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A B S T R A C T

In this study, we present a phase-field dislocation dynamics (PFDD) method that includes full anisotropic
elasticity. We apply it to calculate the equilibrium core structures of dislocations with arbitrary character angle
in eight face-centered cubic transition metals. The calculations investigate the effects of the gradient energy
density in the total energy density and the choice of the averaging scheme to determine the isotropic equivalent
elastic moduli (i.e., Voigt, Reuss, and Hill). We show that the addition of the gradient energy term increases the
intrinsic stacking fault (ISF) widths for the edge and screw dislocations in most of the metals studied here, but
decreases the ISF widths for the edge dislocations in four metals: Ir, Ni, Pd, and Rh. The analysis indicates that
among the three isotropic averaging schemes, the Voigt isotropic equivalent modulus best predicts the ISF
widths of the edge dislocations and the Reuss scheme for the ISF widths of the screw dislocations, compared to
the full elastic anisotropy. Finally, a critical character angle (∼ 60∘) is revealed, at which the PFDD simulations
with full elastic anisotropy and those with the isotropic Hill average predict the same ISF width. Our work
advances the basic understanding of the elastic anisotropic effects on the equilibrium dislocation core structures
and can help guide the choice of isotropic averaged moduli.

1. Introduction

Mesoscale modeling of dislocation core structures was traditionally
realized via the generalized Peierls-Nabarro (GPN) model
(Schoeck, 1994). Similar to the GPN model, the phase-field (PF) dis-
location model builds and minimizes the total energy of a dislocated
system with respect to a displacement-related continuum field. For face-
centered cubic (FCC) crystals, the total energy in GPN models usually
consists of two energy terms: the elastic energy and the generalized
stacking fault energy (GSFE). Besides these two energy contributions,
PF dislocation models usually contain an additional gradient energy, to
account for the Shockley partial dislocation cores which naturally form
as a result of the unique GSFE landscape in FCC crystals (Xu et al.,
2019a). In the last two decades, the PF method was used extensively to
simulate equilibrium core structures and dynamics of dislocations.

Different variants of PF dislocation models, while based on the same
framework (Wang et al., 2001), have evolved due to optional modelling
choices. One PF-based dislocation modeling variant is the PF

dislocation dynamics (PFDD) method (Koslowski et al., 2002). To date,
PFDD has been used to study a variety of dislocation-mediated plasti-
city problems, including, but not limited to, core structures of sta-
tionary dislocations, dislocation dynamics near a void or in a metallic
alloy with spatially varying chemical composition, dislocation nuclea-
tion from ledges, as well as slip transfer of a dislocation across a bi-
metal interface (Beyerlein and Hunter, 2016). Like all other PF-based
dislocation models, the PFDD formulation allows a crystal to be treated
as an elastic anisotropic medium. However, all previous PFDD simu-
lations, except the most recent ones (Xu et al., 2019b; Su et al., 2019b),
assumed linear elastic isotropy by the Voigt average, for the sake of
convenience.

On the other hand, it is important to consider full anisotropic
elasticity in modeling dislocations (Eshelby et al., 1953; deWit and
Koehler, 1959). Both linear elasticity theory and the GPN model found
that in FCC metals, approximating an elastic anisotropic medium as an
isotropic one results in an underestimation and overestimation of the
intrinsic stacking fault (ISF) width associated with the edge and screw
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dislocations, respectively (Rasmussen et al., 1997; Szajewski et al.,
2017). This finding agrees with an analytical study on superdislocations
in L10 TiAl (Song and Chen, 2001). The same conclusion was also
reached when PFDD results in Al and Au were compared with another
PF dislocation model that incorporates full elastic anisotropy (Xu et al.,
2019a). An analytical study of fast-moving dislocations in FCC and
body-centered cubic (BCC) metals revealed that the isotropic approx-
imation predicts incorrect line tension of dislocations, especially when
the dislocation velocities approach the first shear wave speeds
(Blaschke and Szajewski, 2018). In BCC Fe, the experimentally mea-
sured equilibrium shapes of dislocation loops (Aubry et al., 2011) and
critical stresses to active Frank-Read sources (Fitzgerald et al., 2012)
were well reproduced in discrete dislocation dynamics simulations only
when the elastic anisotropy was taken into account. In B2 NiAl, the
{100}<100> screw dislocation was found to be stable by isotropic
linear elasticity, but unstable by anisotropic linear elasticity, the latter
of which agrees with experiments and atomistic simulations (Pasianot
et al., 1991; Glatzel et al., 1993). For a zinc-blend InxGa −x1 As layer on a
zinc-blend GaAs substrate, there exists a critical layer thickness beyond
which a dislocation-free configuration is unstable. Compared with the
result obtained using anisotropic elasticity, the critical thickness would
be underestimated by 25–40% using isotropic approximation, de-
pending on the value of x (Gosling and Willis, 1994). Taken together,
these studies suggest that it is critical to consider full elastic anisotropy
in PFDD. In Section 2, we will describe in detail the implementation of
full elastic anisotropy, as well as three commonly used isotropic
averages (Voigt, Reuss, and Hill), into the PFDD model.

