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A B S T R A C T

Many elementary deformation processes in metals involve the motion of dislocations. The planes
of glide and specific processes dislocations prefer depend heavily on their atomic core structures.
Atomistic simulations are desirable for dislocation modeling but their application to even
sub-micron scale problems is in general computationally costly. Accordingly, continuum-based
approaches, such as the phase-field microelasticity, phase-field dislocation dynamics (PFDD),
generalized Peierls–Nabarro (GPN) models, and the concurrent atomistic–continuum (CAC)
method, have attracted increasing attention in the field of dislocation modeling because they
well represent both short-range cores interactions and long-range stress fields of dislocations.
To better understand their similarities and differences, it is useful to compare these methods in
the context of benchmark simulations and predictions. In this paper, we apply the CAC method
and different PFDD variants – one of them is equivalent to a GPN model – to simulate an
extended (i.e., dissociated) dislocation in Al with initially pure edge or pure screw character
in terms of the disregistry. CAC and discrete forms of PFDD are also employed to calculate the
Peierls stress. By conducting comprehensive convergence studies, we quantify the dependence
of these measures on time/grid resolution and simulation cell size. Several important but often
overlooked differences between PFDD/GPN variants are clarified. Our work sheds light on the
advantages and limitations of each method, as well as the path towards enabling them to
effectively model complex dislocation processes at larger length scales.

1. Introduction

Dislocations, crystalline line defects, are fundamentally associated with the atomic structure of their nanometer-wide cores,
within which the atoms are displaced with respect to perfect lattice sites (Cottrell, 2002). While atomistic simulations, via either
molecular dynamics (MD) or molecular statics (MS) method, are desirable in modeling dislocations, the large number of degrees
of freedom (DOFs) required makes their application to even submicron-scale problems exceedingly computationally expensive (Xu
and Chen, 2019). At the other extreme, continuum phenomenological models and crystal plasticity neglect the dislocation core and
line discreteness, focusing instead on collective dislocation behavior at and beyond the millimeter scales resulting in slip (Chavoshi
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and Xu, 2019). Classical (i.e., Volterra) continuum dislocation theory neglects the core altogether, and is based on linear elasticity
theory which breaks down in the core region.

In the last few decades, numerous continuum modeling approaches have been proposed and applied to study discrete dislocations
as lines but without explicitly describing the individual atomic displacements in their cores. In the continuum context, displacements
of discrete atoms are approximated by continuous displacement fields, based on which the elastic stress/energy fields outside the
dislocation cores can be calculated with the help of linear elasticity. It then follows that either the force applied on each individual
dislocation line or the free energy of the dislocation ensemble is calculated and used to drive dislocation motion or to find equilibrium
positions of dislocations. For example, in discrete dislocation dynamics (DDD), atoms around dislocations are coarse-grained into
discrete lines (Bulatov and Cai, 2006), between which the long-range force-based interactions are dictated via linear elasticity theory
while some short-range interactions, e.g., formation and unzipping of dislocation junctions, jogs, and dipoles, may be based on
pre-defined criteria (Rhee et al., 1998).

Other continuum modeling approaches, e.g., the phase-field (PF) method (Cahn and Hilliard, 1958; Allen and Cahn, 1979), are
energy-based (see e.g., Hohenberg and Halperin, 1977; Provatas and Elder, 2010). In a PF model, the free energy of the system is
constructed as a function of order parameters that have difference values for different phases. Then, as the free energy approaches a
local minimum, the order parameters at each continuum point are updated and consequently the interfaces between phases move. In
general, a ‘‘phase’’ is not limited to the state of matter in thermodynamics, but can represent any ‘‘state’’ in a material, e.g., different
lattices (e.g., Levitas, 2018), chemical compositions (e.g., Seol et al., 2003), crystalline grains (e.g., Warren et al., 2003), and cracks
in a solid (e.g., Shanthraj et al., 2016, 2017). For dislocation modeling, each phase corresponds to a ‘‘state of slip’’, be it non-slipped,
slipped after one dislocation passed, slipped after two dislocations passed, and so on. It follows that dislocations are assumed to
evolve such that the free energy of the dislocated system approaches a local minimum.

Similar to PF-based dislocation modeling (e.g., Wang et al., 2001; Koslowski et al., 2002; Shen et al., 2014; Mianroodi and
Svendsen, 2015) is that based on the generalized Peierls–Nabarro (GPN) model (Schoeck, 1994). In these, the free energy of a
dislocated system is formulated based on, and minimized with respect to, a continuum disregistry field, which is represented by
order parameters. Individually in PF- and GPN-based models, different variants have been developed over the years by formulating
different initial boundary value problems and employing different numerical solution methods. Physically, PF- and GPN-based
models are often equivalent (e.g., Mianroodi et al., 2016). To understand the similarities and differences of such models better, it is
important to compare them. Earlier works have clarified the differences between PF models from an analytical point of view (e.g.,
Wang and Li, 2010). Later, the disregistry/stress fields of edge and screw dislocations calculated with two PF variants, phase-field
dislocation dynamics (PFDD) (Koslowski et al., 2002) and atomistic phase-field microelasticity (APFM) (Mianroodi and Svendsen,
2015), have been compared for face-centered cubic (FCC) Al and Au (Mianroodi et al., 2016; Xu et al., 2019b,c). An extension
of PFM (Wang et al., 2001), APFM determines the entire energy (i.e., including the gradient energy) atomistically, e.g., with the
help of an interatomic potential or density functional theory (DFT). The original PFDD model (Koslowski et al., 2002) did not
include the gradient energy in its total energy, making it GPN-like (Mianroodi et al., 2016). Recently, PFDD has been extended to
include the gradient energy in the PFDD free energy functional (Xu et al., 2019c). As a result, the extended PFDD model, although
mathematically different because it is based on different slip vectors than APFM, is physically equivalent to the latter. In this paper,
several PFDD variants will be applied to the same dislocations and their results will be compared. One PFDD variant is equivalent
to a GPN model while another is to APFM.

Another continuum-based approach is the concurrent atomistic–continuum (CAC) method (Xiong et al., 2011; Xu et al., 2015).
Unlike models in the framework of classical continuum mechanics (CCM), the CAC method has theoretical roots in generalized
continuum mechanics (GCM). In CCM, a material is treated as a continuum of material points with infinitesimal size. Each point
behaves locally following a constitutive rule, whereas interactions between these points take place only indirectly through the
balance equations. At the atomic/nano-scale, however, atoms interact with each other on a complex, multi-dimensional interatomic
energy surface, so the locality assumption in CCM no longer holds (Chen and Lee, 2005). Motivated by the limitations of CCM,
GCM models that extend the classical field theory to microscopic space and time scales have been proposed (Eringen, 2004). In
GCM, a material consists of continuously distributed finite-sized points, each of which has an internal deformation represented by
some vectors. Differing in how these vectors are selected, there are many GCM models (Xu et al., 2018c). Atomistic field theory
(AFT) (Chen, 2009) is one such model, on which the CAC method is based. AFT concurrently bridges the discrete and continuous
descriptions of materials, two fundamentally different viewpoints. Accordingly, the CAC method, as a realization of AFT, coarse-
grains atomistic simulations with finite elements, which have much fewer DOFs than equivalent atomistic models. The CAC method
has been used to predict the disregistry and Peierls stress of pure edge, pure screw, and mixed-type dislocations in FCC metals (Xu
et al., 2015, 2016a, 2018c).

In this paper, we compare simulation results from five PFDD variants and the CAC method in the context of their theoretical
aspects, as well as corresponding disregistry field and Peierls stress of a static dislocation of pure edge or pure screw type in Al. A
systematic convergence study of the time/grid resolution and simulation cell size in these approaches is provided. Among the PFDD
variants, we highlight the effects of (i) whether the gradient energy is included, (ii) determination of the gradient energy coefficients,
(iii) whether all slips are confined to the slip plane, and (iv) elastic anisotropy. These four modeling choices are selected because
we consider them the most important among all PF dislocation model variants. We remark that the effects of the gradient energy on
the disregistry fields were previously quantified (Mianroodi and Svendsen, 2015; Mianroodi et al., 2016; Su et al., 2019b; Xu et al.,
2019b,c,d). On the other hand, the Peierls stress, which is closely related to the critical resolved shear stress in an otherwise perfect
metal, is also important but was much less studied. To bring validation and reproducibility to the field of dislocation modeling,
it is necessary to compare multiple modeling choices in terms of both disregistry and Peierls stress. While this work focuses on
their effects on static dislocation core structures, different modeling parameter choices may result in different collective dislocation
dynamics, and hence different predicted macroscopic material properties.
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Fig. 1. (a) An illustration of an edge dislocation in a lattice. Atoms are represented by open circles, with those immediately above and below the slip plane
(𝑦 = 0) in red. 𝑑111 is the distance between two adjacent slip planes. The dislocated system is partitioned into two 3D half-spaces (green boxes), region I and
region III, between which there is a 2D flat slab, region II, colored by the magnitude of the disregistry 𝜻 along the 𝑥 direction. (b) An illustration of a part of
the 3D grid around the dislocation in the PF models. The grid spacings are ℎ𝑥, ℎ𝑦, and ℎ𝑧. The red area and the orange arrow represent the slip plane and the
dislocation line, respectively.

