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Abstract
Mixed-type dislocations are prevalent in metals and play an important role in
their plastic deformation. Key characteristics of mixed-type dislocations can-
not simply be extrapolated from those of dislocations with pure edge or pure
screw characters. However, mixed-type dislocations traditionally received
disproportionately less attention in the modeling and simulation community.
In this work, we explore core structures of mixed-type dislocations in Al using
three continuum approaches, namely, the phase-field dislocation dynamics
(PFDD) method, the atomistic phase-field microelasticity (APFM) method,
and the concurrent atomistic-continuum (CAC) method. Results are bench-
marked against molecular statics. We advance the PFDD and APFM methods
in several aspects such that they can better describe the dislocation core
structure. In particular, in these two approaches, the gradient energy coeffi-
cients for mixed-type dislocations are determined based on those for pure-type
ones using a trigonometric interpolation scheme, which is shown to provide
better prediction than a linear interpolation scheme. The dependence of the in-
slip-plane spatial numerical resolution in PFDD and CAC is also quantified.
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1. Introduction

Dislocations are the main carriers of plastic deformation in metals and are responsible for
their characteristic malleability [1]. From a continuum viewpoint, the geometry of a dis-
location can be described by two independent variables, line direction l and Burgers vector b,
the latter of which describes the magnitude and direction of the net lattice displacement. The
angle θ between l and b is termed the character angle of a dislocation and ranges from 0° ( l b)
for a screw dislocation to 90° ( ^l b) for an edge dislocation. Because of their simple and
representative geometric configurations, most modeling studies in dislocations have been
devoted to those of pure edge/screw type [2].

While much is known about pure-type dislocations, the physics of mixed-type disloca-
tions, which possess character angles θ between 0° and 90°, remains relatively lightly
explored computationally. Mixed-type dislocations are prevalent in metals because for a
given b in the lattice, θ can have any value between the two extremes if l is infinitesimally
varied. To date descriptions of dislocation cores have been best provided by atomic-scale
simulations, which find that key characteristics of mixed-type dislocations cannot simply be
extrapolated from those of pure-type ones [3–9]. Moreover, atomistic simulations are limited
to nano/submicron length scale even with dedicated high-performance computing resources
[10]. Thus, to understand plastic deformation of bulk materials, continuum modeling of
dislocation core structures is desirable [11].

One type of continuum dislocation models is energy-based, in which dislocations are
assumed to evolve such that the free energy of the dislocated system approaches a local
minimum [12]. An example is the phase-field (PF) dislocation model, the first of which was
proposed by Khachaturyan [13] and Wang et al [14] based on gradient thermodynamics of
phase transformations, and was termed phase-field microelasticity (PFM). Since then, the
PFM method was advanced extensively. For dislocations in face-centered cubic (FCC)
crystals, for example, Shen and Wang [15] reformulated the gradient energy density to allow
for correct core–core interactions among perfect dislocations on the same slip plane. The
author of [16] related the crystalline energy to the generalized stacking fault energy (GSFE).
Mianroodi and Svendsen [17] furthered the gradient energy coefficients with the Shockley
partial dislocation cores obtained in atomistic simulations. In 2014, Shen et al [18] proposed
the microscopic phase-field model in which all order parameter evolution is confined to the
slip planes and the gradient energy is removed from the system energy. More recently, Zheng
et al [19] modified the crystalline energy to fully account for the reactions between dis-
locations gliding in intersecting slip planes, while also neglecting the gradient energy.

Besides PFM, another branch of the PF dislocation model is based on the phase-field
theory of dislocation dynamics proposed by Koslowski et al [20], in which the gradient
energy was not included in the system energy. For the model to be analytically tractable,
Koslowski et al [20] did not use numerical grids in solving the energy functional. Later,
Koslowski and Ortiz [21] extended their earlier work [20] to a multi-phase field model, in
which numerical grids were employed. In 2011, the same model was extended to 3D and
termed as phase-field dislocation dynamics (PFDD) [22–25]. Since then, PFDD has been
employed to study a series of dislocation-mediated problems in multiple crystalline materials.
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We refer the reader to the review article of Beyerlein and Hunter [26] for further background
information on PFDD. Mianroodi et al [27] showed that the previous PFDD variant was a
model of generalized Peierls–Nabarro (GPN) type. More specifically, it was mathematically
different from, but physically the same as, for example the GPN model of Xiang et al [28]. In
the current work, the PFDD energy model is extended by inclusion of the gradient energy
analogous to that in PFM. The resulting ‘gradient’ PFDD model is mathematically different
from but physically the same as PFM, and so APFM. In what follows, unless stated otherwise,
the newly extended PFDD model will be referred to as ‘PFDD’ for brevity. A distinction will
be made when the new model is compared with the previous one.

