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A B S T R A C T

Crystalline materials can be strengthened by introducing dissimilar phases that impede dis-
location glide. At the same time, the changes in microstructure and chemistry usually make
the materials less ductile. One way to circumvent the strength–ductility dilemma is to take
advantage of heterogeneous nanophases which simultaneously serve as dislocation barriers and
sources. Owing to their superior mechanical properties, heterogeneous nanostructured materials
(HNMs) have attracted a lot of attention worldwide. Nevertheless, it has been difficult to
characterize dislocation dynamics in HNMs using classical continuum models, mainly due to the
challenges in describing the elastic and plastic heterogeneity among the phases. In this work,
we advance a phase-field dislocation dynamics (PFDD) model to treat multi-phase materials,
consisting of phases differing in composition, structural order, and size in the same system. We
then apply the advanced PFDD model to exploring two important but divergent materials design
problems in HNMs: dislocation/obstacle interactions and dislocation/interface interactions.
Results show that the interactions between a dislocation and distribution of obstacles varying in
structure and composition cannot be understood by simply interpolating from their individual
interactions with a dislocation. It is also found that materials containing interfaces with
nanoscale thicknesses and compositional gradients have a much higher dislocation bypass stress
than those with sharp interfaces, providing an explanation for the simultaneous high strength
and toughness of thick interface-containing nanolaminates as observed in recent experiments.

. Introduction

Heterogeneous nanostructured materials (HNMs) are materials that are comprised of phases that vastly differ in their size, from
icron to nanoscale, and in properties, such as elasticity and crystal structure. They are widespread in nature and actively used in
any modern engineering applications as advanced smart and composite materials (Alexandrov and Zubarev, 2019). HNMs exhibit
roperties superior to either of their constituents combined as would be expected by rule-of-mixtures calculations (Wu et al., 2015;
u and Zhu, 2017; Lu et al., 2020; Zhu et al., 2021). As an example, deformation in ductile crystalline materials is mainly controlled

y dislocation slip, and so their strength and ductility can be attributed to the interactions of the nanophases with dislocations gliding
n the micron matrix (Quek et al., 2014). Nanophase morphologies can range from gradient interfaces a few nanometers in thickness
o an arrangement of both impenetrable and shearable precipitates (Zheng et al., 2013; Cheng et al., 2022).

Revealing the dynamics of dislocation interactions with heterogeneous phases aids in understanding the influence of nanostruc-
ures on mechanical behavior and how multi-obstacles and interfaces can be designed to achieve optimal material properties. In
xperiments, direct observation of discrete dislocations and their ability to overcome barriers, as well as direct measurement of
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critical stresses and the barrier properties that control them, are challenging. Over the years, 3D computational models have been
useful in identifying dislocation interaction mechanisms with different types of obstacles and interfaces (Beyerlein et al., 2019). The
two main types of continuum mechanics approaches that have been developed specifically for dislocation motion in the presence
of dissimilar phases are discrete dislocation dynamics (DDD) (Po et al., 2014; Bertin et al., 2020) and phase field dislocation
models (Wang and Li, 2010). For predominantly crystalline HNMs, the phases can vary in number (two or more), morphology
(nanoscale precipitate to gradient interfaces), structural order (amorphous vs. crystalline), and composition (void vs. alloy). The
challenge that most continuum-based dislocation models have overcome to date is treating the elastic mismatch between two phases.
Both DDD and phase field dislocation models have accomplished this by adopting a method introduced first by Eshelby (1957), who
proposed that the disturbance of an inhomogeneity inside an elastic solid is equivalent to applying an uniform stress to the solid
at a large distance. Wu et al. (2022), for instance, used DDD to predict the increase in the dislocation glide resistance caused by
vacancy clusters. In that case the system contained two phases. Wang et al. (2003) developed a phase field microelasticity model for
a system that contained three phases: substrate, thin film, and vacuum. The dislocation only glided in the first two phases. Zeng et al.
(2016) developed a bi-phase phase-field dislocation dynamics (PFDD) model that was elastically and plastically heterogeneous. The
dislocation could glide in two dissimilar phases, enabling a study of the effect of elastic and lattice mismatch on dislocation glide
transfer across a bi-phase interface. Later, phase field models were presented in which the elastic anisotropy and defect energetics of
both phases were captured (Mianroodi et al., 2019). More recently, Xu et al. (2022) extended the bi-phase PFDD model to include
elastic anisotropy and dislocation dissociation. The model was applied to Cu/Nb nanolaminates with 3D interfaces to study the
transmission of small dislocation pile-ups, as found in experiments (Cheng et al., 2022). Such extensions permit account of both
long-range and short-range interactions when dislocations shear through crystalline phases or voids.