Extending the PFDD method to full elastic anisotropy from elastic
isotropy also allows us to explore the consequences of different iso-
tropic averages. Particularly in FCC metals, equilibrium core structures
of dislocations greatly influence their mechanical properties and be-
havior in plastic deformation (Xu et al., 2015; 2016a; 2016b; 2017c; Xu
and Chen, 2019). Therefore, in this paper, we study equilibrium core
structures of dislocations with arbitrary character angle in eight FCC
transition metals, which entail a wide range of Zener anisotropy in-
dices. Previously, applying the GPN model to pure edge and screw
dislocations in several FCC metals found that the ratio in the ISF width
between anisotropic and Hill-averaged values in different metals scales
quasi-linearly with the Zener anisotropy index (Szajewski et al., 2017).
However, a systematic study of the effects of the three isotropic
averages on both pure- and mixed-type dislocations was lacking.
Without understanding how a given isotropic average affects the dis-
location core structures, it would be difficult to assess the data in the
literature that were usually based on different isotropic averages.
Moreover, Szajewski et al. (2017) made two approximations: (i) the
GSFE surface was represented by a density functional theory (DFT)-
informed truncated Fourier series function and (ii) the elasticity tensor
was assumed to be isotropic within the {111} slip plane, i.e., the elas-
ticity tensor was unchanged when the dislocation character angle
changed. For the first approximation, the truncated Fourier series
function has been found to yield inaccurate GSFE surfaces (and hence
spurious dislocation core structures) in FCC Au (Xu et al., 2019a). In
this work, the GSFE surfaces for all FCC metals are provided by recent
direct DFT calculations (Su et al., 2019a), in lieu of the Fourier series
function. For the second approximation, we investigate it in this paper
and find the effects to be small (< 3%) for FCC metals, which are
highly symmetric. However, the approximation may result in large
deviations in predicted dislocation structures in materials with a larger
number of independent elastic constants. Thus, full anisotropic elasti-
city presented in this work allows for better descriptions of dislocations
in materials with arbitrary lattice structures.

The paper is structured as follows. We begin with an introduction to
the PFDD formulation in Section 2. In Section 3, we build a PFDD si-
mulation cell for a dislocation dipole and determine the gradient energy
coefficients for all eight FCC transition metals. The effects of the gra-
dient energy density in the total energy density have been explored in

PFDD (Xu et al., 2019a; 2019b) and other PF-based methods (Shen and
Wang, 2004; Mianroodi et al., 2016; Pi et al., 2017), but only for 1 or 2
metals in each work. Here, in Section 4.1, we use PFDD to quantify the
effects of the gradient energy density in eight FCC metals, wherein
oddities are found in some dislocations which are attributed to their
unique GSFE landscapes. Then, in Section 4.2, we focus on the effects of
different isotropic averages. We find that the Voigt and Reuss averages,
respectively, provide the best predictions of the ISF width associated
with the edge and screw dislocations for all metals. For the same dis-
location in the same metal, the isotropic prediction based on the Hill
average sits between those of the Voigt and Reuss averages. In the end,
in Section 4.3, PFDD simulations with both full elastic anisotropy and
Hill-averaged isotropy are conducted to simulate mixed-type disloca-
tions with arbitrary character angle. We show that there exists a critical
character angle at which the two elasticity tensors yield the same ISF
width. To our best knowledge, this is the first PF dislocation modeling
work that systematically studies dislocations with arbitrary character
angle in multiple metals that entail a wide range of Zener anisotropy
indices.

2. PFDD formulation

2.1. A brief overview

In this section, we give a brief overview of the PFDD formulation
and restrict attention to dislocations within a single {111} slip plane in
single-element FCC metals. Three order parameters =ϕ ϕ ϕ ϕ( , , )1 2 3 are
introduced for the states of slip, respectively, along three different
< 110> directions. =ϕ 0α and 1 represent the unslipped and slipped
states, respectively.

Let u represent the displacement field, = ∇β u the distortion field,
=ϵ βsym the strain field, a0 the lattice parameter, and b the magnitude

of the Burgers vector of a perfect dislocation = < >b a( /2) 1100 . The
total energy density ψ is the sum of the elastic energy density ψela, the
GSFE density ψgsf, and the gradient energy density ψgra (Xu et al.,
2019b), i.e.,

∇ = + + ∇ϵ ϕ ϕ ϵ ϕ ϕ ϕψ ψ ψ ψ( , , ) ( , ) ( ) ( )ela gsf gra (1)

where ψgsf represents the density of energy stored in stacking faults
(e.g., ISF) and partial dislocation (e.g., Shockley partial) cores, while
ψgra the density of energy stored in the latter only. In specific,

= − −ϵ ϕ ϵ ϵ ϕ C ϵ ϵ ϕψ ( , ) [ ( )]· [ ( )]ela
1
2

p p
(2)

=ϕ
ϕ

ψ
γ

l
( )

( )
gsf

gsf

gsf (3)

∑∇ = ∇ ∇
=

ϕ Nψ η ϕ ϕ( ) ·
α β

αβ
α αβ βgra , 1

3
g0 (4)

where C is the stiffness tensor, =ϵ βsymp p is the plastic strain, γgsf is the
GSFE per unit area, lgsf is the interplanar spacing between two adjacent
slip planes based on which γgsf is calculated, and ηαβ

g0 are the gradient
energy coefficients, and

∑= ⊗
=

β ϕ s n
b ϕ
d

( )
α

α α

α
α α

p
1

3

(5)

= − ⊗N
b b

n n I n n
d d

·
[( · ) ].αβ

α β

α β
α β β α

(6)

where sα is the slip direction, nα is the slip plane unit normal, and
=b sbα α α is the slip vector, of the αth order parameter. In the current

work of a single slip plane, all slips are confined to the slip plane, and
= =d d lα β gsf .
It follows that the time-dependent Ginzburg-Landau (TDGL) equa-

tion is employed to recursively minimize the total energy with respect
to each ϕα, i.e.,
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= ∇ ∂ − ∂ +∇[ ]ϕ m ψ ψ ψ˙ · ( )α ϕ ϕ0 gra ela gsfα α (7)

where the superposed dot denotes the time derivative and the
Ginzburg-Landau coefficient m0 is non-negative and assumed constant
here. Then, to quantify the relaxed dislocation core structures, the
continuum disregistry field ζ is calculated in PFDD as an instantiation of
the discrete atomic displacements. The component of ζ along the i di-
rection is calculated by

∑=
=

b sζ ϕ ·i α α α i1

3
(8)

where the αth order parameter and i direction lie within the same slip
plane.