2. Theoretical background

In this work, we adopt the following notation. 3D Euclidean vectors are represented by lower-case boldfaced, italicized characters
𝒂, 𝒃,…. Cartesian basis vectors are represented by 𝒊𝑥, 𝒊𝑦, 𝒊𝑧. Second rank tensors are represented by upper-case boldfaced, italicized
characters 𝑨,𝑩,…, with 𝑰 being the second-rank identity matrix. By definition, any 𝑨 maps any 𝒃 linearly into a vector 𝑨𝒃.
A ⋅ B = 𝐴𝑖𝑗⋯𝐵𝑖𝑗⋯ is the scalar product of two tensors of arbitrary order. Fourth-rank Euclidean tensors 𝘼,𝘽 ,… are denoted by
upper-case slanted sans-serif characters. By definition, any 𝘼 maps any 𝑩 linearly into a second-order tensor 𝘼𝑩. (𝒂⊗ 𝒃)𝒄 = (𝒃 ⋅ 𝒄)𝒂
defines the dyadic product 𝒂⊗𝒃 of 𝒂 and 𝒃, 𝑨T𝒃 ⋅𝒄 = 𝒃 ⋅𝑨𝒄 defines the transpose 𝑨T of 𝑨, and 𝘼T𝑩 ⋅𝑪 = 𝑩 ⋅𝘼𝑪 defines the transpose
𝘼T of 𝘼. Finally, let sym 𝑨 = (𝑨 + 𝑨T)∕2 represent the symmetric part of 𝑨. Additional notations will be introduced as needed in
what follows.

2.1. Continuum phase-field (PF) method for the disregistry

Fig. 1a illustrates an edge dislocation in a crystal. This dislocated crystal can be viewed as two 3D half-spaces, regions I and III,
separated by a 2D flat slab, region II, lying on the slip plane, the 𝑦 = 0 plane. Since there are usually multiple slip systems in a
lattice, a set of 𝑛 order parameters 𝝓 = (𝜙1,… , 𝜙𝛼 ,… , 𝜙𝑛) is introduced for the state of slip. An order parameter 𝜙𝛼 can be used for
the 𝛼th slip system, in which case 𝜙𝛼 = 0 and 1 represent the unslipped and slipped states, respectively. Then, dislocations are the
regions occupied by the continuum points with any order parameter having a non-integer value. We emphasize that the state of slip
represented by 𝜙𝛼 is particular only to the 𝛼th order parameter: a continuum point that is slipped in terms of one order parameter
may be unslipped in terms of another, and vice versa. Within region II, a sharp interface between the two areas with different states
of slip is a dislocation with a planar, compact core. Slip order parameters represent the transition from unslipped to slipped crystal.
The FCC lattice, e.g., Al, has a unique misfit energy landscape on {111} slip planes and a {111} dislocation is usually dissociated
into two Shockley partial dislocations bounding an intrinsic stacking fault (ISF). Within the context of a PF model, the dissociated
dislocation has a finite width, for which 0 < 𝜙𝛼 < 1. As the free energy changes, e.g., approaching a local minimum, 𝜙𝛼 at each
continuum point is updated and consequently the dislocation core evolves.

In our application of the PF models, we restrict attention to single-element FCC materials. Let 𝒖 represent the displacement field,
𝑯 = ∇𝒖 the distortion field, 𝑬 = sym𝑯 the strain field, 𝑎0 the lattice parameter, and 𝑏 the magnitude of the Burgers vector of a
perfect dislocation 𝒃 = (𝑎0∕2) ⟨110⟩. The total free energy 𝛹 is the integration of the free energy density 𝜓 over the entire domain,
i.e.,

𝛹 = ∫ 𝜓(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧 , (1)

where 𝜓 is the sum of the elastic energy density 𝜓ela, the generalized stacking fault energy (GSFE) density 𝜓gsf , and the gradient
energy density 𝜓gra (e.g., Wang et al., 2001; Mianroodi and Svendsen, 2015; Xu et al., 2019c), i.e.,

𝜓(𝑥, 𝑦, 𝑧) = 𝜓[𝑬(𝑥, 𝑦, 𝑧),𝝓(𝑥, 𝑦, 𝑧),∇𝝓(𝑥, 𝑦, 𝑧)] = 𝜓ela(𝑬,𝝓) + 𝜓gsf (𝝓) + 𝜓gra(∇𝝓) . (2)

In particular,

𝜓ela(𝑬,𝝓) =
1
2 (𝑬 − 𝑬R(𝝓)) ⋅ 𝘾E (𝑬 − 𝑬R(𝝓)) , (3)
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𝜓gsf (𝝓) =
𝛾gsf (𝝓)
𝑙gsf

, (4)

𝜓gra(∇𝝓) =
𝑛
∑

𝛼,𝛽=1
𝜂𝛼𝛽g0 ∇𝜙𝛼 ⋅𝑵𝛼𝛽∇𝜙𝛽 , (5)

where 𝘾E is the elastic stiffness tensor, 𝑬R = sym𝑯R is the residual strain, 𝛾gsf is the GSFE per unit area, 𝑙gsf is the interplanar
distance between two adjacent slip planes based on which 𝛾gsf is calculated, 𝜂𝛼𝛽g0 are the gradient energy coefficients, and

𝑯R(𝝓) =
𝑛
∑

𝛼=1

𝑏𝛼𝜙𝛼
𝑑𝛼

𝒔𝛼 ⊗ 𝒏𝛼 , (6)

𝑵𝛼𝛽 =
𝒃𝛼 ⋅ 𝒃𝛽
𝑑𝛼𝑑𝛽

[(𝒏𝛼 ⋅ 𝒏𝛽 )𝑰 − 𝒏𝛽 ⊗ 𝒏𝛼] . (7)

Here, 𝒔𝛼 is the slip direction, 𝒏𝛼 is the slip plane unit normal, 𝒃𝛼 = 𝑏𝛼𝒔𝛼 is the slip vector, and 𝑑𝛼 is the interplanar distance
between two adjacent slip planes, of the 𝛼th order parameter. For a single slip plane in an FCC metal, 𝑙gsf = 𝑑𝛼 = 𝑑𝛽 = 𝑑111 = 𝑎0∕

√

3,
where 𝑑111 is the interplanar distance between two adjacent {111} planes. 𝜓gsf represents the density of energy stored in stacking
faults (e.g., ISF) and partial dislocation (e.g., Shockley partial) cores, while 𝜓gra the density of energy stored in the latter only. In
practice, a 3D grid, e.g., the one illustrated in Fig. 1b, is used for discretization.

When the system is subject to an applied stress 𝝈app, the external energy density 𝜓ext is added to the total energy density, i.e.,

𝜓ext (𝝓) = 𝝈app ⋅ 𝑬R(𝝓) . (8)

The time-dependent Ginzburg–Landau (TDGL) equation is then employed to recursively minimize the system free energy with
respect to each 𝜙𝛼 , i.e.,

�̇�𝛼 = 𝑚0 [∇ ⋅ 𝜕∇𝜙𝛼𝜓gra − 𝜕𝜙𝛼 (𝜓ela + 𝜓gsf + 𝜓ext )] , (9)

where the superposed dot denotes the time derivative and the Ginzburg–Landau coefficient 𝑚0 is non-negative and assumed constant
here. Once all 𝜙𝛼 are determined, the disregistry field 𝜁𝛽 along the 𝛽 direction is calculated by

𝜁𝛽 =
𝑛sp
∑

𝛼=1
𝜙𝛼 𝒃𝛼 ⋅ 𝒔𝛽 , (10)

where 𝑛sp is the total number of order parameters on the slip plane within which the 𝛼th order parameter and 𝛽 direction lie. Here,
𝛽 = 1 and 𝛽 = 2 represent the directions along and normal to the perfect dislocation Burgers vector, respectively. At each continuum
point, the 1 × 2 disregistry vector 𝜻 lies within each slip plane. For disregistry calculations, the grid spacing along the slip plane
normal is usually 𝑑111, while the in-slip-plane grid spacings should be as small as possible.

2.2. Continuum generalized Peierls–Nabarro (GPN) models for the disregistry

Similar to the conventional PF model of a dislocation, a GPN model also divides a dislocated system into two half-spaces separated
by a 2D flat slab that lies on the slip plane (Fig. 1a). In the original PN model (Peierls, 1940; Nabarro, 1947), a straight edge
dislocation with a planar core can only dissociate along the perfect dislocation Burgers vector direction, i.e., only 𝜁1 is predicted. Over
the last decades, specifically for dislocations in FCC metals, the original PN model was extended to 2D (i.e., 𝜁2 is included) (Schoeck,
1994), to 3D (i.e., the component of 𝜻 along the 𝒏𝛼 direction is considered), for mixed-type dislocation (Joós et al., 1994), and for
curved dislocation (Xiang et al., 2008), which are collectively termed GPN models. The free energy in GPN models is often formulated
as an explicit function of the disregistry field 𝜻 or the displacement field 𝒖, which are equivalent. As shown by Mianroodi et al.
(2016), the GPN free energy of Xiang et al. (2008) is physically equal to the homogeneous part of the free energy in PFM-based
models (e.g., Wang et al., 2001; Mianroodi and Svendsen, 2015) that are based on order parameters.

In most GPN models (except, e.g., Miller et al., 1998, in which 𝜓gsf has a non-local kernel), the total energy density consists of
𝜓ela and 𝜓gsf , i.e.,

𝜓(𝑬,𝝓) = 𝜓ela(𝑬,𝝓) + 𝜓gsf (𝝓) . (11)

It follows that the energy minimization can be realized by

�̇�𝛼 = −𝑚0𝜕𝜙𝛼 (𝜓ela + 𝜓gsf + 𝜓ext ) , (12)

when the system is subject to 𝝈app. Then Eq. (10) can be adopted to calculate the disregistry. Similar to the PF model, 𝑑111 is usually
taken as the grid spacing along the slip plane normal, while small grid spacings are used within the slip plane.
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Fig. 2. An illustration of the structured grid points (black crosses) in SVPN overlaid with atoms on two adjacent {111} planes, which are colored in red and
blue, respectively. The two atomic spacings within a {111} plane are ℎ110 and ℎ112, which are also used as grid spacings in discrete PFDD simulations for the
Peierls stress, unless stated otherwise. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2.3. Discrete phase-field (PF) method and semi-discrete variational Peierls–Nabarro (SVPN) models for the Peierls stress

In continuum PF and GPN models, all energy densities (e.g., 𝜓ela and 𝜓gsf ) are calculated continuously, and the in-slip-plane grid
spacings are usually chosen as small as possible to achieve the convergence of the disregistry. However, when these grid spacings
approach zero, a rigid dislocation moving in a continuous domain experiences no energy barrier, and hence the Peierls stress is
zero. Using a 2D PF model, Hu et al. (2004) found that, when the in-slip-plane grid spacing is sufficiently small, there exists a linear
relationship between the dislocation velocity and the applied stress. In other words, the dislocation velocity approaches, but does not
equal, zero as the applied stress tends to zero, indicating that there would be no slip resistance. The same was found in the continuum
PN model (Peierls, 1940; Nabarro, 1947). One way to circumvent this is to calculate the disregistry first, followed by sampling of
the misfit energy (i.e., GSFE in the context of dislocations in FCC systems) at discrete atomic sites (Joós and Duesbery, 1997). Then
the Peierls stress is related to the maximum slope of the summed misfit energy (Xiang, 2006). Within the GPN framework, different
energy models or sampling methods were developed over the years. For example, in most GPN models, 𝜓gsf is expressed as a local
function of 𝜻 and sampled on only one side of the slip plane. However, in some versions, 𝜓gsf is summed over 𝜻 in a non-local
way (Schoeck, 1999) or independently over 𝒖 on the two atomic rows immediately above and below the slip plane (Lu et al.,
2000b). In theory, the same technique could be used to calculate the Peierls stress in continuum PF dislocation models. However,
this has not been done in the literature, to our best knowledge.