In this work, we explore core structures of mixed-type dislocations in FCC Al using three
continuum dislocation models, including PFDD, APFM, and the concurrent atomistic-
continuum (CAC) method [29, 30]. Among all PF dislocation models, PFDD and APFM are
chosen because they are atomistically-informed, and we will validate them in this paper by
benchmarking their results against molecular statics (MS). Note that straight mixed-type
dislocations have been studied by CAC in Al and Cu [30], but not by PFDD or APFM.
Nevertheless, there is no theoretical challenge in applying the two PF-based methods to
straight mixed-type dislocations since they have been employed to simulate curved dis-
locations [31, 32] and dislocation loops [17, 24]. In particular, we have advanced both PFDD
and APFM in several aspects, enabling better representation of mixed-type dislocations
compared with previous work.

Before reviewing the formulations in each method, we present the notation we will use.
3D Euclidean vectors are represented by lower-case boldfaced, italicized characters ¼a b, , .
Cartesian basis vectors are represented by i i i, ,x y z. Second-rank tensors are represented by
upper-case boldfaced, italicized characters ¼A B, , , with I being the second-rank identity
matrix. ·  =  A Bij ij is the scalar product of two tensors of arbitrary order. Fourth-rank
Euclidean tensors A B¼, , are denoted by upper-case slanted sans-serif characters.
( ) ( · )Ä =a b c b c a defines the dyadic product Äa b of a and b, · ·=A b c b AcT defines
the transpose AT of A, and A A· ·=B C B CT defines the transpose AT of A. Additional
notations will be introduced as needed in what follows.

2. Methodology

In this section, we provide theoretical background on the PF-based dislocation model and the
CAC method. Hereinafter b and bp, respectively, denote the magnitude of the Burgers vector
of a full dislocation ( )⟨ ⟩=b a 2 1100 and a Shockley partial dislocation ( )⟨ ⟩=b a 6 112p 0 ,
where a0 is the lattice parameter.

2.1. Phase-field-based dislocation model

Let u represent the displacement field, = H u the distortion field, ( )= +E H H 2T the
strain field, CE the elastic stiffness tensor, and ggsf the GSFE per unit area. In a PF-based
dislocation model, an order parameter fα represents the state of slip for the αth slip system,
with fα=0 and 1 corresponding to the unslipped and slipped states, respectively. In an FCC
lattice, a full dislocation within a {111} plane is usually dissociated into two Shockley partial
dislocations bounding an intrinsic stacking fault (ISF). Thus, a dislocation in the αth slip
system in Al spans the region for which 0<fα<1.

For single-element FCC materials, the total free energy density ψ is the sum of the elastic
energy density ψela, the GSFE density ψgsf, and the gradient energy density ψgra [13, 14], i.e.,
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where n is the total number of order parameters, ( )= +E H H 2R R R
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lgsf is the interplanar spacing between two adjacent slip planes based on which γgsf is
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where as is the slip direction, an is the slip plane unit normal, =a a ab sb is the slip vector, and
dα is the interplanar spacing between two adjacent slip planes, of the αth order parameter. In
the current work of a single slip plane in FCC crystals, = = = =a bd d l d a 3gsf 111 0 ,
where d111 is the interplanar distance between two {111} planes. ψgsf represents the density of
energy stored in stacking faults (e.g. ISF) and partial dislocation (e.g. Shockley partial) cores,
while ψgra the density of energy stored in the latter only.

It follows that the time-dependent Ginzburg–Landau (TDGL) equation is employed to
recursively minimize the system free energy with respect to each fa, i.e.,

˙ [ · ( )] ( )f y y y=  ¶ - ¶ +a f f a a
m , 70 gra ela gsf

where the superposed dot denotes the time derivative and the Ginzburg–Landau coefficient
m0 is non-negative and assumed constant here. Once all fα are determined, the disregistry
field ζβ along the β direction is calculated by

· ( )åz f=b
a

a a b
=

b s , 8
n

1

sp

where nsp is the total number of order parameters on the slip plane within which the αth order
parameter and β direction lie. In this paper, β=1 and β=2 represent the directions along
and normal to the full dislocation Burgers vector, respectively.