2.2. Elastic energy

In this section, we focus on the elastic energy because it is the only
energy contribution to the total energy that is related to the elastic
anisotropy. In PFDD, the goal is to calculate ψela at each continuum
point located at x, as a function of ϕ at that point. To better demon-
strate the numerical implementation, we rewrite Section 2 as

=x x xψ C( ) 1
2

ϵ ( )ϵ ( )ijkl ij klela
e e

(9)

and so the elastic energy of the system is

∫ ∫= =x x xψ x C xΨ ( )d 1
2

ϵ ( )ϵ ( )dijkl ij klela ela
3 e e 3

(10)

where the elastic strain

= − = − = −x x x x x x xβ uϵ ( ) ϵ ( ) ϵ ( ) sym ( ) ϵ ( ) sym ( ) ϵ ( ).kl kl kl kl kl k l kl
e p p

,
p

(11)

On the other hand, in an infinitely large medium without any sur-
face or external body force, the stress equilibrium dictates that
(Mura, 1987)

= − ★x x xu G C β( ) ( ) ( ( ))k ki ijmn mn j
p

, (12)

where ⋆ denotes the convolution and Gki is the Green’s function de-
termined by

= −ξG C ξ ξ^ ( ) [ ]ik ijkl j l
1 (13)

where ^ denotes the Fourier transform and ξ are angular frequencies in
the Fourier space.

Substituting Eq. (12) into Eq. (11) yields

=− ★ −

= − ★ −

x x x x

x x x

G C β

G C

ϵ ( ) sym ( ) ( ( )) ϵ ( )

( ) ( ϵ ( )) ϵ ( )
kl ki l ijmn mn j kl

ki l ijmn mn j kl

e
,

p
,

p

,
p

,
p (14)

because of the minor and major symmetries of C, i.e.,

= = =C C C C .ijkl jikl ijlk klij (15)

It is easier to handle the convolution in the Fourier space, suggesting
that it is better to calculate Ψela in the Fourier space. With this in mind,
we resort to the Plancherel theorem and rewrite Eq. (10) as

Ψela =
1
2

1
(2π)3

−
∫

Ci jklε̂
e
i j(ξ)ε̂

e∗
kl (ξ)d3ξ

(16)

where * denotes the complex conjugate and the principal value of the
integral is taken because ξϵ̂ ( )ij

e
and ξϵ̂ *( )kl

e
are singular at =ξ 0. Note that

(2π)3 would be replaced by unity if ξ were ordinary (i.e., not angular)
frequencies.

The elastic strain in the Fourier space for any arbitrary non-zero
frequency ξ is

= − −ξ ξ ξC G ξ ξ Cϵ̂ ( ) [ ^ ( ) ] ϵ̂ ( ).kl ijmn ki j l klij mn
e 1 p

(17)

Derivation of this equation is presented in Appendix A. It follows
that

= − −ξ ξ ξC G ξ ξ Cϵ̂ *( ) [ ^ ( ) ] ϵ̂ * ( ).kl ijmn ki j l klij mn
e 1 p

(18)

So far we have used indices i, j, k, l, m, n. Equivalently, we may use
another set of indices p, q, r, s, u, v and rewrite Eq. (17) as

= − −ξ ξ ξC G ξ ξ Cϵ̂ ( ) [ ^ ( ) ] ϵ̂ ( ).rs pquv rp q s rspq uv
e 1 p

(19)

Replacing the indices i, j with r, s in Eq. (16) and substituting in
Eqs. (18) and (19) yield

Ψela =
1
2

1
(2π)3

−
∫

Crsklε̂
e
rs(ξ)ε̂

e∗
kl (ξ)d3ξ

=
1
2

1
(2π)3

−
∫

Âmnuv(ξ)ε̂pmn(ξ)ε̂p∗uv (ξ)d3ξ

where

= −ξ ξA C C C G ξ ξ^ ( ) ^ ( ) .mnuv mnuv kluv ijmn ki j l (21)

Derivation of this equation is presented in Appendix B.

2.3. Full anisotropic elastic tensors

A key ingredient in Eq. (20) is the stiffness matrix Cijkl, which can
have up to 21 independent terms. In practice, there is another way to
write the matrix form of C, if we let 11→ 1, 22→ 2, 33→ 3, 23→ 4,
13→ 5, and 12→ 6, i.e.,

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

C

C
C C
C C C
C C C C
C C C C C
C C C C C C

C
C C
C C C
C C C C
C C C C C
C C C C C C

Symm

Symm

1111

2211 2222

3311 3322 3333

2311 2322 2333 2323

3111 3122 3133 3123 3131

1211 1222 1233 1223 1231 1212

11

21 22

31 32 33

41 42 43 44

51 52 53 54 55

61 62 63 64 65 66 (22)

In Cijkl, each index can be 1, 2, or 3, with each corresponding to a
crystallographic orientation. To ensure full elastic anisotropy, the three
orientations, represented by unit vectors e1, e2, e3, must be the ones
used by the dislocated system. In FCC metals, e.g., the three orienta-
tions are usually < 110> , < 111> , and < 112> . However, the
elastic constants obtained by calculations or experiments are usually
based on the orientations with the lowest indices, e.g.,

= = =e e e[100], [010], [001]1
†

2
†

3
† for cubic materials. Therefore, in

cubic materials, the three independent elastic constants C ,11
† C ,12

† and C44
†

provided in the literature most likely do not equal C11, C12, and C44 that
should be used in Eq. (22). Let the transformation matrix be K, then
(Ting, 1996)

=C KC K† T (23)

where

= ⎡
⎣⎢

⎤
⎦⎥

K
K K
K K

21 2

3 4 (24)

with

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

K
Ω Ω Ω
Ω Ω Ω
Ω Ω Ω

1

11
2

12
2

13
2

21
2

22
2

23
2

31
2

32
2

33
2

(25)
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=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