To model dislocation dynamics in general HNMs, where microstructural designs aim to exploit multiple dissimilar phases of
arying substantially in properties, it is necessary to extend the bi-phase PFDD model to treat multi-phase materials where elastic
nisotropy, dislocation core structure, and fault energies associated with dislocation glide in all phases, as appropriate, are taken
nto account. That is the main goal of this paper. Because dynamics can be simulated over longer periods of time, PFDD can assess
ultiple configurations of obstacles and interfaces, many different compositions and crystallographies of such obstacles, as well as
ultiple dislocations (Cheng et al., 2022), via controlling independently the individual role of elasticity and defect energetics. PFDD

lso provides stress states and strain rates closer to those in strained crystals than possible with atomistic methods. Another benefit
f using phase-field dislocation model is that ab initio data can be used directly, compared with atomistic simulations which require

high-quality interatomic potentials.
The remainder of this paper is organized as follows. In the Methods section, the PFDD formulation for multi-phase materials is

presented in detail, followed by that model set-up and material parameters used in subsequent simulations are presented. Then in the
Results and Discussion section, the new formulation is applied to dislocation dynamics in two important but distinct microstructures.
Since dislocations themselves have different properties in face-centered cubic (FCC) and body-centered cubic (BCC) crystals, we
choose either FCC Cu or BCC Nb as the model material as the predominant phase. The first problem involves the interactions
between a dislocation and a set of nanoscale heterogeneous obstacles. The obstacles consist of arrays of nanophases with vastly
distinct properties, such as voids, shearable crystalline precipitates, and unshearable amorphous precipitates. These obstacles are
typical in HNMs (Peng et al., 2020; Noell et al., 2020). We report the critical stresses for a dislocation to bypass the obstacle arrays
and the corresponding bypass mechanisms. The second problem considers slip transfer of a dislocation across a 3D interface in a
Cu matrix. 3D interfaces are heterophase interfaces with nanoscale thickness and contain the chemical elements of the two adjacent
crystals, from which the interfaces can be chemically and/or structurally distinct (Chen et al., 2020). In the current work, the
interface is either homogeneous or heterogeneous, containing crystalline phases that are shearable by dislocations. Lastly, in the
Conclusions section, implications of introducing multi-phase obstacles and interfaces and potential applications of the multi-phase
PFDD model to other HNMs are discussed.

2. Methods

2.1. Multi-phase PFDD model

In this section, we present the PFDD formulation for an elastically heterogeneous medium that contains 𝑁mat materials. We
assume that the medium deforms elastically and, if it is a crystal, it may also deform plastically, where plasticity is accommodated
by the glide of dislocations on preferred slip systems. Let 𝝓 be the order parameter set. Each order parameter 𝜙𝛼 is for each slip
ystem 𝛼. The values 𝜙𝛼 = 0 and 1 represent the unslipped and slipped states, respectively. In the current work, 𝜙𝛼 is confined to be
on-zero only in the slip plane of 𝛼 (Xu et al., 2020a). Dislocations are assumed to always exist in material 1, but not necessarily
n other materials. In what follows, let 𝑛op, 𝑛sp, and 𝑁sp be the total number of order parameters, the number of order parameters
er slip plane, and the total number of slip planes, respectively, in each material. These three numbers are related by 𝑛op = 𝑁sp𝑛sp.

The total energy density 𝜓 consists of four terms: elastic energy density 𝜓ela, lattice energy density 𝜓lat , gradient energy density
gra, and external energy density 𝜓ext , i.e., at each continuum point 𝒙,
2

𝜓(𝒙) = 𝜓ela(𝒙) + 𝜓lat (𝒙) + 𝜓gra(𝒙) − 𝜓ext (𝒙). (1)
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The first energy density is the elastic energy density, 𝜓ela, which represents the energy stored in the material surrounding the
dislocation core. To formulate 𝜓ela, we first define the eigenstrain (i.e., inelastic strain) tensor, 𝝐0, as

𝝐0(𝒙) =
⎧

⎪

⎨

⎪

⎩

𝝐p(𝒙), 𝒙 ∈ material 1
𝝐p(𝒙) + 𝝐v(𝒙), 𝒙 ∈ material 𝑁 where dislocations exist (𝑁 ≠ 1)
𝝐v(𝒙), 𝒙 ∈ material 𝑁 where dislocations don’t exist (𝑁 ≠ 1)

(2)

where 𝝐p and 𝝐v are the plastic strain tensor and virtual strain tensor, respectively. Among the two strain tensors, the first one is
related to the plastic distortion tensor 𝜷p, and then to the order parameter 𝝓, i.e.,

𝝐p = sym𝜷p (3)

𝜷p(𝝓) =
𝑛op
∑

𝛼=1

𝑏𝛼𝜙𝛼
𝑑𝛼

𝒔𝛼 ⊗ 𝒏𝛼 (4)

here 𝒔𝛼 is the slip direction unit vector, 𝑏𝛼 is the slip vector magnitude, 𝒏𝛼 is the slip plane unit normal, and 𝑑𝛼 is the interplanar
pacing between two adjacent slip planes, for slip system 𝛼. Note that 𝝐v is independent of 𝝓.

