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ABSTRACT
In the continuum context, the displacements of atoms
induced by a dislocation can be approximated by a
continuum disregistry field. In this work, two phase-field
(PF)-based approaches and their variants are employed to
calculate the disregistry fields of static, extended
dislocations of pure edge and pure screw character in two
face-centred cubic metals: Au and Al, which have distinct
stable stacking fault energy and elastic anisotropy. A new
truncated Fourier series form is developed to approximate
the generalised stacking fault energy (GSFE) surface, which
shows significant improvement over the previously
employed Fourier series form. By measuring the intrinsic
stacking fault (ISF) width and partial dislocation core size in
different ways, the PF-based disregistry fields are
quantitatively compared against those predicted by
molecular statics. In particular, two new measures for the
ISF widths are proposed and shown to overcome
drawbacks of the more commonly used standards in the
literature. Our calculations also show that continuum
formulation of the elastic energy and the GSFE for a
homogeneous surface can successfully characterise the core
structure. Last, our comparisons highlight the significance of
including the gradient energy in the free energy
formulation when an accurate description of the dislocation
core structure is desired.
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1. Introduction

Plastic deformation of crystalline materials, eg metals, alloys, semiconductors,
ceramics, is controlled by the motion of dislocations [1]. The atomic structures
of dislocation cores naturally depend on crystal arrangement of the atoms [2].
For example, in a face-centred cubic (FCC) lattice, a perfect (a0/2),110.
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dislocation with a0 being the lattice constant, is usually split into two Shockley
partial dislocations

a0
2
, 110 .−� a0

6
, 211 . + a0

6
, 121 . , (1)

as a result of the unique energy landscape in FCC metals [3]. Because
(a0/6), 211 . is not a lattice translation vector, an intrinsic stacking fault
(ISF) consisting of atoms in hexagonal close-packed (HCP) local structure is
left behind as the first partial dislocation passes [4]. The atomic structure associ-
ated with the ISF is restored to that in a perfect lattice following the glide of the
second partial dislocation. Therefore, a perfect dislocation in FCC metals is
usually ‘extended’, consisting of two partial dislocations bounding, and separ-
ated by, an ISF. These extended dislocations distinguish the plasticity of FCC
metals from that in many other crystals and the extent of the stacking fault
plays an important role in processes such as structural transformation, twinning,
dislocation network formation [5, 6], dislocation reactions [7], and cross slip [8].

While atomistic simulations are desirable in modelling dislocations, they are
limited to nano/submicron length scale even with dedicated high-performance
computing resources [9, 10]. To understand plastic deformation of bulk
materials, mesoscopic approaches are desirable, pointing to the need of mesos-
cale modelling of dislocation core structures which are building blocks for more
complicated dislocation-mediated problems [11, 12]. From a computational per-
spective, it is challenging to model detailed and heterogeneous atomic-scale
morphology of an extended dislocation since it cannot be treated as a sharp,
homogeneous boundary between a slipped and an unslipped region in a lattice.

Fundamentally, the dislocation structure can be described by the displace-
ments of discrete atoms with respect to their dislocation-free perfect lattice
sites, as visualised by the yellow arrows in Figure 1. In the continuum context,
the discrete atomic displacements are instantiated by a continuum disregistry
field z(x) along the x direction, which, for any continuum point x0, is

z(x0) = uup(x0)− ulo(x0) (2)

where uup(x0) and ulo(x0) are the continuum displacements at x0 immediately
above and below the slip plane, respectively. In Figure 1, x0 is located between
atoms A and B in the upper plane and atoms C and D in the lower plane.
Take the upper plane as an example, the displacement at x0 can be linearly
interpolated between those of atoms A and B (uA and uB), ie

uup(x0) = uA + uB − uA

xB − xA
(x0 − xA) (3)

where xA and xB are the x-coordinates of atoms A and B, respectively. The
process to calculate ulo(x0) is similar. Note that at any point x, the vector z(x)
can point to any direction, ie the disregistry field is inherently 3D. However,
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the component along the y direction is usually not considered in continuum
simulations [14].

Equations (2) and (3) relate the discrete atomic displacements with a conti-
nuum disregistry field, making it possible for continuum methods, eg the gen-
eralised Peierls-Nabarro (GPN) model [15] and the phase-field (PF)-based
methods [16, 17], to quantify the dislocation core structures in a manner con-
sistent with atomistic simulations. GPN- and PF-based methods have been
adapted to mechanics problems and more specifically for determining the
core structures of dislocations [18, 19]. These methods minimise an energy
functional at every point in the system and the order parameters are usually
chosen to identify a slipped phase and unslipped phase. Furthermore, PF fra-
mework can be applied to complex systems for which no reliable interatomic
potential is available. The input parameters of PF model can be obtained
from ab initio and/or experimental sources in such cases. In addition, the
time scale limitation of full atomistic simulation prevents investigating
diffusion-coupled phenomena. For example, the PF model can be used to
couple displacive-diffusional dislocation models in complex materials, such
as Ni-based superalloys [20]. Consequently, the PF method has the advantage
of simulating the low energy state of a dislocation core, including the ISF width
and two bounding partials.