One drawback of this approach is that it usually predicts an unrealistically high Peierls stress. The inconsistency between the
continuous elastic energy and the discrete GSFE also casts doubt on its validity. To address these issues, Bulatov and Kaxiras (1997)
proposed a semi-discrete variational PN (SVPN) model, in which both 𝜓ela and 𝜓gsf are discretized using finite differencing and
numerical integration. A discrete variational method is used to determine the equilibrium discrete nodal disregistries, then the
Peierls stress is the critical applied stress at and above which the energy minimization fails. One key ingredient in the SVPN model
is that the in-slip-plane grid spacings can no longer be arbitrarily varied for the Peierls stress calculation. Instead, each grid point
should correspond to an atom, as illustrated in Fig. 2. While most SVPN models use rectangular grids, one recent model used rhombic
grids, which brought the Peierls stress closer to the experimental values by 20%–30% (Edagawa et al., 2019). Similar to the GPN
models, only 𝜓ela are 𝜓gsf are considered in most SVPN models. However, in a few SVPN variants, an additional non-local energy
term (Liu et al., 2017a) or a gradient energy term (Liu et al., 2016; Hale, 2018) is added to the total energy. These are exceptions
rather than the norm.

In this work, to calculate the Peierls stress, we formulate the discrete PFDD model, i.e.,

𝛹 =
𝑁𝑧
∑

𝑘=1

𝑁𝑦
∑

𝑗=1

𝑁𝑥
∑

𝑖=1
𝜓(𝑥, 𝑦, 𝑧) , (13)

where 𝑁𝑥, 𝑁𝑦, and 𝑁𝑧, respectively, are the numbers of grid points along the 𝑥, 𝑦, and 𝑧 directions. Here, 𝜓 is no longer the free
energy density but the discrete free energy at grid points located at (𝑥, 𝑦, 𝑧), which correspond to atoms, as shown in Fig. 2. Let the
uniform grid spacings along the 𝑥, 𝑦, and 𝑧 directions be ℎ𝑥, ℎ𝑦, and ℎ𝑧, respectively. Then within each rectangular cuboid centered
at each grid point, i.e., [𝑥− ℎ𝑥∕2, 𝑥+ ℎ𝑥∕2) ∩ [𝑦− ℎ𝑦∕2, 𝑦+ ℎ𝑦∕2) ∩ [𝑧− ℎ𝑧∕2, 𝑧+ ℎ𝑧∕2), all mechanical quantities, such as disregistry,
strain, and stress, are constants. The calculation of 𝜓 follows Eqs. (3)–(7), where 𝑬, 𝝓, and ∇𝝓 (in its central difference form) are
values of respective quantities at (𝑥, 𝑦, 𝑧). Then a discretized TDGL equation, similar to that for a prior SVPN model (Wei et al.,
2008), is used to energy minimize the system. We remark that if the same grid spacings are used in the discrete and continuum
PFDD models, the calculated disregsitry field would be the same.

One difference between the discrete PFDD model and SVPN is the inclusion of the gradient energy density 𝜓gra in the former, as
demonstrated between Eqs. (2) and (11). As will be discussed in Section 2.4, one PFDD variant we will use will have 𝜓gra removed.
This PFDD variant, termed ‘‘PFDDng’’, is equal to the SVPN model in its discrete form.
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Table 1
A summary of the differences among the five PFDD variants studied in this paper. 𝘾E is the stiffness
tensor, 𝜓gra is the gradient energy density, 𝜂𝛼𝛽g0 are gradient energy coefficients, and 𝑦 = 0 is the slip
plane.

𝘾E 𝜓gra 𝜂𝛼𝛽g0 𝝓(𝑦 ≠ 0) = 𝟎

PFDD Anisotropic Yes Non-uniform Yes
PFDDng Anisotropic No 0 Yes
PFDDugc Anisotropic Yes Uniform Yes
PFDDnc Anisotropic Yes Non-uniform No
PFDDiso Isotropic Yes Non-uniform Yes

2.4. Phase-field disocation dynamics (PFDD) variants

While the same basic framework (Eqs. (2) to (9)) is used for modeling dislocations in PF methods, different variants have been
developed due to optional modeling choices. In this paper, we use PFDD as a model method to illustrate three differences among
PF variants.

The first difference concerns whether the gradient energy density 𝜓gra is included. To demonstrate this, the PFDD variant that
follows Eq. (11) is termed ‘‘PFDDng’’. Effects of 𝜓gra will be discussed in Section 5.1.

The second difference concerns the gradient energy coefficients 𝜂𝛼𝛽g0 . By modifying the form proposed by Wang et al. (2001),
Shen and Wang (2003) proposed Eq. (5), where 𝜂𝛼𝛽g0 were considered arbitrary parameters. For dissociated dislocations in FCC
metals, Mianroodi and Svendsen (2015) fit 𝜂𝛼𝛽g0 to the MS-based Shockley partial dislocation core structure. In one SVPN model, 𝜂𝛼𝛽g0
were fit to the MS-based disregistry fields (Liu et al., 2016). In all these works, a uniform 𝜂𝛼𝛽g0 was adopted for all order parameters.
Recently, Xu et al. (2019c) proposed a new PF variant in which 𝜂𝛼𝛽g0 are independently adjustable parameters for each set of 𝛼𝛽. Yet
the new PF variant has not been compared with prior variants in which a uniform 𝜂𝛼𝛽g0 was used. In Section 5.2, we will compare
the model proposed by Xu et al. (2019c), denoted as ‘‘PFDD’’, with another variant, termed ‘‘PFDDugc’’, in which a uniform 𝜂𝛼𝛽g0 is
fit to the MS-based ISF width associated with the full dislocation.

The third difference is related to an important but often overlooked difference between GPN/SVPN and conventional PF models
of dislocations, in terms of which 𝝓 are taken into account. In an FCC lattice, the GPN/SVPN model only takes into account 𝝓 within
the {111} slip plane (i.e., 𝑦 = 0 in Fig. 1a), while conventional PF models consider 𝝓 everywhere, including those on non-slip planes
(i.e., 𝑦 ≠ 0). Appendix shows that 𝝓 may be non-zero on non-slip planes. This is also the case even in a dislocation-free system
subject to a small deformation. Strictly speaking, the non-zero 𝝓 at points that are not on the slip plane do not represent the state of
slip, so they should not contribute to the free energy of the system via Eqs. (3), (4), (5), and (8). This is the case in the GPN/SVPN
models. In Fig. 1a, 𝜓ela represents the elastic energy stored in regions I and III and 𝜓gsf represents the GSFE stored in region II. As
a result, regions I and III are two Hookean linear elastic continua, while region II is a non-Hookean slab (Wang and Li, 2010). With
this view of a dislocated system, sometimes called the ‘‘Peierls model’’, the GPN/SVPN model can be numerically solved using a 1D
grid (along the 𝑥 direction) or a 2D grid (along both 𝑥 and 𝑧 directions) within the slip plane.

In contrast, conventional PF models do not confine the energy densities to the slip plane(s). For instance, as illustrated in Fig. 1a,
non-zero 𝝓(𝑥, 𝑦 ≠ 0, 𝑧), e.g., 𝝓(𝑥, 6𝑑111, 𝑧) and 𝝓(𝑥,−4𝑑111, 𝑧) are used to calculate non-zero 𝜓ela, 𝜓gsf , and 𝜓ext on these planes, which
then add to the total free energy of the system. Consequently, a 3D grid is used and regions I and III are no longer strictly Hookean.
This treatment is unphysical because non-zero 𝝓(𝑥, 𝑦 ≠ 0, 𝑧), especially when |𝑦| is large, do not represent dislocations and should
not contribute to the free energies densities, e.g., the GSFE density, which represents the density of energy stored within the ISFs
and Shockley partial dislocations which only exist inside the slip planes. Following the Peierls model, Shen et al. (2014) formulated
a new PF dislocation model, which confines the inelastic displacement to the slip plane, restricts the elastic energy to the two
half-spaces, and omits the gradient energy density 𝜓gra. However, the differences between the new PF model and the conventional
one were not quantified. In this paper, a comparison will be conducted in Section 5.3, with 𝜓gra included in relevant PFDD variants.
In what follows, the conventional PF model is termed ‘‘PFDDnc’’, while all other PFDD variants confine all ‘‘slip’’ strictly to the slip
plane.

It is also of interest to study the effects of elastic anisotropy on the calculated dislocation properties. Prior atomistic sim-
ulations (Rasmussen et al., 1997), a GPN model (Szajewski et al., 2017), and a PFDD model (Xu et al., 2019d) showed that
approximating an elastic anisotropic medium as an isotropic one results in an underestimation and overestimation of the ISF width
associated with the edge and screw dislocations, respectively. However, it remains unclear, to our best knowledge, how the isotropic
approximation influences the Peierls stress. To demonstrate this, we will study another PFDD variant, termed ‘‘PFDDiso’’, in which
the material is assumed elastic isotropic.