Then 𝜓ela(𝒙) can be written as the sum of the ‘‘equivalent’’ homogeneous elastic energy density, 𝜓eq
ela(𝒙), and the ‘‘extra’’ elastic

nergy density, 𝜓ex
ela(𝒙), i.e. (Xu et al., 2022),

𝜓ela(𝒙) = 𝜓eq
ela(𝒙) + 𝜓

ex
ela(𝒙) (5)

here

𝜓eq
ela(𝒙) =

1
2
[𝝐(𝒙) − 𝝐0(𝒙)] ⋅ C [𝝐(𝒙) − 𝝐0(𝒙)] (6)

𝜓ex
ela(𝒙) =

1
2
𝝐v(𝒙) ⋅𝑴 [𝑁](𝒙)𝝐v(𝒙) (7)

where C is the elasticity tensor and the strain tensor 𝝐 = sym𝜷, where 𝜷 = ∇𝒖 is the distortion with 𝒖 being the displacement. In
Eq. (7), 1 < 𝑁 ≤ 𝑁mat and

𝑀 [𝑁]
𝑖𝑗𝑘𝑙 (𝒙) = −𝐶 [1]

𝑖𝑗𝑚𝑛

[

Δ𝐶 [𝑁]
𝑚𝑛𝑝𝑞(𝒙)

]−1
𝐶 [1]
𝑝𝑞𝑘𝑙 − 𝐶

[1]
𝑖𝑗𝑘𝑙 (8)

where

Δ𝐶 [𝑁]
𝑖𝑗𝑘𝑙 (𝒙) = 𝐶 [𝑁]

𝑖𝑗𝑘𝑙 (𝒙) − 𝐶
[1]
𝑖𝑗𝑘𝑙 (9)

According to Eq. (2), the virtual strain tensor 𝝐v does not exist in material 1. Hence, 𝜓ex
ela exists in all materials but material 1.

The second energy density in Eq. (1), the lattice energy density, 𝜓lat , represents the energy stored (i) within the intrinsic stacking
fault (ISF) of a dissociated dislocation or (ii) within the core of an undissociated dislocation. 𝜓lat is expressed as

𝜓lat (𝒙) =
𝛾 [𝑁]
gsf (𝝓(𝒙))

𝑙[𝑁]
gsf (𝒙)

(10)

where 𝛾 [𝑁]
gsf is the GSFE as a function of the local order parameter 𝝓 and 𝑙[𝑁]

gsf is the spacing between the two adjacent slip planes
based on which 𝛾 [𝑁]

gsf is calculated. Both quantities are in material 𝑁 , where 1 ≤ 𝑁 ≤ 𝑁mat . In each material, when 𝑛sp = 1, 𝛾gsf is
represented by a GSFE curve; when 𝑛sp > 1, 𝛾gsf is represented by a GSFE surface. The value of 𝑛sp is pre-set, depending on prior
knowledge of material 𝑁 .

The third energy density in Eq. (1), the gradient energy density, 𝜓gra, represents the energy stored within the two Shockley
partial dislocation cores of a dissociated dislocation. With this physical meaning in mind, 𝜓gra is written as a function of the order
parameter gradient, i.e. (Wang et al., 2001; Xu et al., 2019b),

𝜓gra(𝒙) =
𝑛[𝑁]
sp
∑

𝛼,𝛽=1
𝜂[𝑁]
𝛼𝛽 ∇𝜙𝛼(𝒙) ⋅ 𝜩𝛼𝛽 (𝒙)∇𝜙𝛽 (𝒙) (11)

where 𝜂[𝑁]
𝛼𝛽 is the gradient energy coefficient for the order parameter sets 𝛼𝛽 in material 𝑁 , where 1 ≤ 𝑁 ≤ 𝑁mat , and

𝜩𝛼𝛽 =
𝒃𝛼 ⋅ 𝒃𝛽
𝑑𝛼𝑑𝛽

[(𝒏𝛼 ⋅ 𝒏𝛽 )I − 𝒏𝛽 ⊗ 𝒏𝛼] (12)

here I is the identity tensor. Note that 𝜓lat and 𝜓gra only exist in materials that contain dislocations.
The last energy density in Eq. (1), the external energy density, 𝜓ext , represents the energy arising from externally applied stress

nd/or strain. 𝜓ext is expressed as

𝜓ext (𝒙) = 𝝈app ⋅ 𝝐0(𝒙) (13)
3

where 𝝈app is the applied stress tensor.
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Table 1
Lattice parameters 𝑎0 (in Å), elastic constants 𝐶11, 𝐶12, 𝐶44 (in GPa), and uniform gradient energy coefficients 𝜂 (in 𝜇b2) of the
two pure metals and four random binary alloys studied in this work. 𝑎0 of Cu and Nb are taken from ab initio calculations (Su
et al., 2019a; Xu et al., 2020b). Elastic constants of Cu and Nb are taken from experiments (Warlimont and Martienssen, 2018).
All data (except 𝜂) of the alloys are from recent atomistic simulations (Xu et al., 2022). Isotropic shear modulus in Voigt form
𝜇 = (3𝐶44 + 𝐶11 − 𝐶12)∕5. The three non-zero 𝜂 values are newly calculated in this work.