K
Ω Ω Ω Ω Ω Ω
Ω Ω Ω Ω Ω Ω
Ω Ω Ω Ω Ω Ω

2

12 13 13 11 11 12

22 23 23 21 21 22

32 33 33 31 31 32 (26)

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

K
Ω Ω Ω Ω Ω Ω
Ω Ω Ω Ω Ω Ω
Ω Ω Ω Ω Ω Ω

3

21 31 22 32 23 33

31 11 32 12 33 13

11 21 12 22 13 23 (27)

=
⎡

⎣

⎢
⎢

+ + +
+ + +
+ + +

⎤

⎦

⎥
⎥

K
Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω
Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω
Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

4

22 33 23 32 23 31 21 33 21 32 22 31

32 13 33 12 33 11 31 13 31 12 32 11

12 23 13 22 13 21 11 23 11 22 12 21 (28)

where

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

e e e e e e
e e e e e e
e e e e e e

Ω
· · ·
· · ·
· · ·

.
1 1

†
1 2

†
1 3

†

2 1
†

2 2
†

2 3
†

3 1
†

3 2
†

3 3
†

(29)

Similar to 22, there are two equivalent ways to write the compliance
tensor S in the matrix form, i.e.,

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

S

S
S S
S S S
S S S S
S S S S S
S S S S S S

S
S S
S S S
S S S S
S S S S S
S S S S S S

Symm
2 2 2 4
2 2 2 4 4
2 2 2 4 4 4

Symm
.

1111

2211 2222

3311 3322 3333

2311 2322 2333 2323

3111 3122 3133 3123 3131

1211 1222 1233 1223 1231 1212

11

21 22

31 32 33

41 42 43 44

51 52 53 54 55

61 62 63 64 65 66 (30)

The following relation holds

= −S C 1 (31)

suggesting that

=C S δij jk ik (32)

where = …i j k, , 1, , 6, and

= +C S δ δ δ δ1
2

( )mnij ijkl mk nl ml nk (33)

where =i j k l m n, , , , , 1, 2, 3.

2.4. Isotropic approximations

When the material is assumed elastic isotropic, the transformation
matrix K takes no effect, and

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

+
+

+

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

C

λ μ
λ λ μ
λ λ λ μ

μ
μ

μ

2
2

2 Symmiso

(34)

where λ and μ are Lamé constants. They are related to each other by the
bulk modulus

= +K λ μ2
3

.b (35)

Multiple isotropic averages have been developed to determine μ and
Kb based on the elastic constants in C† (Norris, 1985). In this work, we
focus on three most commonly used isotropic averages, proposed re-
spectively by Voigt (1889), Reuss (1929), and Hill (1952). In what
follows, quantities obtained by these three averages are denoted by

superscripts V, R, and H, respectively.
In the Voigt average, the averaged stiffness tensor is obtained by

averaging C over all orientations (Voigt, 1889); as a result,

= + + − + + + + +μ C C C C C C C C C1
15

[( ) ( ) 3( )]V
11
†

22
†

33
†

12
†

23
†

13
†

44
†

55
†

66
†

(36)

= + + + + +K C C C C C C1
9

[( ) 2( )].b
V

11
†

22
†

33
†

12
†

23
†

13
†

(37)

In the Reuss average, the averaged compliance tensor is obtained by
averaging S over all orientations (Reuss, 1929); as a result,

= + + − + + + + +
μ

S S S S S S S S S15 4( ) 4( ) 3( )R 11
†

22
†

33
†

12
†

23
†

13
†

44
†

55
†

66
†

(38)

= + + + + +
K

S S S S S S1 ( ) 2( )
b
R 11

†
22
†

33
†

12
†

23
†

13
†

(39)

where = −S C[ ]† † 1. In both Voigt and Reuss averages, Eqs. (35)–(39) are
used to form Ciso in Eq. (34). It follows that = −S C[ ]iso iso 1. It is known
that the Voigt and Reuss averages, respectively, provide an upper and a
lower bound for the actual effective elastic constants (den Toonder
et al., 1999).

Hill (1952) assumed that the arithmetic mean of the Voigt and Reuss
averages is a good approximation for the actual elastic constants, i.e.,

= +C C C1
2

( )H V R
(40)

= +S S S1
2

( ).H V R
(41)

However, usually ≠ −C S[ ]H H 1 (Spalthoff et al., 1993).

3. Modeling a dislocation dipole using PFDD

3.1. Simulation set-up

PFDD simulations are carried out using a 3D structured grid, with
256, 8, and 128 grid points in x, y, and z directions, respectively. The
simulation cell size was found to be sufficiently large for a dislocation
dipole in Al (Xu et al., 2019b). A uniform grid spacing =h b2/30 is
employed and periodic boundary conditions are applied on all three
directions. Let Lx, Ly, and Lz be the edge length of the cell along the x, y,
and z directions, respectively. Two dislocation lines lie on the mid-z
plane and are separated by Lx/2 along the x direction, as illustrated in
Fig. 1. The left and right dislocations are placed, respectively, at Lx/4
from the left and right periodic boundaries. The attraction between the
two dislocations is cancelled out by the attraction between one dis-
location and its immediate neighbor in the adjacent periodic image.
Hence, the dislocation dipole is in equilibrium.

Initially, an undissociated perfect dislocation dipole with an arbi-
trary character angle θ is inserted by assigning =ϕ 11 and = =ϕ ϕ 02 3
to selected grid points. For edge and screw dislocations, respectively,
the crystallographic orientations are − −x y z[11̄0] [112̄] [111] and

Fig. 1. Simulation box set-up for a mixed-type dislocation dipole.