Differences between the five variants — PFDD, PFDDng, PFDDugc, PFDDnc, and PFDDiso — are summarized in Table 1. As
discussed, PFDDng is equivalent to GPN, and PFDD is equivalent to APFM. In addition, in its discrete form, PFDDng is equivalent to
SVPN.
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Fig. 3. A 2D CAC simulation cell consisting of an atomistic domain and a coarse-grained domain. In (a), an edge dislocation is located in the atomistic domain.
Upon applying a shear stress on the simulation cell, the dislocation migrates into the coarse-grained domain in (b), where the Burgers vector spreads out between
discontinuous finite elements, whose edge length is ℎsp.

2.5. Concurrent atomistic–continuum (CAC) method

The theoretical foundation of the CAC method is AFT, which views a crystal as a continuous collection of lattice points; embedded
within each point is a unit cell containing a group of discrete atoms (Xiong et al., 2015). In other words, a two-level crystalline
materials description in solid state physics, i.e., crystal structure = lattice + basis, is employed (Xiong et al., 2016). AFT differs from
other GCM models in that its sub-level structure and physical description are not continuous but discrete (Chen et al., 2011). In
terms of Eulerian coordinates, AFT has the following balance equations (Chen, 2006, 2009; Chen et al., 2018), i.e.,

d𝜌𝑎

d𝑡
= −𝜌𝑎(∇𝒓 ⋅ 𝒗 + ∇Δ𝒓𝑎 ⋅ Δ𝒗𝑎) , (14)

𝜌𝑎 d
d𝑡
(𝒗 + Δ𝒗𝑎) = ∇𝒓 ⋅ 𝑻 𝑎 + ∇Δ𝒓𝑎 ⋅ 𝑺𝑎 + 𝒇 𝑎ext , (15)

𝜌𝑎 d𝑒
𝑎

d𝑡
= ∇𝒓 ⋅ 𝒒𝑎 + ∇Δ𝒓𝑎 ⋅ 𝒋𝑎 + 𝑻 𝑎 ⋅ ∇𝒓(𝒗 + Δ𝒗𝑎) + 𝑺𝑎 ⋅ ∇Δ𝒓𝑎 (𝒗 + Δ𝒗𝑎) , (16)

where 𝒓 is the physical space coordinate of the continuously distributed lattice; Δ𝒓𝑎 (𝑎 = 1, 2,… , 𝑁𝑎 with 𝑁𝑎 being the total number
of atoms in a unit cell) is the subscale internal variable corresponding to the position of atom 𝑎 relative to the mass center of the
lattice located at 𝒓; 𝜌𝑎, 𝜌𝑎(𝒗+Δ𝒗𝑎), and 𝜌𝑎𝑒𝑎 are respectively, the local density of mass, linear momentum, and total energy; 𝒗 is the
velocity vector of the lattice point 𝒓; 𝒗+Δ𝒗𝑎 is the atomic-level velocity vector of atom 𝑎; 𝒇 𝑎ext is the external force vector applied on
atom 𝑎; 𝑻 𝑎 and 𝒒𝑎 are, respectively, the stress tensor and heat flux vector contributed by atom 𝑎 due to the homogeneous distortion
of the lattice; 𝑺𝑎 and 𝒋𝑎 are, respectively, the stress tensor and heat flux vector resulting from the reorganization of atoms within
the unit cells.

For monatomic crystals like Al, 𝑁𝑎 = 1, Δ𝒓𝑎 = 𝟎, and Δ𝒗𝑎 = 𝟎. Consequently, the balance equations reduce to those in CCM (Xu
et al., 2018a), i.e.,

d𝜌
d𝑡

= −𝜌∇𝒓 ⋅ 𝒗 , (17)

𝜌 d𝒗
d𝑡

= ∇𝒓 ⋅ 𝑻 + 𝒇 ext , (18)

𝜌d𝑒
d𝑡

= ∇𝒓 ⋅ 𝒒 + 𝑻 ⋅ ∇𝒓𝒗 . (19)

AFT is applicable to a wide range of nano/micro-scale thermal and mechanical problems in various monatomic and polyatomic
crystalline materials. In practice, AFT-based methods partition the simulation cell into two domains: an atomistic domain and a
coarse-grained domain, with the interatomic potential as the only constitutive rule (Xu et al., 2016d). In the atomistic domain,
𝒓 is the atomic position and Eq. (18) is the Newton’s second law. Hence, the atoms are updated in the same way as in MD or
MS (Xu et al., 2016b). In the coarse-grained domain, realizations of AFT differ in how the balance equations are numerically solved.
Specifically for dislocation modeling, the CAC method employs finite elements, while requiring neither displacement continuity nor
strain compatibility between them, as illustrated in Fig. 3. As a result, discontinuities may form between finite elements (Xu et al.,
2017b). For these discontinuities to be dislocations, all surfaces of the finite elements should lie on the slip planes of the lattice,
e.g., the {111} planes in an FCC lattice (Xu et al., 2017a). The CAC method equipped with these finite elements is shown to be
useful to explore problems in which full atomistic resolution is required in some regions (e.g., lattice defects), with coarse-graining
employed elsewhere to support representation of dislocation interactions and transport (Xu et al., 2017c, 2019a). In this paper, we
focus on the modeling of dislocations between finite elements in the coarse-grained domain.
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Table 2
Values of some material parameters determined from the EAM potential (Mishin et al., 1999)
as discussed in the text. The lattice constant 𝑎0 is in units of Å; the elastic constants 𝐶11, 𝐶12,
𝐶44 are in units of GPa.
𝑎0 𝐶11 𝐶12 𝐶44

4.05 113.80 61.55 31.60

Fig. 4. Simulation box set-up for dissociation of (a) an edge dislocation dipole and (b) a screw dislocation dipole.

3. Simulation set-up

In this section, we present the set-up used in MS, CAC, and PFDD simulations for a static dislocation of pure edge or pure screw
type in Al. For comparability of all simulation results, we use the same embedded-atom method (EAM) potential (Mishin et al.,
1999), which was shown to agree well with DFT calculations in terms of the ISF energy in Al (Zimmerman et al., 2000). The EAM
potential is used for the interatomic interactions in MS and CAC simulations, and for material properties needed in PFDD free energy
models, including lattice constant 𝑎0, elastic constants 𝐶11, 𝐶12, 𝐶44, gradient energy coefficients 𝜂𝛼𝛽g0 , and GSFE per unit area 𝛾gsf .
The first four parameters are summarized in Table 2.

A dislocation dipole consisting of two dislocations of the same type but with opposite Burgers vector is built into a 3D periodic
simulation cell, as illustrated in Fig. 4. Let 𝐿𝑥, 𝐿𝑦, and 𝐿𝑧 be the edge length of the cell along the 𝑥, 𝑦, and 𝑧 directions, respectively.
The two dislocation lines lie on the mid-𝑦 plane and are separated by 𝐿𝑥∕2 along the 𝑥 direction. In all simulations, the dislocated
system is subject to energy minimization, during which each dislocation, referred to as a monopole in what follows, extends on
the mid-𝑦 plane. In all cases, we calculate the disregistry fields of dislocations under zero applied stress, i.e., 𝝈app = 𝟎. In selected
cases, we also calculate the Peierls stress of the dislocation, 𝜎P, which is the minimum resolved shear stress required to translate a
dislocation (Peierls, 1940).

A convergence analysis of the time/grid resolution and simulation cell size in PFDD variants and MS/CAC will be conducted
in Section 4. A comparison between different PFDD variants will be presented in Section 5. Whenever possible, the same spatial
resolution and simulation cell size are used in PFDD and MS/CAC to facilitate quantitative comparison.

3.1. MS and CAC simulations

MS and CAC simulations are carried out by LAMMPS (Plimpton, 1995) and PyCAC (Xu et al., 2018b; Xu and Chu, 2017),
respectively. In all MS simulation cells, 𝐿𝑥 = 2𝐿𝑦; for the edge and screw dipoles, respectively, 𝐿𝑧 = 9

√

2∕2𝑑111 and 3
√

6𝑑111.
Unless stated otherwise, 𝐿𝑦 = 252𝑑111, in which case an MS simulation cell contains 622,944 and 719,712 atoms, respectively, for
the edge and screw dipoles. We will show in Section 4.2 that the simulation cell size used in the calculations to follow is sufficiently
large. In CAC models, a coarse-grained domain with uniformly sized 3D rhombohedral finite elements is employed. The Galerkin
method is used to convert the balance equations to a set of integration equations, wherein the integrations are approximated by
Gaussian quadrature (Xu et al., 2016c). The integration errors were studied by Xu et al. (2015).

Unlike MS simulations in which atoms are assumed volumeless, the finite elements used in CAC bring discretization errors. The
edge length of a finite element, ℎsp, is related to the number of atoms it contains, 𝑁at , by 𝑁at = (ℎsp∕𝑏+1)3. Unless stated otherwise,
𝑁at = 125 and ℎsp = 4𝑏. In Section 4.4, the discretization errors will be quantified by identically varying ℎsp of all finite elements
between 4𝑏 and 10𝑏, while keeping the interplanar distance between two adjacent finite elements as 𝑑111. CAC models have the
same 𝐿𝑥 and 𝐿𝑦 as MS, while 𝐿𝑧 is set as 2ℎsp.

To calculate the disregistry fields under zero stress, an undissociated perfect dislocation dipole is first created by applying the
corresponding isotropic elastic displacement fields to all atoms/nodes. Then conjugate gradient relaxation is carried out and is
terminated when one of the following two criteria is satisfied: (i) the change in energy between successive iterations divided by the
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most recent energy magnitude is less than or equal to 10−15 and (ii) the length of the global force vector for all atoms/nodes is less
than or equal to 10−15 eV/Å.