Phase 𝑎0 𝐶11 𝐶12 𝐶44 𝜇 𝜂

Cu FCC 3.634 169 122 75.3 54.58 0.38
Cu0.9Nb0.1 FCC 3.699 187.25 135.8 81.88 59.42 0.28
Cu0.8Nb0.2 FCC 3.759 195.16 128.44 79.32 60.94 0.19
Cu0.5Nb0.5 Amorphous 193.7 135.9 30.8 30.04 0
Cu0.1Nb0.9 BCC 3.274 221.58 141.63 40.63 40.37 0
Nb BCC 3.324 245 132 28.4 39.64 0

Once the energy functional is set and the order parameters are initialized, we minimize the total system energy with respect
o each order parameter 𝜙𝛼 and each virtual strain component 𝜖𝑎𝑏 (where 𝑎, 𝑏 = 1, 2, 3) via the time-dependent Ginzburg–Landau

equations, i.e.,

�̇�𝛼(𝒙) = −𝑚0[𝜕𝜙𝛼 (𝒙)(𝜓ela(𝒙) + 𝜓gsf (𝒙) − 𝜓ext (𝒙)) − ∇ ⋅ 𝜕∇𝜙𝛼 (𝒙)𝜓gra(𝒙)] (14)

�̇�v𝑎𝑏(𝒙) = −𝑚v
0𝜕𝜖v𝑎𝑏(𝒙)(𝜓ela(𝒙) − 𝜓ext (𝒙)) (15)

where the superposed dot denotes the time derivative. The Ginzburg–Landau coefficients 𝑚0 and 𝑚v
0, in units of m⋅s/kg, are not

necessarily the same but should both be non-negative. Note that Eq. (14) is applied to all materials while Eq. (15) is applied to all
materials except material 1.

2.2. Model and material parameters

Matrices and crystalline precipitates in this work are either FCC or BCC phases. A single slip plane is considered, i.e., 𝑁sp = 1, and
so 𝑛sp = 𝑛op. Let 𝑎0 be the lattice parameter. In FCC phases, the slip plane is {111} and the inter-planar spacing 𝑙gsf = 𝑑𝛼 = 𝑎0∕

√

3.
Within the plane, there are three slip vectors (i.e., 𝑛sp = 3), each of which lies along a ⟨110⟩ direction with 𝑏𝛼 =

√

2𝑎0∕2. Since
𝑛sp > 1, 𝛾gsf is a GSFE surface. In BCC phases, the slip plane is {110}, in which there is only one slip vector along a ⟨111⟩ direction

ith 𝑏𝛼 =
√

3𝑎0∕2. The inter-planar spacing 𝑙gsf = 𝑑𝛼 = 𝑎0∕
√

2. Since 𝑛sp = 1, 𝛾gsf is presented by a GSFE curve.
The crystallographic orientations of the simulation box and the grid spacings depend on the lattice type of the matrix. In an

CC matrix, the orientation is ([1̄10], [111], [112̄]) and the grid spacings are (
√

2𝑎0∕4,
√

3𝑎0∕3,
√

6𝑎0∕4). In a BCC matrix, they are
([111], [1̄10], [1̄1̄2]) and (

√

3𝑎0∕2,
√

2𝑎0∕2,
√

6𝑎0∕3), respectively.
The elastic energy density 𝜓ela is calculated by the fast Fourier transform method. All Ginzburg–Landau coefficients are set to

unity and the timestep size Δ𝑡 = 0.02. Once the dislocations and obstacles or interfaces are initialized, a series of resolved shear
stresses are independently applied to the system to drive the two edge dislocations to move apart. For each shear stress, iterations
are terminated when the Euclidean norm of the difference in global vector of each order parameter and each virtual strain between
successive iterations is smaller than 10−5. The minimum applied stress subject to which each dislocation bypasses its closest obstacle
rray or interface is 𝜎0, and the critical stress 𝜎c = 𝜎0 − 5 × 10−5𝜇, where 𝜇 depends on the matrix, as summarized in Table 1.

In this work, two types of matrices are considered; both are pure metals: Cu and Nb. Four random binary alloys are considered:
u0.1Nb0.9, Cu0.5Nb0.5, Cu0.8Nb0.2, and Cu0.9Nb0.1. As found in our recent atomistic simulations (Xu et al., 2022), all six materials
ut Cu0.5Nb0.5 are crystals. All four random binaries are used to construct obstacles. Three crystalline random binaries are used
o construct interfaces. For each crystalline material, PFDD requires the following: lattice parameter 𝑎0, three independent elastic