As discussed in our previous work [27, 33], different modeling choices are made in
PFDD and APFM. In what follows, subscripts or superscripts P and A are used to denote
quantities in PFDD and APFM, respectively. In PFDD, the slip vector =ab bP is along a
⟨ ⟩110 direction, and three order parameters are used for each slip plane in an FCC lattice.
Thus, in PFDD, for a single slip plane, nP=3 and there are nine gradient energy coefficients
habP in equation (4). In APFM, the slip vectors =b b1

A and ( )⟨ ⟩=b a 2 1122
A

0 are
perpendicular to each other, i.e. = =N N 012 21 in equation (4). Thus, in APFM, for a single
slip plane, nA= 2 and there are two non-trivial coefficients, hA

11 and hA
22.

We remark that the form of the gradient energy density ψgra, including the determination
of the coefficients habg0 , is the focus of on-going research and model development. As noted in
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section 1, Shen and Wang [15] proposed equation (4), where habg0 were arbitrary material
parameters not associated with the dislocation type. In APFM [17], which is an ‘atomistic’
form of PFM, habg0 are related to the Shockley partial dislocation core size, among other
atomistic-based parameters. This extension was physically motivated because the character
angles of the Shockley partials depend on the character angle of the parent full dislocation.
For example, an edge and a screw dislocation, respectively, dissociate into two 60° and 30°
Shockley partials. In addition, a recent analytical work [34] revealed that the vectorial slip of a
partial dislocation may deviate from that of an ideal Shockley partial, ( )⟨ ⟩a 6 1120 . This
deviation is more pronounced in a screw dislocation than in an edge dislocation. Since the
partial dislocations, to which habg0 are related, may have different atomistic structures as the

full dislocation character angle changes, it is desirable to extend habg0 such that their values
depend on the dislocation type. Therefore, for dissociated dislocations in FCC metals in
APFM, Mianroodi and Svendsen [17] fit habg0 to the MS-based Shockley partial dislocation

core structure. Similarly, in one GPN model, habg0 were fit to the MS-based disregistry
fields [35].

However, in all those works, for the sake of simplicity, a uniform habg0 was adopted for all

order parameters. In this work, we consider hA
11 and hA

22 as independently adjustable para-
meters. Their characterization will be discussed in section 3.1.

As noted in section 1, all prior PFDD models did not include the gradient energy density
in the total energy density. Recently it was shown that introducing atomistically-informed
ψgra into PF-based models, such as APFM, provided descriptions of dislocation cores of pure
edge and screw characters closer to those calculated with MS [27, 33]. Therefore, ψgra is
added to the PFDD energy formulation here. As a result, PFDD and APFM, despite
employing different slip vectors, are physically equivalent and should yield identical results,
as long as all parameters used in the two models are equivalent.

2.2. CAC method

The theoretical foundation of the CAC method is the atomistic field theory (AFT) [36]. In
AFT, a crystal is viewed as a continuous collection of lattice points. Embedded within each
point is a unit cell containing a group of discrete atoms [37, 38]. In terms of Eulerian
coordinates, for monatomic crystals, like Al, in the absence of external force, AFT has the
following balance equations [39, 40], i.e.,

· ( )r
r= -  v

t

d

d
9x

· ( )r = 
v

T
t

d

d
10x

· · ( )r =  + q T v
e

t

d

d
, 11x x

where x is the physical space coordinate of the continuously distributed lattice; r rv v, , , and ρ
e are the density of mass, velocity, linear momentum, and total energy, respectively; T and q
are the stress tensor and heat flux vector, respectively.

As a realization of AFT, a CAC model usually consists of two domains: an atomistic
domain and a coarse-grained domain, with the interatomic potential being the only con-
stitutive rule [41]. In the atomistic domain, the atoms are updated in the same way as in
atomistic simulations; in the coarse-grained domain, finite elements that require neither
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displacement continuity nor strain compatibility are employed [42]. Hence, discontinuities
such as dislocations and ISFs can be accommodated between two layers of elements [43, 44].
For an FCC lattice, all surfaces of the finite elements lie on {111} planes [45]. The CAC
method equipped with these finite elements has been employed to explore problems in which
full atomistic resolution is required in some regions (e.g. lattice defects), with coarse-graining
employed elsewhere to support representation of dislocation interactions and transport
[46, 47]. In this paper, we focus on the modeling of dislocations between finite elements in
the coarse-grained domain.