To directly calculate the Peierls stress in MS/CAC, the simulation cell is initially loaded to shear stress of 𝜎𝑦𝑧 = 𝜎𝑧𝑦 = 28 MPa and
𝜎𝑥𝑦 = 𝜎𝑦𝑥 = 0.08 MPa in the screw and edge cases, respectively. All other stress components are set to zero using the Parrinello and
Rahman (1981) method. Then the load is gradually increased using box deformation followed by the Parrinello and Rahman (1981)
minimization to remove all stress components but the load-related ones. After stress relaxation, the atomic structure is relaxed using
the fast inertial relaxation engine (Bitzek et al., 2006). Stress and atomic structure relaxation are repeated in steps of about 0.2 and
0.08 MPa, in the screw and edge cases, respectively. The Peierls stress is measured as the maximum stress the system reaches before
dislocation motion and subsequent stress drop.

3.2. PFDD simulations

All PFDD simulations are carried out using a 3D structured grid, as illustrated in Fig. 1b. In all cases, 𝐿𝑥 = 2𝐿𝑦, 𝐿𝑧 = 16ℎ𝑧, and
ℎ𝑦 = 𝑑111. Unless stated otherwise, 𝐿𝑦 = 252𝑑111, and the grid spacings are chosen to equate the atomic spacings, i.e., ℎ𝑥 =

√

6∕4𝑑111
and ℎ𝑧 = 3

√

2∕4𝑑111 for an edge dipole, while ℎ𝑥 = 3
√

2∕4𝑑111 and ℎ𝑧 =
√

6∕4𝑑111 for a screw dipole, as illustrated in Fig. 2.
The effects of 𝐿𝑥 and 𝐿𝑦 will be quantified in Section 4.2. In Peierls stress calculations, the grid spacings do not vary because

they are fixed in the discrete form (Eq. (13)). In disregistry field calculations, the continuum form is used and selected grid spacings
are varied between 0.25𝑑111 and 10𝑑111. The effects of the in-slip-plane grid spacings will be independently assessed in Section 4.3.
Then following the CAC model, ℎ𝑥 and ℎ𝑧 are collectively termed ℎsp, whose effects will be explored in Section 4.4. Note that the
grid spacing changes by means of varying the number of grid points along the corresponding direction while the simulation cell
size is kept largely the same.

The elastic energy density 𝜓ela is calculated by fast Fourier transform (FFT) method with the help of Green’s functions. The slip
vector 𝒃𝛼 is along a ⟨110⟩ direction, and there are three order parameters per slip plane. Thus, 𝑛sp = 3 and there are nine gradient
energy coefficients 𝜂𝛼𝛽g0 . Determination of 𝜂𝛼𝛽g0 in different PFDD variants will be discussed in Section 5.2. The Ginzburg–Landau
coefficient 𝑚0 is set to unity and the effects of the timestep size Δ𝑡 will be analyzed in Section 4.1. Note that 𝑚0 and Δ𝑡 are unitless
after all energy densities are nondimensionalized by 𝜇, where 𝜇 = (3𝐶44 +𝐶11 −𝐶12)∕5 is the isotropic shear modulus in Voigt form.

Initially, an undissociated perfect dislocation dipole is inserted by assigning non-zero 𝜙𝑎 to the grid points needed to achieve
a given dislocation character. Specifically, 𝜙1 = 1 and 𝜙2 = 𝜙3 = 0 for the grid points on the mid-𝑦 plane between 𝐿𝑥∕4 and
3𝐿𝑥∕4. During recursively running the TDGL equation, each monopole becomes extended. To calculate the disregistry fields under
zero stress, iterations are terminated when the Euclidean norm of the difference in global vector of each order parameter between
successive iterations is smaller than 10−5. Selected PFDD simulations are repeated with a smaller tolerance of 10−6; results are found
to differ by about 1%. Based on the disregistry field, the ISF width, 𝑑, is defined as the distance between the centers of two Shockley
partial dislocations of the same monopole; the center is determined by projecting the disregistry field onto the partial dislocation
direction (Xu et al., 2019b).

To determine the Peierls stress 𝜎P, an incremental resolved shear stress Δ𝜎0 = 10−5𝜇 is applied to the dislocated system. In
particular, the 𝑥𝑦 and 𝑦𝑥 components of the stress tensor 𝝈app are non-zero for the edge dipole, and the 𝑦𝑧 and 𝑧𝑦 components of
𝝈app are non-zero for the screw dipole. For each resolved shear stress 𝜎0, the same convergence criteria mentioned earlier are used to
find the equilibrium core structure. When the TDGL equation fails to converge within 20,000 timesteps, the value of 𝜎0 is recorded,
and 𝜎P = 𝜎0 − Δ𝜎0∕2.

As discussed in Section 2.3, PFDDng and GPN are equivalent in terms of the formulation, so are discrete PFDDng and SVPN.
However, our PFDDng simulation results may differ from those based on GPN/SVPN due to a different energy minimization scheme
and a different method to calculate the elastic energy density. These differences apply in both the disregistry and Peierls stress
calculations. Here, in PFDDng, the TDGL equation (Eq. (12)) and FFT are employed, respectively, for energy minimization and
elastic energy calculation. For GPN/SVPN models, a variety of energy minimization schemes were used in the literature, including
the conjugate gradient method (Lu et al., 2000a), TDGL equation coupled with the conjugate gradient method (Wei et al., 2008),
steepest descent method (Liu et al., 2016), particle swarm optimization (Zhang et al., 2017), Powell’s minimization method (Hale,
2018), iterative optimization (Edagawa et al., 2019), and genetic algorithm (Zhang et al., 2019). In terms of the elastic energy
calculation, prior GPN/SVPN models used either FFT (Xiang et al., 2008), fast multipole method (Zhu et al., 2015), or the Stroh
method (Liu et al., 2016; Hale, 2018). However, it remains unclear how the simulation result may change when different numerical
implementations are used. For the current work, we anticipate that PFDDng and GPN/SVPN would yield the same result if the TDGL
equation and FFT were utilized in the latter.

4. Effects of the time/grid resolution and simulation cell size

In this section, we conduct convergence analyses for the time/grid resolution and simulation cell size in PFDD variants and
MS/CAC. Note that the convergence is related to the specific algorithm we employ. For example, if instead the elastic energy
density is calculated by the Stroh method, the grid resolution to achieve the convergence may change.



International Journal of Plasticity 129 (2020) 102689

10

S. Xu et al.

Fig. 5. Disregistry fields of a screw monopole (a) along and (b) normal to the perfect dislocation Burgers vector direction as a function of the timestep size,
Δ𝑡. Results are based on PFDDng, with grid spacings ℎ𝑥 = 3

√

2∕4𝑑111, ℎ𝑦 = 𝑑111, and ℎ𝑧 =
√

6∕4𝑑111.

Fig. 6. ISF width 𝑑, and Peierls stress 𝜎P, of an edge monopole predicted by (a) PFDD and (b) MS, as function of the simulation cell edge length 𝐿𝑦. In all
simulation cells, 𝐿𝑥 = 2𝐿𝑦. In PFDD, 𝐿𝑧 = 16ℎ𝑧, ℎ𝑥 =

√

6∕4𝑑111, ℎ𝑦 = 𝑑111, ℎ𝑧 = 3
√

2∕4𝑑111, and the timestep size Δ𝑡 = 0.01. In MS, 𝐿𝑧 = 3
√

6𝑑111. Results based
on the largest 𝐿𝑦 considered are indicated by two horizontal dashed lines. Similar convergence is achieved for the screw monopole.

4.1. Timestep size

In PFDD simulations, the explicit Euler method is employed for the time integration. Take Eq. (12) as an example, the order
parameter 𝜙𝑎 at time 𝑡𝑖 + Δ𝑡 is formulated explicitly based on its value at time 𝑡𝑖, i.e.,

𝜙𝛼(𝑡𝑖 + Δ𝑡) = 𝜙𝛼(𝑡𝑖) − 𝑚0 Δ𝑡 𝜕𝜙𝛼 (𝑡𝑖) [𝜓ela(𝑡𝑖) + 𝜓gsf (𝑡𝑖) + 𝜓ext (𝑡𝑖)] . (20)

While facilitating numerical implementations, the Euler method is known to require the timestep size Δ𝑡 to be small enough for
numerical stability, which results in long computational time (Gunter et al., 2002). The largest allowable Δ𝑡 is reduced when the
grid spacing decreases, the Ginzburg–Landau coefficient 𝑚0 increases, or the total energy density increases (e.g., when the gradient
energy density is included or large gradient energy coefficients are used). With 𝑚0 = 1, it is shown in Fig. 5 that the largest Δ𝑡 for
energy convergence within individual PFDDng simulation is 0.4 for a screw monopole. However, further reducing Δ𝑡 yields different
disregistry fields from that of Δ𝑡 = 0.4, suggesting that the results do not actually converge in terms of Δ𝑡. We find that, the true
timestep size convergence is achieved when Δ𝑡 ≤ 0.05. Hence, to ensure solution convergence in all PFDD simulations, Δ𝑡 = 0.01 is
used in the remainder of this paper.
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Fig. 7. Disregistry fields of a screw monopole (a) along and (b) normal to the perfect dislocation Burgers vector direction as a function of the grid spacing
along the dislocation line, ℎ𝑧. Results are based on PFDD, with grid spacings ℎ𝑥 = 3

√

2∕4𝑑111 and ℎ𝑦 = 𝑑111 and the timestep size Δ𝑡 = 0.01.

Fig. 8. Disregistry fields of an edge monopole (a) along and (b) normal to the perfect dislocation Burgers vector direction as a function of the grid spacing
within the slip plane and normal to the dislocation line, ℎ𝑥. Results are based on PFDD, with grid spacings ℎ𝑦 = 𝑑111 and ℎ𝑧 = 3

√

2∕4𝑑111 and the timestep size
Δ𝑡 = 0.01.