constants 𝐶11, 𝐶12, 𝐶44, GSFE surface/curve 𝛾gsf , and gradient energy coefficients 𝜂𝛼𝛽 . For the amorphous material, i.e., Cu0.5Nb0.5,
nly three elastic constants are needed for PFDD. Values of 𝑎0, 𝐶11, 𝐶12, 𝐶44, and 𝛾gsf in all materials are from prior ab initio
alculations (Su et al., 2019a; Xu et al., 2020b), atomistic simulations (Xu et al., 2022), or experiments (Warlimont and Martienssen,
018), and are summarized in Table 1. Given the low mismatch in 𝑎0 between pure metals and alloys of the same lattice, the
oherency strains are minute. In BCC and amorphous materials, there is no gradient energy in the system energy functional (Xu
t al., 2020b). Hence, 𝜂𝛼𝛽 is non-zero only in the three FCC materials, i.e., Cu, Cu0.9Nb0.1, and Cu0.8Nb0.2. We remark that including
he gradient energy into a PFDD model usually increases the calculation time by about 80%.

Here, a uniform coefficient (Xu et al., 2020a) is used, and so 𝜂𝛼𝛽 is simplified as 𝜂. In each FCC material, the following three
teps are taken: (i) run eleven independent PFDD simulations with 𝜂 varying from 0 to 𝜇𝑏2, in increment of 0.1𝜇𝑏2, to obtain
leven Shockley partial dislocation core sizes, (ii) run one atomistic simulation using the embedded-atom method interatomic
otential (Zhang et al., 2013) to obtain one Shockley partial core size, and (iii) use linear interpolation to determine the value
f 𝜂 that allows PFDD to yield the same partial core size as atomistics. Similar procedures were taken to determine 𝜂 in Ag (Xu
t al., 2019c), Al (Xu et al., 2020a), Cu (Xu et al., 2019c), and Ni (Su et al., 2019b) in prior PFDD models, except that the ISF
idth instead of partial core size was used as a metric. A few recent works discussed the derivation and relevancy of the gradient
nergy term and its effects on dislocation core structures (Mianroodi et al., 2016; Xu et al., 2019b,c; Su et al., 2019b) and Peierls
4

tresses (Xu et al., 2020a) in homogeneous FCC metals.



Journal of the Mechanics and Physics of Solids 168 (2022) 105031S. Xu et al.
Table 2
Types of obstacles studied in seven cases of dislocation/obstacles interactions in a Cu matrix, as illustrated in Fig. 1. Phases of
the three alloys can be found in Table 1.
Color Case

A B C D E F G

Orange Void Void Void Cu0.8Nb0.2 Cu0.8Nb0.2 Cu0.8Nb0.2 Cu0.5Nb0.5
Cyan Void Cu0.8Nb0.2 Cu0.5Nb0.5 Cu0.8Nb0.2 Cu0.9Nb0.1 Cu0.5Nb0.5 Cu0.5Nb0.5

Table 3
Types of obstacles studied in six cases of dislocation/obstacles interactions in a Nb matrix, as illustrated in Fig. 1. Phases of the
two alloys can be found in Table 1.
Color Case

A B C D E F

Orange Void Cu0.1Nb0.9 Cu0.5Nb0.5 Cu0.5Nb0.5 Cu0.5Nb0.5 Cu0.1Nb0.9
Cyan Void Void Void Cu0.5Nb0.5 Cu0.1Nb0.9 Cu0.1Nb0.9

Fig. 1. Schematic of the simulation cell for an edge dislocation dipole interacting with two arrays of obstacles in a Cu or a Nb matrix. The gray parallelogram
is the slip plane. Orange and cyan circles are obstacles which may or may not be of the same type. Specific obstacle types are summarized in Tables 2 and 3.

Using these parameters, we calculated the ISF width in Cu, Cu0.9Nb0.1, and Cu0.8Nb0.2, respectively, as 2.53 nm, 2.59 nm, and
2.63 nm. The Peierls stresses are 0.03355𝜇Nb (Xu et al., 2022) and 0.00035𝜇Cu, respectively, in Nb and Cu. Note that the two values
in Cu are respectively larger and lower than what were determined with 𝜂 being zero: 2.31 nm and 0.00255𝜇Cu (Xu et al., 2022).

In heterogeneous materials, values of 𝜂 in Table 1 for all materials but material 1 should be slightly modified before being used
in Eq. (14) in its material 1-based dimensionless form, i.e.,

𝜂[𝑁] = 𝜂 ×
𝜇[𝑁]

𝑏[𝑁]𝑏[𝑁] ×
𝑏[1]𝑏[1]

𝜇[1]
(16)

where 1 < 𝑁 ≤ 𝑁mat .