3. Simulation set-up

To maximize comparability, the same embedded-atom method (EAM) potential [48] is used,
for the interatomic interactions in MS and CAC simulations, and for material parameters
needed in the PF free energy model, including lattice parameter a0, elastic constants C11, C12,
C44, gradient energy coefficients habg0 , and GSFE per unit area γgsf.

A dislocation dipole consisting of two dislocations of the same type but with opposite
Burgers vector is built into a 3D periodic simulation cell, as illustrated in figure 1. Seven
character angles will be considered, including 0° (screw), 15°, 30°, 45°, 60°, 75°, and 90°
(edge). Let Lx, Ly, and Lz be the edge length of the cell along the x, y, and z directions,
respectively. The two dislocation lines lie on the mid-z plane and are separated by Lx/2 along
the x direction. In all simulations, the total energy of the dislocated system is minimized,
during which each dislocation extends on the mid-z plane by dissociating into two Shockley
partials. The center of each partial is determined by projecting the disregistry field onto the
partial dislocation direction [33]. The ISF width d is defined as the distance between the
centers of two Shockley partial dislocations.

3.1. PFDD and APFM simulations

PF simulations are carried out using a 3D structured grid. In PFDD, 128 grid points are used
in each direction; in APFM, the numbers of grid points along the x, y, and z directions are
294, 7, and 180, respectively. Let hx, hy, and hz be the grid spacing along the x, y, and z
directions, respectively. Along the same direction, the grid spacing is a constant. Following a
prior APFM work [17], hz=d111. Unless stated otherwise, hx= hy= d111. Note that, since
the grid spacing is comparable to the atomic spacing, there is no computational gain with
respect to MS. Conceptually, PF-based models have much longer (i.e. diffusive) timescale
resolution in comparison to molecular dynamics, but this is not relevant in this work.

Figure 1. Simulation box set-up for dissociation of a mixed-type dislocation dipole.
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Material parameters a C C, ,0 11 12, and C44 enter the free energy model, as summarized in
table 1. In prior PFDD modeling, the material was assumed elastic isotropic. Here, to be
consistent with APFM, the full anisotropic stiffness tensor CE is used.

Because the gradient energy density represents the energy of the partial dislocation cores,
the gradient energy coefficients, habg0 , depend on the material and dislocation type, as dis-
cussed earlier. Thus, these coefficients need to be characterized for a specific dislocation type
in a specific material. In this work, the two independent coefficients in APFM, hA

11 and hA
22, are

determined by

[ ] { ( ) } ( )z zh h h h= -, argmin , . 12A
11

A
22

A
11

A
22

MS

Specifically, a series of APFM simulations are performed with a preassigned set of
[ ]h h,A

11
A
22 . For each simulation, the disregistry field ( )z h h,A

11
A
22 is obtained and compared to

that from MS, zMS. The values of [ ]h h,A
11

A
22 providing the best agreement for edge and screw

dislocations are summarized in table 2. Then, values of the nine coefficients in PFDD are
determined following equations (A.20)–(A.22) in the appendix. In this work, we will quantify
the effects of ψgra on mixed-type dislocations by repeating the same PFDD simulations
without ψgra, which will be designated by ‘PFDDng’.

In all PF simulations, the elastic energy density ψela is calculated by the fast Fourier
transform method with the help of Green’s functions. Initially, an undissociated perfect
dislocation dipole with a given character angle θ is inserted by assigning, f = 11

P and

f f= = 02
P

3
P in PFDD and f = 11

A and f = 02
A in APFM, to selected grid points. The

dislocation lines remain along the y axis but the slip vectors ab change directions based on θ.
During recursively running the TDGL equation (equation (7)), each dislocation becomes
extended. Iterations are terminated when the Euclidean norm of the difference in global vector
of each order parameter between successive iterations is smaller than 10−4. The Ginzburg–
Landau coefficient m0 is assumed to be unity and all slips are confined to the pre-defined slip
plane [18].