S. Xu, et al. Mechanics of Materials 139 (2019) 103200

4



− −x y z[112̄] [1̄10] [111]. When θ changes, the dislocation lines re-
main along the y axis but the slip vectors bα and crystallographic or-
ientations change accordingly. Then, during recursively running the
TDGL (Eq. (7)), each dislocation becomes extended. Iterations are ter-
minated when the Euclidean norm of the difference in global vector of
each order parameter between successive iterations is smaller than −10 4.
The mobility =m 10 and the timestep size =tΔ 0.02. In the relaxed
dislocation structures, the center of each partial dislocation is de-
termined by projecting the disregistry field onto the Shockley partial
dislocation direction (Xu et al., 2019a). The ISF width d is defined as the
distance between the centers of two partial dislocations. Based on the
numerical resolution, all ISF width values are in ± b/ 6 .

Material parameters needed in the PFDD total energy model include
lattice parameter a0, elastic constants C ,11

† C ,12
† and C ,44

† GSFE surface γgsf,
and gradient energy coefficients ηαβ

g0 . In this work, eight FCC transition
metals — Ag, Au, Cu, Ir, Ni, Pd, Pt, and Rh — are considered. For each
metal, a0 and γgsf are based on DFT calculations (Su et al., 2019a). On
the other hand, there usually exist relatively large errors (∼ 10%) in
the elastic constants between DFT calculations and experiments
(Zhang et al., 2018). Thus, the elastic constants C ,11

† C ,12
† and C44

† are
taken from experiments (Warlimont and Martienssen, 2018). Table 1
summarizes some parameters used in PFDD simulations, including two
points on the GSFE surface: ISF energy γisf and unstable stacking fault
(USF) energy γusf.

3.2. Determination of the gradient energy coefficient

As mentioned in Section 2.1, the gradient energy density ψgra re-
presents the density of energy stored in the Shockley partial disloca-
tions. Prior PFDD simulations in Al and Au (Xu et al., 2019a; 2019b)
showed that the predicted dislocation core structures are in better
agreement with molecular statics (MS) when ψgra is included. However,
the formulation of ψgra (Eq. (4)) involves a set of coefficients ηαβ

g0 for
which there is no standard method to quantify them (Su et al., 2019b).
Regarding characterization, recent work in Al determined non-uniform
ηαβ

g0 for edge and screw dislocations by fitting the MS-informed PFDD-
based disregistry profiles to MS-based ones (Xu et al., 2019b). Note that
in that work, material parameters for PFDD were provided by MS si-
mulations, instead of DFT calculations in the current work. Hence,
applying the same approach here would ideally entail characterizing
ηαβ

g0 by fitting the PFDD-based disregistry profiles to those from DFT.
However, DFT calculations of dislocations are computationally ex-
pensive. Among the eight FCC metals, only the screw dislocation in Ni
was studied by DFT recently (Tan et al., 2019). Therefore, to approx-
imate values for η ,αβ

g0 we compare MS-informed PFDD-based disregistry
profiles with MS-based ones for pure edge and screw dislocations. On
the other hand, the validity of MS simulations significantly hinges on
the robustness of the interatomic potentials (Xu et al., 2017b; Chavoshi
et al., 2017; Xu et al., 2017a; 2018; Xu and Su, 2018; Chavoshi and Xu,

2019). For dislocation modeling, it is critical for the interatomic po-
tentials to accurately reproduce the GSFE surface γgsf. Among the eight
FCC metals, suitable potentials only exist for Ag (Williams et al., 2006),
Cu (Mishin et al., 2001), and Ni (Foiles and Hoyt, 2006), to the best of
our knowledge.

It follows that MS simulations are carried out by LAMMPS
(Plimpton, 1995) for edge and screw dislocations in Ag, Cu, and Ni. The
3D periodic simulation cells used in MS are similar to that in Fig. 1. In
each simulation, an undissociated, perfect dislocation dipole is first
created by applying the corresponding isotropic elastic displacement
field to all atoms. The dislocated system is then relaxed using the
conjugate gradient method. The relaxation step is terminated when one
of the following two criteria is satisfied: (i) the change in energy be-
tween successive iterations divided by the most recent energy magni-
tude is less than or equal to −10 15 or (ii) the length of the global force
vector for all atoms is less than or equal to −10 15 eV/Å. The ISF widths,
dMS, are summarized in Table 2.

To determine ηαβ
g0 from MS simulations, additional PFDD simulations

with full elastic anisotropy and with all material parameters provided
by corresponding interatomic potentials are carried out for edge and
screw dislocations in Ag, Cu, and Ni. Here, for simplicity, a uniform ηαβ

g0
is used for all sets of αβ for each dislocation. For each metal, a series of
η ,αβ

g0 ranging from 0 to μVb2, in increments of 0.1μVb2, are considered.

Fig. 2 shows the variation in the ISF width d with ηαβ
g0 for the two types

of dislocations in three metals. We find that, for edge and screw dis-
locations, respectively, =η μ b0.1αβ

g0
V 2 and 0.3μVb2, on average, provide

the best agreement with MS (Table 2). Therefore, these values of ηαβ
g0

will be adopted in all subsequent PFDD simulations for edge and screw
dislocations in all eight FCC metals. For mixed-type dislocations with
arbitrary character angle θ, a trigonometric interpolation is used
(Xu et al., 2019b), i.e.,

= + − −η θ η η η η θ( ) 1
2

[ ( )cos(2 )]αβ αβ αβ αβ αβ
g0 E S E S (42)

Table 1
Lattice parameter a0 (in Å), elastic constants C ,11

† C ,12
† and C44

† (in GPa), Zener
anisotropy index = −A C C C2 /( ),c 44

†
11
†

12
† ISF energy γisf (in mJ/m2), and USF

energy γusf (in mJ/m2) for the eight FCC transition metals used in PFDD si-
mulations. a0, γisf, and γusf are from DFT calculations (Su et al., 2019a), while
C ,11

† C ,12
† and C44

† are from experiments (Warlimont and Martienssen, 2018).