2.3. Dislocation/obstacle interactions

As illustrated in Fig. 1, a dipole consisting of two edge dislocations with opposite Burgers vectors is built into a 3D periodic
simulation cell. Let 𝐿𝑥, 𝐿𝑦, and 𝐿𝑧 be the edge length of the cell along the 𝑥, 𝑦, and 𝑧 direction, respectively. The two dislocations
lie along the 𝑧 axis on the mid-𝑦 plane, and are separated by 𝐿𝑥∕2 along the 𝑥 direction. The order parameters and their changes
during the iterations are confined to the mid-𝑦 plane. Along the 𝑥, 𝑦, and 𝑧 directions, respectively, 256, 64, and 128 grid points are
employed. Two arrays of spherical obstacles are placed on the mid-𝑦 plane and are separated by 3𝐿𝑥∕4 along the 𝑥 direction. Each
array contains eight obstacles, which can be voids, FCC Cu0.9Nb0.1, FCC Cu0.8Nb0.2, amorphous Cu0.5Nb0.5, or BCC Cu0.1Nb0.9. In
each array, the obstacles are either of the same type or of the alternating type differentiated by the orange and cyan circles in Fig. 1.
All cases studied in this paper are summarized in Tables 2 (Cu matrix) and 3 (Nb matrix).

We remark that the voids in this paper are ‘‘pseudo-voids’’ that were recently developed (Xu et al., 2022). Those voids are
shearable by dislocations. The short-range dislocation/void interactions were captured via treating the void as a crystalline phase
with a set of non-zero order parameters and exceedingly low moduli and GSFEs, i.e.,

𝐶void
𝑖𝑗𝑘𝑙 = 𝐶matrix

𝑖𝑗𝑘𝑙 ∕𝑁, 𝛾voidgsf = 𝛾matrix
gsf ∕𝑁 (17)

where 𝑁 = 105 and 2 × 105 in a Cu and a Nb matrix, respectively. Note that the current work is the first one where a 𝜓gra-included
PFDD simulation is applied to a void-involved problem. For simplicity, we let 𝜂void = 0.

2.4. Dislocation/interface interactions

Simulation cells for an edge dislocation dipole interacting with two 3D interfaces are illustrated in Fig. 2. They are similar to
those for dislocation/obstacle interactions, except that (i) there are 1024 grid points along the 𝑥 direction and (ii) two 3D interfaces
5
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Fig. 2. Schematic of the simulation cell for an edge dislocation dipole interacting with two 3D interfaces in a Cu matrix. The gray parallelogram is the slip
plane. Orange and cyan blocks denote FCC Cu0.8Nb0.2 and FCC Cu0.9Nb0.1, respectively.

Fig. 3. Snapshots of selected configurations for an edge dislocation bypassing four FCC Cu0.8Nb0.2 precipitates (cyan circles) and four voids (orange circles) in
a Cu matrix. The applied stress is constant and is slightly higher than the critical stress. Snapshots are colored by the disregistry field along the 𝑥 direction, 𝜉𝑥,
where blue and red correspond to 𝜉𝑥 = 0 and 𝑏, respectively. The light brown region is the ISF between two Shockley partial dislocations.

separated by 7𝐿𝑥∕8 along the 𝑥 direction are introduced. Four types of 3D interfaces are studied, distinguished by the alloys and
their arrangements. In cases A and B, the interface is monolayer and its thickness ℎ′ varies from 0.51 to 10.03 nm. In cases C and
D, the interface is bilayer and its total thickness 2ℎ′ varies from 1.02 to 10.28 nm.

3. Results and discussion

3.1. Interactions between a dislocation and obstacles

In this section, we study interactions between an edge dislocation and eight obstacles. The obstacles are either of the same type
or of alternating types (Fig. 1). Specific obstacle types are summarized in Table 2 when the matrix is Cu and in Table 3 when it is
Nb.

3.1.1. Cu matrix
We first consider two exemplary cases in Cu. In the first case, all eight obstacles are shearable by dislocations while four of them

are stronger barriers to dislocation glide than the other four. Examples include case B and case E in Table 2. In the second case,
four of the eight obstacles are unshearable, while the remaining four are shearable. Examples are case C and case F in Table 2.

Fig. 3 presents snapshots at different moments as an edge dislocation bypasses an array of alternating FCC Cu0.8Nb0.2 precipitates
and voids when the applied stress is slightly higher than the critical one. At first, portions of the leading partial dislocation extrude
between adjacent obstacles, as shown in Fig. 3(a). Next, the leading partial transmits through the voids (Fig. 3(b)), followed by
that the leading partial further extrudes between adjacent crystalline precipitates (Fig. 3(c)). Once the leading partial shears the
crystalline precipitates and glides away, the trailing partial starts to extrude between adjacent obstacles (Fig. 3(d)), then shears the
voids (Fig. 3(e)), and eventually shears the crystalline precipitates and glides away (Fig. 3(f)).