4.2. Simulation cell size

Here, we quantify the effects of the simulation cell size in PFDD and MS/CAC. As mentioned in Section 3, PFDD and MS/CAC
simulations in this work adopt 𝐿𝑥 = 2𝐿𝑦 and 𝐿𝑧 = 16ℎ𝑧. Hence, we vary 𝐿𝑦 from 66𝑑111 to 252𝑑111. Fig. 6a shows that, as 𝐿𝑦
increases, the ISF width 𝑑 and Peierls stress 𝜎P decreases and increases, respectively. In PFDD, both quantities converge to stable
values when 𝐿𝑦 ≥ 111𝑑111. Similar trend is observed in MS simulations, as shown in Fig. 6b. The simulation cell size dependence is
an outcome of the long-range interactions between the two opposite-signed dislocations in a dipole. In the remainder of this paper,
𝐿𝑦 = 252𝑑111 will be used in all PFDD and MS/CAC simulations.

4.3. Two independent grid spacings within the slip plane

Here, we investigate using PFDD the effects of the two in-slip-plane grid spacings, ℎ𝑥 and ℎ𝑧, separately. Fig. 7 shows the
disregistry field of a screw monopole and the finding that it does not vary with the grid spacing along the dislocation line, ℎ𝑧.
This suggests that, if a dislocation is expected to remain straight during a PFDD simulation, e.g., enforced by the periodic boundary
conditions, a large ℎ𝑧 can be used along the line direction to reduce the number of DOFs in the cell. In Fig. 8, we see that the
disregistry field is almost invariant with respect to ℎ𝑥 when ℎ𝑥 ≤ 𝑑111, but the peak value of 𝜁2 decreases rapidly as ℎ𝑥 increases
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Fig. 9. Disregistry fields of a screw monopole (a) along and (b) normal to the perfect dislocation Burgers vector direction, subject to three applied stresses: 0,
0.99𝜎P, and 𝜎P. In PFDD, grid spacings ℎ𝑥 = 3

√

2∕4𝑑111, ℎ𝑦 = 𝑑111, and ℎ𝑧 =
√

6∕4𝑑111, and the timestep size Δ𝑡 = 0.01.

Fig. 10. Disregistry fields of a screw monopole (a) along and (b) normal to the perfect dislocation Burgers vector direction, as a function of the grid spacing
within the slip plane, ℎsp = ℎ𝑥 = ℎ𝑧. Results are based on CAC, with the grid spacing ℎ𝑦 = 𝑑111.

when ℎ𝑥 ≥ 4𝑑111, suggesting that the monopole becomes more compact. Such behavior is expected because once the grid spacing
is large enough, the dislocation core will sit in between grid points. Overall, we find that ℎ𝑥 dominates the influences of the grid
spacings within the slip plane. We emphasize that both ℎ110 and ℎ112 (illustrated in Fig. 2) are close to or smaller than 𝑑111, suggesting
that the disregsitry is indeed converged when these two grid spacings are used.

For a screw dipole with ℎ𝑥 = 3
√

2∕4𝑑111 and ℎ𝑧 =
√

6∕4𝑑111, Fig. 9 shows that, subject to a resolved shear stress of 0.99𝜎P, the
disregistry profile is displaced slightly but its shape is almost unchanged in both PFDD and MS, in agreement with prior SVPN and
MD calculations (Liu et al., 2017b,a). As shown in Table 3, even with the same grid spacing, PFDD still yields a higher 𝜎P than MS.
Better agreement may be achieved by using FCC-like grids (Ruffini et al., 2017) in PFDD.

4.4. A uniform grid spacing within the slip plane

Here, ℎ𝑥 and ℎ𝑧 are collectively termed ℎsp, whose effects are analyzed in PFDD and CAC. In PFDD, we find that the effects of
ℎsp are identical to those of ℎ𝑥, i.e., the monopole becomes compact when ℎsp ≥ 4𝑑111. This result is expected because ℎ𝑥 dominates
the effects of the in-slip-plane grid spacing. In CAC, disregistry fields largely maintain their shape when ℎsp is varied. In particular,
the dislocation remains dissociated even when ℎsp = 10𝑏, as shown in Fig. 10. Moreover, 𝜎P decreases as ℎsp increases, as shown
in Fig. 11b. This finding agrees with a previous CAC work (Xu et al., 2016a) in which, with ℎsp = 12𝑏, 𝜎P calculated in CAC was
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Fig. 11. (a) ISF widths, 𝑑, predicted by PFDD and CAC simulations, for both edge (E) and screw (S) monopoles; the MS-based results are indicated by two
horizontal dashed lines. (b) Peierls stress 𝜎P calculated in CAC simulations as a function of the edge length of finite elements, ℎsp. MS-based Peierls stresses are
35.2 MPa and 4.3 MPa for the screw and edge dislocations, respectively.

Table 3
ISF widths 𝑑 (in units of 𝑑111) and Peierls stresses 𝜎P (in units of MPa) of the edge (E) and screw (S) dislocations calculated
in the five PFDD variants summarized in Table 1. The same grid spacings as in SVPN models are used: ℎ𝑦 = 𝑑111; for
the edge dipole, ℎ𝑥 =

√

6∕4𝑑111 and ℎ𝑧 = 3
√

2∕4𝑑111, and for the screw dipole, ℎ𝑥 = 3
√

2∕4𝑑111 and ℎ𝑧 =
√

6∕4𝑑111. The
timestep size Δ𝑡 = 0.01. For PFDD-based results, 𝑑 are ±0.5ℎ𝑥 and 𝜎P are ±5 × 10−6𝜇 = 0.15 MPa.

MS PFDD PFDDng PFDDugc PFDDnc PFDDiso

𝑑 (S) 1.13 1.13 0.59 1.13 1 1.18
𝑑 (E) 2.69 2.69 1.48 2.69 2.6 2.68
𝜎P (S) 35.2 77.85 132.27 67.27 118.07 78.75
𝜎P (E) 4.3 19.73 31.91 16.72 20.97 23.09

approximately 75% of that based on MS. It is an outcome of the linear shape/interpolation function used in the finite elements in
the coarse-grained domain in CAC.

5. A comparison between different PFDD variants

Section 4 established that, for the PFDD-based results to be comparable with those from atomistics, a sufficiently small timestep
size, a sufficiently large simulation cell, and grid spacings with atomic resolution should be applied. In this section, we focus on
comparing the five PFDD variants summarized in Table 1. Main results are summarized in Table 3 and Fig. 12. Unless stated
otherwise, in what follows, Δ𝑡 = 0.01, 𝐿𝑥 = 2𝐿𝑦, 𝐿𝑦 = 252𝑑111, 𝐿𝑧 = 16ℎ𝑧, ℎ𝑦 = 𝑑111. For the edge dipole, ℎ𝑥 =

√

6∕4𝑑111 and
ℎ𝑧 = 3

√

2∕4𝑑111; for the screw dipole, ℎ𝑥 = 3
√

2∕4𝑑111 and ℎ𝑧 =
√

6∕4𝑑111.

5.1. PFDD vs. PFDDng

First, we study the effects of the grid spacing ℎsp on the disregistry in PFDDng. Based on a screw monopole, Fig. 13 shows that
the disregistry field is almost invariant with respect to ℎsp when ℎsp ≤ 0.5𝑑111 and the monopole becomes more compact when
ℎsp ≥ 2𝑑111. Recall that these two critical grid spacings are 𝑑111 and 4𝑑111, respectively, in PFDD. This suggests that, PFDDng, or
equivalently the GPN models that neglect the gradient energy density 𝜓gra, requires a finer grid spacing than PFDD, which includes
𝜓gra in its total energy density. Note that in a prior GPN calculation where the grid was adaptively refined (Zhu et al., 2015), 3 grid
points per Burgers vector — equivalently, a grid spacing of 0.41𝑑111 — were found to be sufficient to achieve convergence for the
disregistry field, in agreement with our assessment.

Table 3 shows that, adding 𝜓gra to the total energy density (i) increases the ISF width 𝑑 and (ii) decreases the Peierls stress 𝜎P.
Specifically for Al, the former agrees with our prior PF-based work (Xu et al., 2019b,c) while the latter has been reported by Liu
et al. (2016). We remark that, introducing 𝜓gra was recently found to decrease 𝑑 of the edge dislocations in Ir, Ni, Pd, and Rh (Xu
et al., 2019d).
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Fig. 12. (a) Disregistry fields of an edge or a screw monopole (a,c) along and (b,d) normal to the perfect dislocation Burgers vector direction. Results are based
on MS and the five PFDD variants summarized in Table 1.

Fig. 13. (a) Disregistry fields of a screw monopole along the perfect dislocation Burgers vector direction, as a function of the grid spacing within the slip plane,
ℎsp = ℎ𝑥 = ℎ𝑧. Results are based on PFDDng, with the grid spacing ℎ𝑦 = 𝑑111 and the timestep size Δ𝑡 = 0.01. (b) ISF widths, 𝑑, predicted by PFDD and PFDDng
simulations, for both edge (E) and screw (S) monopoles; the MS-based results are indicated by two horizontal dashed lines.
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Fig. 14. ISF widths, 𝑑, predicted by PFDDugc, for the edge and screw dislocations, with respect to the gradient energy coefficient 𝜂𝛼𝛽g0 . The timestep size Δ𝑡 = 0.01;

for an edge dipole, ℎ𝑥 =
√

6∕4𝑑111 and ℎ𝑧 = 3
√

2∕4𝑑111, while for a screw dipole, ℎ𝑥 = 3
√

2∕4𝑑111 and ℎ𝑧 =
√

6∕4𝑑111. When 𝜂𝛼𝛽g0 = 0, PFDDugc reduces to PFDDng.
MS-based results are indicated by two horizontal dashed lines.

Table 4
Values of the gradient energy coefficients (in units of 𝜇𝑑2111) for the edge and screw dislocations
in PFDD and PFDDugc. In PFDD, values of 𝜂𝛼𝛽g0 are calculated based on 𝜂Ig0 and 𝜂IIg0 via Eqs.
(21)–(23).

