obstacles studied in this work, amorphous precipitates are the strongest barriers to
dislocation motion. Our simulation shows that unshearable precipitates with a larger elastic mismatch with
respect to the matrix impede dislocation glide more than those with a smaller elastic mismatch. To best
strengthen a material, amorphous precipitates with a larger elastic mismatch with respect to the matrix should
be introduced.
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Appendix A. Derivation of Eq. (16)

Substituting Eqs. (11) and (15) into Eq. (7) yields

ψela(x) =
1
2

Ci jkl(x)[ϵi j (x) − ϵ
p
i j (x)][ϵkl(x) − ϵ

p
kl(x)]

=
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=
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i j (x)][ϵkl(x) − ϵ0

kl(x) + ϵv
kl(x)]

+
1
2
∆Ci jkl(x)[ϵi j (x) − ϵ0

i j (x) + ϵv
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There are four terms. The first term is ψeq
ela(x), according to Eq. (17).

Then, taking advantage of Eq. (13) and the identity Cmni j C−1
i jkl = δmkδnl , we re-write the second term as
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hich is ψex
ela(x), according to Eq. (18). Substituting Eq. (13) into the third term and considering the symmetry of

he elastic tensor yield
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which then cancels out the fourth term.
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a

c

Fig. B.1. Disregistry fields of an edge dislocation (a) along and (b) normal to the perfect dislocation Burgers vector direction in Cu and Nb.
(c) Density of the disregistry field ξ1 in (a). (d) Snapshots of the equilibrium, stress-free structure of the edge dislocation in Cu (dissociated)
nd in Nb (undissociated). The in plane numerical grid is also shown. Both snapshots are colored in the same way as Fig. 11.

Therefore,

ψela(x) = ψ
eq
ela(x) + ψex

ela(x) (A.4)

which is Eq. (16).

Appendix B. Static dislocations and Peierls stresses

For reference, we present the structure of the edge dislocation under stress-free conditions in Cu and Nb.
Fig. B.1(a,b) shows the profiles of the disregistry ξ1 and ξ2 (Eq. (38)), which are along (ξ1) and normal (ξ2) to
the perfect dislocation Burgers direction, respectively. Using contours, Fig. B.1(d) shows the disregistry fields for
these dislocations, where blue and red correspond to ξ1 = 0 (no slip) and b (slipped), respectively. Light gray
orresponds to values of ξ1 that lie in-between 0 and b and indicates the dislocation. For Cu, the edge dislocation

has dissociated into two Shockley partials with a stacking fault inbetween. Fig. B.1(c) presents the disregistry density
field ∂xξ1, which has two peaks in Cu, each corresponding to a Shockley partial core. The distance between the two
peaks is the intrinsic stacking fault width, which is 2.31 nm. For Nb, the dislocation is compact and ∂xξ1 shows a
single peak.

Next, as another important reference value, we calculate the Peierls stress σP of an edge dislocation in either Cu
or Nb. In an obstacle-free glide plane, the applied stress is incremented in 10−4µ until the dislocation dipole starts to
move. We find that σP = 0.00255µCu and 0.03355µNb in Cu and Nb, respectively. Substituting for µCu = 54.58 GPa

and µNb = 39.64 GPa (Table 2), σP = 139.18 MPa in Cu and 1329.92 MPa in Nb. Atomistic simulations for Cu
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reported σP = 3 MPa [56], 2.5 MPa [74], 1.4 MPa [75], and 1.3 MPa [76] for the edge dislocation on the {111}

plane, where variations can arise due to differences in simulation cell design and interatomic potentials. Similarly,
the Peierls stress of an edge dislocation on the {110} plane in Nb has been determined to be σP = 118 MPa [56],
29 MPa [77], 23 MPa [63], and 6 MPa [78], in atomistic simulations. Note the Peierls stress is sensitive to the
details of the atomic core and the PFDD model could be augmented to yield more accurate Peierls stresses [79].
In this work, we use our calculated values of σP solely as a reference to gauge the resistances of various obstacles
to dislocation glide.
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