Fig. 4 is similar to Fig. 3, but for an edge dislocation bypassing an array of alternating FCC Cu0.8Nb0.2 precipitates and amorphous
Cu0.5Nb0.5 precipitates. At first, the leading partial extrudes between adjacent precipitates because all eight of them pose non-
negligible resistance to dislocation gliding (Fig. 4(a)). Then, since the amorphous precipitates are unshearable, the leading partial
only cuts through the FCC precipitates while bowing around the amorphous ones before gliding away (Fig. 4(b,c)). The behavior of
the trailing partial is very similar: extruding between all precipitates, shearing the FCC precipitates, bowing around the amorphous
ones, and gliding away, as shown in Fig. 4(c–f).
6
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Fig. 4. Snapshots of selected configurations for an edge dislocation bypassing four FCC Cu0.8Nb0.2 precipitates (orange circles) and four amorphous Cu0.5Nb0.5
precipitates (cyan circles) in a Cu matrix. The applied stress is constant and is slightly higher than the critical stress. All snapshots are colored in the same way
as Fig. 3.

Fig. 5. Snapshots of selected configurations for an edge dislocation bypassing (a–c) four BCC Cu0.1Nb0.9 precipitates (orange circles) and four voids (cyan circles)
or (d–f) four BCC Cu0.1Nb0.9 precipitates (cyan circles) and four amorphous Cu0.5Nb0.5 precipitates (orange circles) in a Nb matrix. The applied stress is constant
and is slightly higher than the critical stress. All snapshots are colored in the same way as Fig. 3.

3.1.2. Nb matrix

Next, we turn our attention to dislocation/obstacle interactions in a Nb matrix. Similar to the Cu matrix, we focus on two
representative cases, i.e., cases B and E in Table 3. In case B, four out of the eight obstacles are BCC Cu0.1Nb0.9 precipitates while
the other four are voids. As shown in Fig. 5(a–c), the dislocation, which is undissociated, first shears the voids, then shears the
BCC precipitates, and lastly glides away. In case E, four obstacles are also BCC Cu0.1Nb0.9 precipitates, but unlike in case B, the
remaining four obstacles are now amorphous Cu0.5Nb0.5 precipitates. In this case, the dislocation only shears the BCC precipitates
but not the amorphous ones. Eventually a shear loop is left behind around each amorphous precipitate, as shown in Fig. 5(d–f).
Overall, the dislocation/obstacle interactions in a Nb matrix is similar to those in a Cu matrix, except that the entire dislocation
moves together in Nb while two Shockley partial dislocations bypass the obstacle array sequentially in Cu.

Fig. 6 summarizes the critical stresses 𝜎c for an edge dislocation to bypass eight obstacles in a Cu or a Nb matrix. It is found that
in the same matrix, 𝜎c for a dislocation to bypass alternating types of obstacles is between those for the same amount of uniform
obstacles of each type. For example, in Cu, case C, in which there are four amorphous precipitates and four voids, corresponds to
𝜎c of about 0.0067𝜇Cu. On the other hand, 𝜎c for eight amorphous precipitates and eight voids are about 0.021𝜇Cu and 0.0061𝜇Cu,
respectively. In other words, the critical stress for alternating precipitates and voids is closer to that for only voids. It is worth
mentioning that this finding holds in all cases in both matrices, i.e., the critical stress for alternating obstacle type is always closer
to that for the uniform obstacle of the weaker type, provided that both arrays contain the same amount of obstacles. This also
suggests that simple linear interpolation between critical stress for stronger obstacles and that for weaker ones would not yield
accurate critical stress for obstacles of alternating strength.
7
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Fig. 6. Critical stresses for an edge dislocation to bypass eight obstacles in (a) Cu and (b) Nb. Black and red bars are based on uniform and alternating obstacle
types, respectively. Note that in (a), the crystal is Cu0.8Nb0.2, not Cu0.9Nb0.1.

Fig. 7. Critical stresses for the transfer of an edge dislocation through a 3D interface in a Cu matrix, as a function of the interface thickness.

.2. Slip transfer of a dislocation across a 3D interface

In this section, we study slip transfer of an edge dislocation across a 3D interface with a finite thickness in a Cu matrix. Four
ases, summarized in Fig. 2, are studied. In each case, a series of interface thicknesses are considered.

The critical stresses for the edge dislocation to bypass the 3D interface are plotted as a function of the interface thickness in
ig. 7. We first focus on cases A and B. For the same interface thickness, the FCC Cu0.9Nb0.1 phase in case A is a stronger barrier to
islocation gliding than the FCC Cu0.8Nb0.2 phase in case B, in agreement with the results of dislocation/obstacle interactions. The
ritical stress generally increases with the interface thickness until 5.14 nm in case A or 4.11 nm in case B, above which the critical
tress becomes a constant. In each case, there also exists a small stress plateau when the thickness is about 1.42 nm. To uncover the
eason for the plateau, we study the position of the dissociated dislocation with respect to the 3D interface when the applied stress
s slightly lower than the critical stress. At these sub-critical stresses, the dislocation does not bypass the entire interface. Instead,
he trailing Shockley partial dislocation either is stuck within the 3D interface or has not reached the interface. Selected sub-critical
onfigurations in cases A and B are shown in Fig. 8(a,b). With the narrowest 3D interface (0.51 nm), both partial dislocations are
n the Cu matrix while the ISF spans over the interface. As the interface thickness increases, the sub-critical configurations in both
ases become that the leading partial moves out of the interface while the trailing partial is still within.