PFDD PFDDugc

𝜂Ig0 𝜂IIg0 𝜂𝛼𝛽g0
Screw 0.2667 0.4 0.24
Edge 1.0667 0.4 1.23

5.2. PFDD vs. PFDDugc

Here, we compare two PFDD variants that adopt different gradient energy coefficients 𝜂𝛼𝛽g0 . For each slip plane, 𝑛sp = 3 and there
are nine gradient energy coefficients 𝜂𝛼𝛽g0 with 𝛼 and 𝛽 ranging from 1 to 3. However, as discussed by Xu et al. (2019c), only two
𝜂𝛼𝛽g0 are independent. In what follows, let them be 𝜂Ig0 and 𝜂IIg0. They are related to 𝜂𝛼𝛽g0 by

𝜂11g0 = 𝜂12g0 = 𝜂13g0 = 𝜂21g0 = 𝜂31g0 = 𝜂Ig0 , (21)

𝜂22g0 = 𝜂33g0 = 𝜂Ig0∕4 + 3𝜂IIg0∕4 , (22)

𝜂23g0 = 𝜂32g0 = −𝜂Ig0∕2 + 3𝜂IIg0∕2 . (23)

Traditionally, 𝜂Ig0 and 𝜂IIg0 were assumed the same, and hence a uniform coefficient 𝜂𝛼𝛽g0 was used in most prior PF dislocation
models. In the literature, there are several ways to calibrate the uniform 𝜂𝛼𝛽g0 (Mianroodi and Svendsen, 2015; Liu et al., 2016; Xu
et al., 2019d). Here, in PFDDugc, the value of 𝜂𝛼𝛽g0 is characterized by fitting the predicted ISF width 𝑑 to MS, i.e.,

𝜂𝛼𝛽g0 = argmin
{

𝑑(𝜂𝛼𝛽g0 ) − 𝑑MS

}

. (24)

Specifically, several PFDDugc simulations are performed with a preassigned 𝜂𝛼𝛽g0 , ranging from 0.15𝜇𝑑2111 to 1.5𝜇𝑑2111. For each

coefficient, the ISF width 𝑑 is obtained and directly compared to that from MS. Fig. 14 shows the variation in 𝑑 with respect to
𝜂𝛼𝛽g0 . The values of 𝜂𝛼𝛽g0 providing the best agreement are 1.23𝜇𝑑2111 and 0.24𝜇𝑑2111 for the edge and screw dipoles, respectively. These

values are used in PFDDugc simulations.
Recently, Xu et al. (2019c) considered 𝜂Ig0 and 𝜂IIg0 as independent variables. Their values can be determined by fitting the

predicted disregistry fields to MS, i.e.,

[𝜂Ig0, 𝜂
II
g0] = argmin

{

𝜻(𝜂Ig0, 𝜂
II
g0) − 𝜻MS

}

. (25)

The values of the best [𝜂Ig0, 𝜂
II
g0] were provided by Xu et al. (2019c) and are summarized in Table 4. The corresponding 𝜂𝛼𝛽g0 are

used in PFDD simulations.
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Fig. 15. (a) Disregistry fields of a screw monopole along the perfect dislocation Burgers vector direction, as a function of the grid spacing within the slip plane,
ℎsp = ℎ𝑥 = ℎ𝑧. Results are based on PFDDnc, with the grid spacing ℎ𝑦 = 𝑑111 and the timestep size Δ𝑡 = 0.01. (b) ISF widths, 𝑑, predicted by PFDD and PFDDnc
simulations, for both edge (E) and screw (S) monopoles; the MS-based results are indicated by two horizontal dashed lines.

Table 3 and Fig. 12 show that, while PFDD and PFDDugc predict the same ISF width for the same dislocation, the shape of the
disregistry profile differs. Specifically, the PFDD model equipped with non-uniform 𝜂𝛼𝛽g0 predicts dislocation core structures in better
agreement with MS. We also find that, PFDDugc predicts lower Peierls stresses than PFDD. Note that a dissociated dislocation with a
larger ISF width (e.g., in Cu) is usually considered to have a lower Peierls stress than that with a smaller ISF width (e.g., in Al) (Liu
et al., 2016, 2017a). While this is generally true, our calculations demonstrate that, in the same material, two dislocations having
the same ISF width but different disregistry profiles may have different Peierls stresses. Our comparison highlights the sensitivity
of the Peierls stress to the detailed dislocation core structure.

5.3. PFDD vs. PFDDnc

Here, we assess the consequences of confining all slips to the slip plane in PFDD-based models, by comparing PFDD with PFDDnc.
First, we study the influences of the in-slip-plane grid spacing 𝑑sp in PFDDnc and find them to be similar to those in PFDD, as shown
in Fig. 15. It is also found that, for the same monopole and with the same grid spacings, PFDDnc predicts a smaller ISF width and
a higher Peierls stress than PFDD. These results may be explained as follows. PFDDnc takes non-zero 𝝓(𝑦 ≠ 0) into account, which
effectively distributes the dislocation core to the whole system, leading to a less pronounced degree of slip within the slip plane. On
the other hand, PFDD sets 𝝓(𝑦 ≠ 0) = 𝟎, concentrating all slips to the slip plane and facilitating the dislocation dissociation, hence
a larger ISF width and a lower Peierls stress.

5.4. PFDD vs. PFDDiso

When the material is assumed elastic isotropic, the elastic stiffness tensor 𝘾E becomes

𝘾 iso
E ≡

⎡
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⎥
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, (26)

where 𝐾 is the bulk modulus. Multiple isotropic averages have been developed to determine 𝐾 and 𝜇 based on the independent
elastic constants (Berge et al., 1993). Here, we use the isotropic average proposed by Hill (1952), which was shown to retain the
same 𝐾 as cubic elastic anisotropy (Szajewski et al., 2017), relevant to Al. In the Hill average (superscript H),

𝘾H
E = 1

2
(𝘾V

E + 𝘾R
E ) , (27)
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where superscripts V and R denote the isotropic Voigt (Voigt, 1889) and Reuss (Reuss, 1929) averages, respectively. In the Voigt
average, the two independent constants in 𝘾V

E are

𝜇V = 1
15

[(𝐶11 + 𝐶22 + 𝐶33) − (𝐶12 + 𝐶23 + 𝐶13) + 3(𝐶44 + 𝐶55 + 𝐶66)] , (28)

𝐾V = 1
9
[(𝐶11 + 𝐶22 + 𝐶33) + 2(𝐶12 + 𝐶23 + 𝐶13)] . (29)

In the Reuss average, the anisotropic elastic compliance tensor 𝙎E is first formed via 𝙎E = [𝘾E]−1, then the two independent
constants in 𝘾R

E are

𝜇R = 15
4(𝑆11 + 𝑆22 + 𝑆33) − 4(𝑆12 + 𝑆23 + 𝑆13) + 3(𝑆44 + 𝑆55 + 𝑆66)

, (30)

𝐾R = 1
(𝑆11 + 𝑆22 + 𝑆33) + 2(𝑆12 + 𝑆23 + 𝑆13)

. (31)

As shown in Table 3 and Fig. 12, compared with PFDD, PFDDiso predicts a smaller and larger ISF width 𝑑 associated with the
edge and screw monopoles, respectively. These findings agree with previous atomistic (Rasmussen et al., 1997), GPN (Szajewski
et al., 2017), and PFDD simulations (Xu et al., 2019d). We note that the differences in 𝑑 between PFDD and PFDDiso are relatively
small: 0.4% and 4.4% for the edge and screw dipoles, respectively. The results are expected because Al is nearly elastically isotropic.
The differences in the Peierls stress 𝜎P, however, are relatively large: 17% and 1.2% for the edge and screw monopoles, respectively.
It is of note that PFDDiso predicts a larger 𝜎P than PFDD for both monopoles. This is different from the way in which the isotropic
average alters 𝑑. Again, our results demonstrate that, knowledge of the ISF widths of two dislocations, even in the same material,
is not sufficient in predicting which dislocation has a higher (or lower) Peierls stress.

6. Discussion

Our analyses in Sections 4 and 5 demonstrate the sensitivity of the predicted disregistry fields and Peierls stresses to time/grid
resolution, simulation cell size, and detailed modeling choice. For the two in-slip-plane grid spacings in PFDD, we find that the
one along the straight dislocation line, ℎ𝑧, does not affect the results; for the other direction, larger grid spacings, ℎ𝑥, generally
result in smaller ISF width 𝑑. For convergence of the disregistry, the largest allowable ℎ𝑥 and the largest allowable timestep size
Δ𝑡 are, respectively, larger and smaller in PFDD than in PFDDng. This is in contrast to CAC, wherein larger finite elements in the
coarse-grained domain yield larger 𝑑.

Neglecting 𝜓gra or considering the non-zero order parameters within the non-slip-planes decreases 𝑑 and increases 𝜎P. Treating the
gradient energy coefficients 𝜂𝛼𝛽g0 as a uniform variable or non-uniform ones, naturally, lead to the same 𝑑, as long as the coefficients

are fit to the same MS results. However, the calculated 𝜎P are different. Approximating Al, which is nearly elastically isotropic, as
an isotropic medium overestimates and underestimates, respectively, 𝑑 associated with a screw and an edge dislocation. The elastic
isotropy-induced changes in 𝜎P, which are positive for both dislocations, are on average larger than those in 𝑑. Taken together, our
results suggest that, even slight changes in the disregistry field can have relatively large influences on the Peierls stress.