Ag Au Cu Ir Ni Pd Pt Rh

a0 4.153 4.157 3.634 3.873 3.519 3.942 3.968 3.831

C11
† 122 191 169 580 247 221 347 413

C12
† 92 162 122 242 153 171 251 194

C44
† 45.5 42.2 75.3 256 122 70.8 76.5 184

Ac 3.03 2.91 3.2 1.51 2.6 2.83 1.59 1.68
γisf 14.49 26.79 41.83 385.87 152.13 135.54 280.87 208.67
γusf 92.01 76.68 160.52 671.66 300.89 214.93 297.92 475.34

−γ γusf isf 77.52 49.89 118.69 285.79 148.76 79.39 17.05 266.67

Table 2
For edge (E) and screw (S) dislocations in three FCC metals, dMS (in b) are the
ISF widths calculated by MS, and ηαβ (in μVb2) are uniform gradient energy
coefficients found by PFDD simulations to predict the best agreement with MS.

Ag Cu Ni

dMS (E) 16.25 10.55 6.48
dMS (S) 5.01 2.95 2.67

η αβ
E

0.08 0 0.3

η αβ
S

0.3 0.1 0.38
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Fig. 2. ISF widths, d, predicted by PFDD, for the edge (E) and screw (S) dis-
locations in Ag, Cu, and Ni, with respect to the uniform gradient energy coef-
ficient ηαβ

g0 . When =η 0,αβ
g0 PFDD simulations are without the gradient energy

density ψgra. MS-based d values are shown as horizontal dashed lines.
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where subscripts “E” and “S” denote the edge and screw dislocations,
respectively.

4. Results and discussions

4.1. Edge and screw dislocations: Effects of the gradient energy density

In this section, we focus on edge and screw dislocations using PFDD
with full anisotropic elasticity. The ISF widths associated with these

dislocations, d, are summarized in Table 3. Results based on PFDD si-
mulations without the gradient energy density ψgra in the total energy
density, denoted by the subscript “ng”, are also shown for references.
We remark that dng are what the GPN model would have yielded, if all
material parameters are the same (Mianroodi et al., 2016). In previous
PF dislocation modeling, introducing the gradient energy increased the
ISF widths of both edge and screw dislocations in Al and Au (Mianroodi
et al., 2016; Xu et al., 2019a; 2019b) and CoNiRu (Su et al., 2019b), but
did not change the ISF width of an edge dislocation in Pd (Shen and
Wang, 2004). Nevertheless, a systematic study of the effects of ψgra in
multiple FCC metals is lacking.

Our PFDD simulation results show that, for the same metal, the ISF
width of an edge dislocation is larger than that of a screw dislocation, in
qualitative agreement with linear elasticity, DFT, and MS. For the same
dislocation, d> dng, except the edge dislocations in Ir, Ni, Pd, and Rh.
When the gradient energy density is introduced, the Shockley partial
dislocation core size increases and the disregistry field is forced to ad-
just itself. It would be energetically favorable to shrink the ISF area at
the expense of elevating the elastic interaction energy between the two
partials if the ISF energy γisf is high and the ISF energy is at a deep well
on the GSFE surface, the latter of which may be quantified by a large
value of −γ γusf isf . As shown in Table 1, among the eight metals, (i) Ir,
Ni, Pd, Pt, and Rh have the highest γisf, yet Pt has the smallest value of

−γ γ ,usf isf (ii) Cu, Ir, Ni, Pd, and Rh have the largest values of −γ γusf isf
but Cu possesses a low γisf. These may explain why the ISF width of an
edge dislocation decreases upon introducing ψgra in Ir, Ni, Pd, and Rh.

Table 3
ISF width d (in b) calculated by PFDD simulations with full elastic anisotropy
for edge (E) and screw (S) dislocations in eight FCC metals. Results based on
simulations without the gradient energy density ψgra in the total energy density
are denoted by the subscript “ng”. Results based on simulations with ψgra but
the stiffness tensor C is based on in-{111}-plane rotated crystallographic or-
ientations are denoted by the superscript *, as described in the text. Based on
the numerical resolution, all results are in ± b/ 6 .

Ag Au Cu Ir Ni Pd Pt Rh

d (E) 20.17 14.51 12.92 4.71 6.05 3.96 1.91 6.57
d (S) 6.22 3.55 3.63 2.46 2.37 1.52 1.07 3.06
dng (E) 16.51 13.51 10.49 4.96 6.4 4.45 1.75 7.01
dng (S) 4.64 2.25 2.56 1.81 1.55 0.88 0.49 2.42
d* (E) 20.17 14.51 12.92 4.71 6.04 3.96 1.9 6.58
d* (S) 6.06 3.55 3.49 2.46 2.37 1.52 1.07 3.06

Fig. 3. For edge and screw dislocations in eight FCC metals, the ratio of the elastic anisotropy-based ISF width to elastic isotropy-based ISF width (denoted by the
superscript “iso”) using the Voigt, Reuss, and Hill averages, respectively. Each dash line shows the linear fit for each isotropic average. In (c–d), the gradient energy
density is not included in the total energy density (denoted by the subscript “ng”).
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Since all material parameters (except the elastic constants) in the
present PFDD simulations are informed by DFT, it is tempting to use
DFT data as a benchmark in comparing d and dng. As mentioned earlier,
among the eight FCC metals selected, only the screw dislocation in Ni
has been simulated by DFT (Tan et al., 2019), and the corresponding
ISF width was 4.82b, which is larger than our predictions: =d b2.37 and

=d b1.55ng . Note that, however, in measuring the ISF width using DFT
results, the centers of the Shockley partial dislocation cores were de-
termined by differential displacement maps and Nye tensor distribu-
tions. Neither method is applicable to PF-based disregistry field results.
Our previous work showed that different methods to measure the ISF
width can lead to results that differ by up to a factor of 3 (Xu et al.,
2019a). Nevertheless, since d is closer to the DFT prediction than dng, it
is suggested that the gradient energy density should be included in the
total energy density, at least for the screw dislocation in Ni.