To solve the TDGL equation, the explicit Euler method is used. In this case, we consider
the maximum allowable timestep size Dt that stabilizes the iteration [49]. We find that the
maximum allowable Dt decreases with (i) a smaller grid spacing, (ii) the inclusion of ψgra,
and (iii) larger gradient energy coefficients habg0 . Based on a series of parametric studies, we
choose Δt=0.02 in all PF simulations in this paper.

Table 1. Lattice parameter a0 (in Å) and elastic constants C11, C12, C44 (in GPa)
determined based on the Al EAM potential [48].

a0 C11 C12 C44

4.05 113.80 61.55 31.60

Table 2. The two gradient energy coefficients in APFM for an extended edge or screw
dislocation configuration. The units are md111

2 , where ( )m = + -C C C3 544 11 12 .

hA
11 hA

22

Screw 0.266 7 0.4
Edge 1.066 7 0.4
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3.2. MS and CAC simulations

MS and CAC simulations are carried out by LAMMPS [50] and PyCAC [51, 52], respec-
tively. The simulation cell sizes and the corresponding number of atoms are summarized in
table 3. In CAC, the coarse-grained domain adopts uniformly sized 3D rhombohedral finite
elements. Following PF models, the edge length of a finite element is denoted by hx, which
equals hy in CAC. In this paper, = = =h h b a4 2 2x y 0, unless stated otherwise. As a result,
each finite element contains 125 atoms and 125 integration points. There is no computational
gain with respect to MS.

The interplanar distance between two adjacent finite elements is kept as d111 because the
finite element boundaries must correspond to actual lattice sites. The Galerkin method is used
to convert the balance equations to a set of integration equations, wherein the integration steps
are approximated by Gaussian quadrature [53].

In each simulation, an undissociated perfect dislocation dipole is first created by applying
the corresponding isotropic elastic displacement field to all atoms/nodes. Then conjugate
gradient relaxation is carried out and terminated when one of the following two criteria is
satisfied: (i) the change in energy between successive iterations divided by the most recent
energy magnitude is less than or equal to 10−15 and (ii) the length of the global force vector
for all atoms/nodes is less than or equal to 10−15 eVÅ−1.

4. Results and discussions

Figures 2 and 3 present the calculated disregistry profiles of all seven dislocations based on
PFDDng. As shown, the profiles for the mixed-type dislocations lay between those of the
pure-type dislocations. Also, for the same character angle θ, PFDDng predicts a more compact
dislocation core than MS. This discrepancy would imply a need to include the gradient energy
density ψgra in the system free energy. Doing so gives rise to the question: how should the
coefficients habg0 be determined for a given θ? On the one hand, table 2 shows that habg0 is

different for an edge and a screw dislocation. On the other hand, it is difficult to fit habg0 to all
MS-based mixed-type dislocations which can have any θ between 0° and 90°.

Toward a solution, we first note that for a dislocation with a given θ, the associated ISF
width d can be approximated to first order by isotropic linear elasticity [1], i.e.,

( )
[ ( )] ( )

m

p n g
n n q=

-
- -d

b

8 1
2 2 cos 2 , 13

p
2

isf

where γisf is the ISF energy, and μ and ν are the isotropic shear modulus and Poisson’s ratio,
respectively. For equation (13), even with Al EAM potential-informed parameters
γisf=146 mJ m−2, μ=28 GPa, and ν=0.3, we can expect some deviation from the MS
results to arise since core field contributions are neglected [54–56]. Further, equation (13)

Table 3. Edge lengths Lx, Ly, and Lz of the MS and CAC simulation cell (in Å) and the
corresponding number of atoms Natom, for different dislocation character angle θ.

θ Lx Ly Lz Natom

0°/60° 515.86 74.46 364.77 843,648
30°/90° 630.03 34.72 420.89 554,400
15°/45°/75° 575.16 143.79 350.74 1,746,600
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suggests that the edge and screw dislocations are two extremes on the spectrum of not only θ

but also d. On this basis, we propose that their corresponding gradient energy coefficients habg0

also lie at extreme ends. Accordingly, two interpolation schemes to determine habg0 for mixed-
type dislocations are put forth here and compared: a linear interpolation and a trigonometric
interpolation, i.e.,

( ) ( ) ( )h q h q h h p= + -ab ab ab ab2 14lin S E S

( ) [ ( ) ( )] ( )h q h h h h q= + - -ab ab ab ab ab1

2
cos 2 , 15tri E S E S

where ‘E’ and ‘S’ denote the edge and screw dislocation, respectively.