Our simulations show that, for Al, it is recommended to (i) add 𝜓gra to the total energy density, (ii) consider 𝜂𝛼𝛽g0 as independent
variables and fit them to MS individually, (iii) confine all slips to pre-defined slip planes, and (iv) treat the material as an elastically
anisotropic medium. Since Al has a relatively high ISF energy among FCC metals (Su et al., 2019a), it is useful to discuss the
applicability of these four recommendations to other metals, e.g., those with a relatively low ISF energy. First, it is always desirable
to adopt recommendations (iii) and (iv) because confining all slips to pre-defined slip planes and employing elastic anisotropy lead
to a better representation of actual materials. Second, it may not be desirable, in some cases, to include 𝜓gra in the total energy
density, because doing so in PFDD may yield poorer results (with respect to MS) compared with PFDDng. The effects of 𝜓gra depend
on the complex relation between the elastic energy and GSFE (Xu et al., 2019d). Nevertheless, if one determines that 𝜓gra should
be included, it would always be desirable to consider 𝜂𝛼𝛽g0 as independent variables instead of a uniform one.

The ISF widths 𝑑 and Peierls stresses 𝜎P reported here qualitatively agree with those in the literature in that 𝑑 and 𝜎P, respectively,
are larger and lower, for an edge monopole than for a screw monopole. It is tempting to compare results in this paper with others in
the literature, based on either PF, GPN, SVPN, atomistics, or DFT. However, direct comparisons are not straightforward for several
reasons. The first challenge lies in how the ISF width 𝑑 is determined. While 𝑑 is universally considered the distance between the
center of two Shockley partial dislocation cores, a variety of approaches were employed in the literature to pinpoint the partial
dislocation center. Our previous work (Xu et al., 2019b) showed that different methods to calculate 𝑑 can lead to results that differ
by up to a factor of 3.

Second, most existing PF, GPN, and SVPN simulations either were not informed by the same interatomic potential employed
here or used parameterized functions for the GSFE surface, as opposed to direct calculations in this work.

Third, different types of atomistic calculations usually yield different Peierls stresses 𝜎P, even for the same dislocation using the
same interatomic potential. For example, using the same EAM potential (Mishin et al., 1999) adopted in this paper, nudged elastic
band (Tsuru et al., 2010) and direct MS calculations (Dang and Spearot, 2018), respectively, predict 1.84 MPa (edge) and 40.88 MPa
(screw), and 1.34 MPa (edge) and 30.5 MPa (screw). The nudged elastic band method of Tsuru et al. (2010) should provide more
accurate results. However, in their model, the top and bottom {111} atomic planes are constrained. This is analogous to an unrelaxed
GSFE calculation leading to a higher energy barrier, thus a higher Peierls stress than that predicted by direct MS (Dang and Spearot,
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2018). The simulation cell in the work of Dang and Spearot (2018) is loaded based on the deformation of boundary atoms. Thus,
the system is not under pure shear stress state. Non-zero normal stress components and additional shear components will affect the
Peierls stress. Using another interatomic potential (Mendelev et al., 2008) in MS, Cho et al. (2015) reported 5.46 MPa (edge) and
69.97 MPa (screw), while Dang and Spearot (2018) reported 6.36 MPa (edge) and 86.3 MPa (screw). The differences are likely due
to the different ways in which the non-periodic boundaries in small-sized volumes are handled (Olmsted et al., 2001).

We remark that, PFDD models can be informed by DFT, an electronic structure calculation and more accurate than the MS
method. This has been realized in a prior work (Xu et al., 2019d) but not here, because CAC is based on an interatomic potential.
For comparability, then, all PFDD models in this work are informed by the same interatomic potential used in CAC and benchmarked
against MS. On the other hand, most interatomic potentials, including the one used here, are fit to DFT data, so our simulations are
based on DFT indirectly. It is worth noting that dislocation cores in Al have been modeled by DFT directly (Choly et al., 2005; Lu
et al., 2006; Liu et al., 2007; Woodward et al., 2008; Shin et al., 2009; Shin and Carter, 2013; Iyer et al., 2015; Das and Gavini,
2017). In future PFDD work, the gradient energy coefficients may be fit to DFT-based disregistry fields, with all other parameters
informed also by DFT (Juan and Kaxiras, 1996; Hartford et al., 1998; Lu et al., 2000a, 2001; Kamimura et al., 2018; Edagawa et al.,
2019).

7. Conclusions

In this work, an extended dislocation in Al with pure edge or pure screw character is simulated using several models, including
five PFDD variants and the CAC method. The PFDD variants differ in many aspects: (i) inclusion or exclusion of the gradient energy
density, 𝜓gra, (ii) uniform or non-uniform gradient energy coefficients, 𝜂𝛼𝛽g0 , (iii) confined or unconfined slip to the slip plane, and
(iv) elastic isotropic or anisotropic. First, we conduct a systematic convergence study of the time/grid resolution and simulation
cell size in these approaches. Then, we study the impact of different model parameters between PFDD variants on the predicted
disregistry field and Peierls stress. MS simulations are carried out as a benchmark. It is found that

1. Varying the grid spacing along the dislocation line direction does not affect the PFDD-predicted disregistry, suggesting that,
if a dislocation is known to remain straight, a large grid spacing may be applied along that direction without compromising
the accuracy;

2. For PFDD results to be comparable with those from atomistics, grid spacings with atomic resolution should be applied within
the plane that is normal to the dislocation line. As the grid spacings increase, the predicted dislocations become compact,
i.e., the ISF width 𝑑 approaches zero. Meanwhile, as the finite element size increases in CAC, 𝑑 increases and the Peierls
stress 𝜎P decreases;

3. For the same dislocation in PFDD, including 𝜓gra and/or confining all slips to the slip plane increases 𝑑 and decreases 𝜎P;
4. Treating 𝜂𝛼𝛽g0 as independent variables and fitting them to MS-based disregistry fields yield more accurate description of the

dislocation core structures. Alternatively, using a uniform 𝜂𝛼𝛽g0 that is fit to the same MS-based 𝑑 results in different disregistry
fields and 𝜎P;

5. Approximating an elastic anisotropic medium as an isotropic one results in an overestimation and underestimation of 𝑑,
respectively, associated with the screw and edge dislocations. Doing so also increases 𝜎P of both dislocations.

This paper focuses on comparing different continuum models in studying dislocations in an FCC metal. It would also be interesting
to compare PFDD-, CAC-, and MS-based modeling of dislocations in metals with non-FCC lattices, e.g., body-centered cubic (BCC).
Recently, PFDD (Peng et al., 2020) and CAC (Xu, 2018) were extended to the BCC lattice. The two models are termed ‘‘PFDDbcc’’
and ‘‘CACbcc’’ here. Another PF dislocation model, the microscopic phase-field (MPF) model (Shen et al., 2014), was also recently
extended to BCC systems (Qiu et al., 2019), which is termed ‘‘MPFbcc’’ here. Similar to PFDDng, both PFDDbcc and MPFbcc exclude 𝜓gra
from the total energy density. In the meantime, three differences exist between the two models: (i) one and two order parameters
are used per {110} slip plane, respectively, in PFDDbcc and MPFbcc; (ii) Eq. (4) is followed in MPFbcc while a different energy density
functional is used in PFDDbcc to approximate the character angle dependence of the Peierls potential; and (iii) the slips are confined
to slip planes in MPFbcc but not in PFDDbcc. As Qiu et al. (2019) pointed out, MPFbcc cannot describe non-planar dislocations cores
or high angle grain boundaries wherein dislocation cores are closely spaced or overlapping. The same can be said for PFDDbcc. The
localization of the slips to fault planes is also true for CACbcc. In addition to BCC metals, PFDD has also been extended to hexagonal
close-packed (HCP) metals (Albrecht et al., 2020), while CAC has not. In this regard, further development in both PFDD and CAC
methods for modeling dislocations in BCC and HCP systems are expected.
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Appendix

Here, we show that, in PFDDnc, 𝝓 may be non-zero on non-slip planes. Without loss of generality, we consider a simple model
with only one order parameter 𝜙𝛼 within one slip plane, and

𝑯R(𝜙𝛼) =
𝑏𝛼𝜙𝛼
𝑑𝛼

𝒔𝛼 ⊗ 𝒏𝛼 , (A.1)

𝜓gsf =
4𝛾p

𝑙gsf

[

1
4
−
(

𝜙𝛼 −
1
2

)2]

, (A.2)

𝜓gra = 0 , (A.3)

where 𝛾p is the peak value of the GSFE curve.
It follows that

𝜓(𝑬, 𝜙𝛼) =
1
2
(𝑬 − 𝜙𝛼𝑨) ⋅ 𝘾E(𝑬 − 𝜙𝛼𝑨) +

4𝛾p

𝑙gsf

[

1
4
−
(

𝜙𝛼 −
1
2

)2]

, (A.4)

where

𝑨 = sym
𝑏𝛼
𝑑𝛼

𝒔𝛼 ⊗ 𝒏𝛼 . (A.5)

According to Eq. (12), �̇�𝛼 = 0 when 𝜕𝜙𝛼𝜓 = 0, i.e.,

𝜕𝜙𝛼𝜓 = 1
2

[

(𝜕𝜙𝛼𝑬 −𝑨) ⋅ 𝘾E(𝑬 − 𝜙𝛼𝑨) + (𝑬 − 𝜙𝛼𝑨) ⋅ 𝘾E(𝜕𝜙𝛼𝑬 −𝑨)
]

−
8𝛾p𝜙𝛼 − 4𝛾p

𝑙gsf
= 0 . (A.6)

Note that 𝜕𝜙𝛼𝑬 = 𝟎, so

𝜙𝛼𝑨 ⋅ 𝘾E𝑨 −
8𝛾p𝜙𝛼
𝑙gsf

− 1
2
(𝑨 ⋅ 𝘾E𝑬 + 𝑬 ⋅ 𝘾E𝑨) +

4𝛾p

𝑙gsf
= 0 . (A.7)

Then

𝜙𝛼 =

1
2 (𝑨 ⋅ 𝘾E𝑬 + 𝑬 ⋅ 𝘾E𝑨) − 4𝛾p

𝑙gsf

𝑨 ⋅ 𝘾E𝑨 − 8𝛾p
𝑙gsf

, (A.8)

where all quantities, except 𝑬, are constants over the entire domain. Therefore, 𝜙𝛼 ≠ 0 at most, if not all, continuum points.
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