As mentioned in Section 1, in their GPN-based work,
Szajewski et al. (2017) assumed the elasticity tensor to be isotropic
within the {111} slip plane. To validate this approximation, we redo all
ψgra-included PFDD calculations in this section but with the stiffness
tensor C based on crystallographic orientations that are rotated by 90∘

within the {111} plane. In specific, C for edge and screw dislocations,
respectively, are based on − −x y z[112̄] [1̄10] [111] and

− −x y z[11̄0] [112̄] [111] orientations. Results are denoted by the su-
perscript * and presented in Table 3. Comparing d and d*, we find that
the errors caused by this approximation are indeed small, less than 3%.

4.2. Edge and screw dislocations: Effects of different isotropic averages

In this section, we explore the effects of the three commonly used
elastic isotropic averages — Voigt, Reuss, and Hill — on the core
structures of edge and screw dislocations. The ISF widths based on the
isotropic averages are collectively denoted as diso. The ratios d/diso for
the three isotropic averages, presented in Fig. 3(a–b), are based on
PFDD simulations with the gradient energy density ψgra included in the
total energy density. The same pattern discussed below is also found in
results based on PFDD simulations without ψgra. Those results are pre-
sented in Fig. 3(c–d).

First, using the same average, the ratio in the ISF width quasi-lin-
early scales with the Zener anisotropy index = −A C C C2 /( )c 44

†
11
†

12
† of

the material. Second, almost all isotropic averages underestimate and
overestimate, respectively, the ISF widths associated with the edge and
screw dislocations, i.e.,

>d d for edge dislocationiso (43)

<d d for screw dislocationiso (44)

Both findings qualitatively agree with previous GPN-based simula-
tions, which neglected ψgra (Szajewski et al., 2017). This agreement,
which in part validates our numerical implementations, is expected
because including ψgra does not affect the variation in elastic energy
with different isotropic averages. Note that the ratio d/diso is farther
away from unity for the screw dislocations than for the edge disloca-
tions, as a result of the generally smaller ISF widths associated with the
former than those with the latter.

What was lacking in the previous GPN-based simulations was a
systematic study of the effects of the three isotropic averages. Here, we

find that, for the same dislocation, the Voigt average always results in a
larger ISF width than the Reuss average, with the Hill average predic-
tion in-between, i.e.,

> >d d dV H R (45)

As mentioned earlier, the Voigt and Reuss averages provide an
upper and a lower bound for the actual effective elastic constants, re-
spectively. On the one hand, adopting different stiffness tensors C only
affects the elastic energy Ψela. On the other hand, upon energy mini-
mization, Ψela always needs to balance the other two energy con-
tributions. Thus, for the same displacement field u, Ψela is the same
regardless of what form C takes. Since the Voigt average yields a stiffer
material, the total elastic strain will become smaller, according to
Eq. (10). In the meantime, the total plastic strain in the system remains
almost unchanged because the total amount of slips does not change
with C. As such, Eq. (11) suggests that the total strain will become
smaller. For this to occur, u will become smoother, resulting in a larger
ISF width.

Comparing Eqs. (43) and (45), one sees that the Voigt average is the
best among all three isotropic approximations to predict the ISF width
associated with an edge dislocation. Similarly, comparing Eqs. (44) and
(45) suggests that the Reuss average provides the best prediction of the
ISF width of a screw dislocation. These are validated by the averaged
ratios, d d/ ,iso presented in Table 4. We remark that the main un-
certainties in PFDD simulations lie in determining the model para-
meters, including the GSFE surfaces and the gradient energy coeffi-
cients, which do not influence the elastic energies. Hence, the main
conclusions drawn in this section is likely sound.

4.3. Mixed-type dislocations: Effects of the isotropic Hill average

The preceding two sections analyzed the effects of both the gradient
energy density ψgra and different isotropic averages on edge and screw
dislocations. In this section, we investigate mixed-type dislocations
with arbitrary character angle. Our earlier work in Al found that the
effects of ψgra are the same for pure- and mixed-type dislocations
(Xu et al., 2019b), so we will not study the effects of ψgra here and will
include ψgra in the total energy density in all subsequent PFDD simu-
lations. In addition, earlier analytical study showed that, among the
three isotropic averages, the Hill average retains the bulk modulus,
while the Voigt and Reuss averages overestimates and underestimates
it, respectively (Szajewski et al., 2017). Hence, in what follows, we
compare results based on elastic anisotropy and the isotropic Hill
average.

The ISF widths obtained from PFDD simulations are summarized in
Fig. 4. For the same metal, the ISF width monotonically increases with
the character angle θ, in agreement with elasticity theory. As discussed
earlier, for the edge dislocation ( = ∘θ 90 ), d> dH, and for the screw
dislocation ( = ∘θ 0 ), d< dH. Thus, there must be a mixed dislocation
with a critical character angle θ at which elastic anisotropy and Hill
average yield the same ISF width, i.e., =d d/ 1H .