Next, we turn our attention to cases C and D. The corresponding critical stresses are summarized in Fig. 7(b). In case C, the
islocation first encounters FCC Cu0.9Nb0.1, a harder phase, and then FCC Cu0.8Nb0.2, a weaker phase. In case D, it is the opposite.
8
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Fig. 8. Position of the dissociated dislocation near the 3D interface in cases A–D when the applied stress is slightly lower than the critical one. Two Shockley
partial dislocations are denoted by two vertical red lines respectively, while the ISF by a semi-transparent red block between the two red lines. The leading and
trailing partials are denoted by ‘L’ and ‘T’, respectively. In all cases, the dislocation moves from right to left, as indicated by the arrow.

Interestingly, for the same interface thickness, the critical stress in case C is higher than that in case D only when the 3D interface
is either very thin (one phase being 0.51 nm) or sufficiently thick (one phase is ≥ 2.31 nm). Between cases A and B, the critical
stresses in cases C and D are closer to case A than case B, suggesting that the critical stress for a dislocation to transmit through a
heterogeneous 3D interface is mainly controlled by that through the stronger phase. Similar to cases A and B, the critical stresses
in cases C and D converge to constants when one phase is thicker than 5.14 nm.

When the interface is thin, e.g., each phase is 0.51 nm thick, the ISF straddles the entire 3D interface containing two phases. As
the interface thickness increases, the leading partial is still in the Cu matrix while the trailing partial is stuck in the phase that the
dislocation encounters first. As the interface becomes thicker, two partials are stuck in different phases. The preceding statements
hold for both cases C and D. With even thicker interfaces, the two partials are still in different phases in case C, but are both
stuck in the latter phase, i.e., the stronger Cu0.9Nb0.1 phase, in case D. The change in the dislocation position in the sub-critical
configuration in case D corresponds to the local stress minimum shown in Fig. 7(b). Note that the local stress minimum starts at
an interface thickness 2ℎ′ = 2.58 nm, which is close to the ISF width in Cu, 2.53 nm. On the other hand, there is no local stress
minimum in case C, nor any stress plateau (which occurs in cases A and B).

4. Conclusions

In this work, we develop a PFDD model that takes into account multi-phase elastic heterogeneity, elastic anisotropy, and
dissociated dislocations. Dislocations are able to glide in each phase as well as transmit across coherent boundaries between
crystalline phases. The model is applied to two microstructures, distinct in the type and morphology. The first one is the in-plane
interactions between an edge dislocation and an array of obstacles of either the same or alternating types. In a Cu matrix, four types
of obstacles are considered: void, weak FCC phase, strong FCC phase, and amorphous phase. In a Nb matrix, three types of obstacles
9



Journal of the Mechanics and Physics of Solids 168 (2022) 105031S. Xu et al.

w
3
r
H
t
f

p
i
t
p

C

&

are studied, including void, BCC phase, and amorphous phase. The newly developed PFDD model is found to successfully distinguish
between different types of obstacles. For example, the dislocation first shears the weakest obstacles, i.e., voids, then a weaker
crystalline phase, and lastly a stronger crystalline phase. The amorphous phases are, by design, unshearable by the dislocation, and
so the dislocation line bows out around them, leaving behind shear loops. Both shearing and looping mechanisms were reported
in prior atomistic simulations of dislocation/obstacle interactions (Xu et al., 2019a; Jian et al., 2020). Note that we did not study
either unshearable crystalline precipitates (Adlakha et al., 2019) or shearable amorphous precipitates (Jian et al., 2022). For the
former, PFDD can naturally reproduce the process of a dislocation bypassing a crystalline precipitate via the looping mechanism,
e.g., when the precipitate has a sufficiently high GSFE. For the latter, the PFDD model needs to be further extended to consider the
plastic deformation of amorphous materials, as discussed recently (Xu, 2022).

The second problem to which the multi-phase PFDD model is applied is the slip transfer of a dislocation across a 3D interface
hich contains either one or two crystalline phases. This study is motivated by recent experiments that a Cu/Nb system containing
D interfaces possess simultaneously high strength and ductility (Chen et al., 2020; Cheng et al., 2022). Here, our PFDD simulations
eveal that, regardless of the materials within the interface, the 3D interface is a stronger barrier to dislocation gliding than a 2D one.
owever, the interface strength does not increase indefinitely with its thickness but converges to a constant when it is sufficiently

hick. When the interface thickness is close to the ISF width of the dislocation, there exists a local stress minimum in one of the
our cases studied here.

In either problem, we find that when the dislocation barrier itself is heterogeneous, its resistance to dislocation gliding cannot be
redicted by linearly interpolated from the resistances of individual phases. In dislocation/obstacle interactions, the critical stress
s mainly determined by the weaker obstacles, while in dislocation/interface interactions, the critical stress is chiefly controlled by
he stronger phases. Future work may consider four or more phases in the simulation or the coexistence of BCC and FCC crystalline
hases.
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