Figure 2. Disregistry fields of pure- and mixed-type dislocations with different
character angles along the perfect dislocation Burgers vector direction. Results are
based on PFDDng, where the gradient energy density ψgra is not included in the system
free energy. MS results of some dislocations are also shown for comparison.
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In our earlier work in Al and Au [33], we found that adding ψgra to the system free
energy causes the dislocations to become more dissociated (i.e. a larger ISF width d) and the
disregistry profiles achieve better agreement with the MS results. The present work shows that
it is also the case for mixed-type dislocations (figures 4 and 5). This outcome is a result of the
fact that it is more energetically favorable for the dislocation to increase d, thereby reducing
the interaction energy between the partial dislocations at the expense of increasing the fault
area. In addition, results based on the gradient energy-equipped PFDD and APFM are
identical, provided that equivalent parameters are used. Moreover, figure 6 shows that,
compared with the linear interpolation (equation (14)), results based on the trigonometric
interpolation (equation (15)) better agree with MS. This is somewhat expected, because the

Figure 3. Disregistry fields of pure- and mixed-type dislocations with different
character angles normal to the perfect dislocation Burgers vector direction. Results are
based on PFDDng, where the gradient energy density ψgra is not included in the system
free energy. MS results of some dislocations are also shown for comparison.
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character angle of a Shockley partial dislocation changes trigonometrically as the character
angle of the full dislocation varies. Thus, only PFDD results are discussed further in what
follows and the trigonometric interpolation scheme is used in the remainder of this paper.

In addition to the disregistry fields, we also compare the stress fields predicted by different
models. Consider the 30° and 45° mixed-type dislocations as an example. Figure 7 shows that,
introducing gradient energy to total energy in PFDD improves the agreement in the stress fields
with those of MS. Note that, however, the virial stresses obtained in CAC and MS may have
different physical meaning than those in continuum-based (e.g. PF) models [57, 58]. Work is

Figure 4. Disregistry fields of pure- and mixed-type dislocations with different
character angles along the perfect dislocation Burgers vector direction. Results are
based on PFDD, where the gradient energy density ψgra is included in the system free
energy and the coefficients habg0 for mixed-type dislocations are interpolated from those

of edge and screw ones by equation (15). MS results of some dislocations are also
shown for comparison.
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underway to develop an atomic stress formulation that is directly comparable to the continuum
stress.

In foregoing PFDD simulations, the number of grid points along each direction,
Ngp=128. To show that the cell size is sufficiently large, we vary Ngp from 80 to 160, and
calculated the ISF widths for all seven dislocations. Figure 8 presents the difference in the ISF
width between the smaller Ngp with Ngp=160. It is found that, for the same dislocation, the
difference reduces to less than 0.01b when Ngp=128, suggesting that the maximum relative
error is about 1%.

Figure 5. Disregistry fields of pure- and mixed-type dislocations with different
character angles normal to the perfect dislocation Burgers vector direction. Results are
based on PFDD, where the gradient energy density ψgra is included in the system free
energy and the coefficients habg0 for mixed-type dislocations are interpolated from those

of edge and screw ones by equation (15). MS results of some dislocations are also
shown for comparison.
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In the foregoing simulations, hx=hy=hz=d111 in PFDD, and hx=hy=4b and
hz=d111 in CAC. From a numerical perspective, it is important to understand the effects of
space resolution on simulation results. Here, we examine the influences of the in-plane grid
spacing. First, we find that in PFDD, varying the grid spacing along the dislocation line
direction, hy, results in unchanged disregistry fields, suggesting that the effects of the in-slip-
plane grid spacing are dominated by hx. It follows that, we keep hz=d111 and vary hx and hy
simultaneously in both PFDD and CAC. Figure 9 shows that, larger hx and hy result in a larger
d in CAC but a smaller d in PFDD. In PFDD, the dependence of hx axis stronger for screw-
like dislocations than edge-like dislocations. When hx>4b, PFDD-predicted values for d are
nearly zero. As hx in the simulation decreases to the MS-based ISF width, dMS, approximately
between b and 2b, the PFDD-predicted d quickly approaches dMS. This is expected because
(i) the dislocation core can be resolved only when hx�dMS and (ii) the gradient energy
coefficients calibrated against MS are suitable only for simulations at atomic or subatomic
resolution. As hx decreases further yields, the results slowly converge.