Fig. 5 shows that this critical angle does exist. However, it is diffi-
cult to directly identify it because the ratio d/dH does not change
monotonically with θ. So we resort to obtain approximated values.
Recall that because of the numerical resolution, b2/3 , all ISF width
values are in ± b/ 6 . For PFDD simulations with elastic anisotropy (the
first two rows in Table 3), the averaged d among all 16 pure-type dis-
locations is 5.9175b. Then, on average, the ratios d/dH are in
± × = ±1/(5.9175 6 ) 0.069. It follows that, for each metal, all char-
acter angles corresponding to the bounded region 0.931< d/
dH< 1.069 in Fig. 5 are averaged. The averaged values are taken as the
approximated critical angles, and are summarized in Table 5. The cri-
tical angles are between 57.5∘ and 62∘, and on average ∼ 60∘. This
suggests that, for a given dislocation, the more its character angle de-
viates from 60∘, the larger the error in the ISF width resulting from the
Hill average. As mentioned early, the ISF width of the edge dislocation

Table 4
The ratio of the ISF width predicted by PFDD simulations (d) with elastic ani-
sotropy to that with three isotropic approximations (diso). Each ratio is an
average among all eight FCC metals.

Voigt Reuss Hill

d d/ iso (E) 0.966 1.24 1.087

d d/ iso (S) 0.574 0.786 0.67
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(90∘) is less affected by the isotropic approximation than the screw
dislocation (0∘).

5. Conclusions

In this paper, we first extend the PFDD method from isotropic
elasticity to full anisotropic elasticity. Numerical implementations are
detailed in Section 2. Then, in Sections 3 and 4, we apply the enhanced
approach to systematically study the effects of the gradient energy
density and different isotropic averages (Voigt, Reuss, and Hill) on core
structures of pure- and mixed-type dislocations in eight FCC transition

metals. Key conclusions are as follows:

1. Among all 16 pure-type dislocations in eight FCC metals, adding the
gradient energy density ψng to the total energy density increases the
ISF widths d associated with 12 dislocations, but decreases d of the
edge dislocations in Ir, Ni, Pd, and Rh. This may be attributed to the
GSFE landscapes associated with these four metals.

2. Using the same isotropic average, the ratio in the ISF width between
the anisotropy-based value and the isotropy-based one quasi-line-
arly scales with the Zener anisotropy index of the material. In ad-
dition, almost all isotropic averages underestimate and over-
estimate, respectively, the ISF widths associated with the edge and
screw dislocations. The two findings agree with previous GPN-based
simulations (Szajewski et al., 2017).

3. Among the three isotropic averages, for the same dislocation, the
Voigt and Reuss averages always predict the widest and narrowest
ISFs, respectively, while the Hill average values are in-between. This
is likely an outcome of the stiffer and softer material yielded by the
Voigt and Reuss averages, respectively. As a result, among the three
isotropic averages, the Voigt and Reuss averages best predict the ISF
widths associated with the edge and screw dislocations, respec-
tively.

4. For all eight FCC metals, a critical angle, ∼ 60∘, is identified at
which the elastic anisotropy and isotropic Hill average yield the
same ISF width.

Acknowledgments

We thank Dr. Abigail Hunter, Dr. Jaber R. Mianroodi, Dr. Chunfeng
Cui, and Ms. Xiaoyao Peng for helpful discussions. The work of S.X. was
supported in part by the Elings Prize Fellowship in Science offered by
the California NanoSystems Institute on the UC Santa Barbara campus.
The authors gratefully acknowledge support from the Office of Naval
Research under contract ONR BRC Grant N00014-18-1-2392. Use was
made of computational facilities purchased with funds from the
National Science Foundation (CNS-1725797) and administered by the
Center for Scientific Computing (CSC). The CSC is supported by the
California NanoSystems Institute and the Materials Research Science
and Engineering Center (MRSEC; NSF DMR 1720256) at UC Santa
Barbara. This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by National
Science Foundation grant number ACI-1053575.

Fig. 4. For dislocations with arbitrary character angle θ in eight FCC metals, the ISF widths predicted by PFDD simulations with elastic anisotropy, d, and those with
the isotropic Hill average, dH.

Fig. 5. For dislocations with arbitrary character angle θ in eight FCC metals, the
ratio in the ISF width between the elastic anisotropy-based values d and the Hill
average-based values dH. The shaded region bounded within 0.931< d/
dH< 1.069 represents possible numerical errors in calculating the ratios.

Table 5
For all eight FCC metals, the critical character angles (in ∘) at which PFDD
simulations with elastic anisotropy and those with the isotropic Hill average
yield the same ISF width.

Ag Au Cu Ir Ni Pd Pt Rh

60 62 60 57.5 57.5 60 57.5 59.58
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Appendix A. Derivation of Eq. (17)

First, recall these identities:

★ =f x g x f x g x[ ( ) ( )] [ ( )]· [ ( )]� � � (A.1)

′ = −f x ξf ξ[ ( )] 1 ^ ( )� (A.2)

=−C C δ δmnij ijkl mk nl
1

(A.3)

where � conducts the Fourier transform, f and g are functions of x, δmk and δnl are the Kronecker delta. Then,
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Appendix B. Derivation of Eq. (21)

First, we substitute Eqs. (18) and (19) into the first integral in Eq. (20). Second, we compare the result with the second integral in Eq. (20),
yielding

= − −

=

− − +

− −

− − − −

ξ ξ ξ

ξ ξ

ξ ξ
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Then, with the help of Eq. (13), the first term becomes
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which then cancels out the third term.
It follows that, with the help of Eq. (A.3), the second and the fourth terms, respectively, become

= =− ξ ξ ξC C C C G ξ ξ δ δ C C G ξ ξ C C G ξ ξ^ ( ) ^ ( ) ^ ( )rskl pquv ijmn rspq ki j l kp lq pquv ijmn ki j l kluv ijmn ki j l
1

(B.3)

= =− −C C C C C δ δ δ δ C C .rskl pquv ijmn rspq klij kp lq mk nl pquv mnuv
1 1

(B.4)

As a result,

= −ξ ξA C C C G ξ ξ^ ( ) ^ ( ) .mnuv mnuv kluv ijmn ki j l (B.5)
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