5. Conclusions

In this paper, three continuum dislocation models—PFDD, APFM, and CAC—are employed
to simulate static pure- and mixed-type dislocation core structures in FCC Al. Seven dis-
locations, with the character angle ranging from 0°, 15°, 30°, 45°, 60°, 75°, to 90°, are
considered. In PFDD, the gradient energy density is added to the system free energy for the
first time. In both PFDD and APFM, the gradient energy coefficients are extended, from a
uniform parameter to independently adjustable ones, to achieve a better description of the
dislocation core structure. A trigonometric interpolation scheme is proposed to obtain the

Figure 6. ISF widths, d, predicted by PFDD, APFM, CAC, and MS simulations, for
seven dislocations with different character angle θ. Isotropic linear elasticity prediction
in equation (13) is also shown. PFDDng refers to the PFDD variant without the gradient
energy in the system free energy; PFDD† and PFDD, respectively, refer to the gradient
energy-equipped PFDD variants with the linear (equation (14)) and trigonometric
(equation (15)) interpolation schemes for the coefficients habg0 for mixed-type

dislocations. Results based on APFM are identical to those of PFDD.
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gradient energy coefficients for mixed-type dislocations from those for pure-type ones. The
effects of the in-slip-plane space numerical resolution on predicted disregistry profiles are
analyzed. Our results suggest that, in the case of a straight dislocation, for PFDD and APFM
results to be comparable with MS, subatomic or atomic resolution should be applied within
the plane that is normal to the dislocation line. The general agreement between MS and
PFDD/APFM/CAC simulations for straight dislocations lays a solid foundation for applying
the latter set of methods to more complex and practical problems, such as curved dislocations

Figure 7. The yz component of the stress tensor of the (a) 30° and (b) 45° mixed-type
dislocations. PFDDng refers to the PFDD variant without the gradient energy in the
system free energy. PFDD and PFDDng results are based on the trigonometric
interpolation scheme (equation (15)) for the gradient energy coefficients habg0 for mixed-

type dislocations.
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and dislocation loops. Future work also includes extending PFDD to body-centered cubic
(BCC) lattice. With this in mind, further comparison between PFDD and a recent extension of
CAC to dislocation modeling in a BCC lattice [59] is expected.

Figure 8. Ngp is the number of grid points along each direction in PFDD simulation
cells. d̄ is the difference in the ISF width predicted in cells with different Ngp with
respect to that in with Ngp=160, for seven dislocations with different character angle
θ. Results are based on the trigonometric interpolation scheme (equation (15)) for the
coefficients habg0 for mixed-type dislocations.

Figure 9. ISF widths, d, predicted by PFDD and CAC simulations with different in-
plane grid spacings or finite element sizes, for seven dislocations with different
character angle θ. Unless stated otherwise, hx=hy=hz=d111 in PFDD and
hx=hy=4b in CAC.MS results are also shown for comparison. PFDD results are
based on the trigonometric interpolation scheme (equation (15)) for the gradient energy
coefficients habg0 for mixed-type dislocations.
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Appendix

In the current work of a single slip plane, dα=dβ=d0, substituting equation (6) into
equation (4) yields

( ) · · ( )åfy h f f =  
a b

ab
a b a b

=
b b N

d

1
, A.1

n

gra
0
2

, 1
g0 0

where [( · ) ]= - Äa b b aN n n I n n0 is the same for all sets of ab because =a bn n . Below,
subscripts or superscripts A and P denote quantities in APFM and PFDD, respectively. Our
earlier work [33] showed that
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It follows that
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In APFM, · =b b 0a b
A A when ¹a b, hence there are two independent coefficients hA

11

and hA
22, and equation (A.1) becomes
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Substituting equations (A.2), (A.3), (A.6), and (A.7) into equation (A.8) yields
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On the other hand, equation (A.8) equals its equivalent in PFDD, i.e.,
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In other words, each of the nine terms in equation (A.9) that contains ( · )f f a bNP
0

P

should equal its counterpart in equation (A.10). In specific, in equation (A.9),

• when α=1, β=1, the relevant term is
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• when α=1, β=2, the relevant term is
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• when α=1, β=3, the relevant term is
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• when α=3, β=1, the relevant term is
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Note that the current gradient energy model does not take into account the material
symmetry, and so h h,P

11
P
22, and hP

33 may differ.
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