While using the same basic PF framework, different variants of PF dislocation
models have evolved over the years due to optional modelling choices. In this
work, we examine the capabilities of different PF-based dislocation model var-
iants by comparing the calculated disregistry profiles to molecular statics (MS)

Figure 1. MS simulation results for the dissociation of an straight edge dislocation in Al. Atoms
are coloured by adaptive common neighbour analysis (a-CNA) [13]: green, red, and white corre-
spond to FCC, HCP, and disordered local lattice structures, respectively. Each yellow arrow is the
displacement vector of the associated atom with respect to its dislocation-free perfect lattice site.
The blue dash-dotted vertical line is the position of x0; the black dashed horizontal line shows the
slip plane; the two layers of atoms immediately above and below the slip plane are within a red
dotted box.
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calculations. We choose two models, atomistic phase-field microelasticity
(APFM) [17] and phase-field dislocation dynamics (PFDD) [16], which rep-
resent diverse modelling choices and thus find commonalities with others PF-
based dislocation models in the literature. Note that in the special case of a
straight dislocation, the PFDD model in its current form was found to be equiv-
alent to the GPNmodel [21]. To ensure that the findings apply to a wide range of
FCC materials, two metals, Au and Al, are selected since they have distinctly
different stable SFE and elastic anisotropy. Once the disregistry fields are
obtained, different methods are adopted to determine the ISF widths and Shock-
ley partial dislocation core sizes.

In this paper, 3D Euclidean vectors are represented by lower-case bold italic
characters a,b, . . . In particular, let i1,i2,i3 represent the Cartesian basis vectors.
Second-order tensors are represented by upper-case bold italic characters
A,B, . . . Third- and fourth-order Euclidean tensors A,B, . . . are denoted by
upper-case slanted sans-serif characters. The transpose AT of A is defined by
ATb · c = b · Ac. Additional notation will be introduced as needed in what
follows.

2. A brief summary of PF-based modelling of dislocations

Following Mianroodi et al. [21], let u represent the displacement field, H = ∇u
the distortion field, E = (H +HT)/2 the strain field, and f = (f1, . . . ,fn) a set
of n order parameters, with fa ranging between 0 and 1 for one perfect
dislocation.

In the absence of an externally applied stress, the free energy density ψ takes
the form

c(E,f,∇f) = cela(E,f)+ cgsf (f)+ cgra(∇f). (4)

The elastic part is given by the Khachaturyan-Shalatov microelastic relation [18,
22, 23], ie

cela(E,f) =
1
2
(E − ER(f)) · CE(E − ER(f)) (5)

where CE is the elastic stiffness and ER = (HR +HT
R)/2 is the residual strain. For

dislocation slip, the residual distortion, HR, takes the form [22, 24, 25]

HR(f) =
∑n
a=1

ha(fa)sa ⊗ na (6)

where n is the total number of order parameters, na is the slip plane unit normal,
ha the amount of shear distortion, and sa the slip direction, of the αth order par-
ameter. Note that E is associated with ER, and hence HR and f, following the
stress equilibrium [19].
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The generalised SF energy (GSFE) density, cgsf (f), represents the energy
density associated with the ISF (the red atoms in Figure 1). It is related to the
GSFE surface ggsf via a scaling factor lgsf , ie

cgsf (f) =
ggsf (f)

lgsf
(7)

The gradient energy density, cgra, represents the density of energy storage in the
Shockley partial dislocation cores (the white atoms in Figure 1). For dislocation
glide with planar cores in a single crystal, cgra is given by Shen and Wang [26]

cgra(∇f) = hg0| curlHR|2 = hg0

∑n
a,b=1

∇fa · Nab∇fb (8)

where

Nab = ba · bb
d2111

(na · nb)I − nb ⊗ na
[ ]

(9)

where I is the second-order identity matrix, ba and bb are the slip vectors, which
are not necessarily the Burgers vector, d111 = a0/

��
3

√
is the distance between two

adjacent {111} plane in an FCC lattice, and Nab is a unitless second-order projec-
tion tensor which projects ∇f onto the slip planes. The scaling factor hg0, which
has units of energy per unit length, is informed by MS simulations following [17]

hg0 =
g0l0
ag0

(10)

where ag0, g0, and l0 are fit to MS-based extended dislocation configuration. We
remark that introducing the MS-informed scaling factor yields a gradient energy
density that better represents the contribution from the Shockley partial dislocation
cores. In particular, l0 is the Shockley partial dislocation core size and will be further
discussed in Section 5.3. Note that with respect to our earlier publications [17, 21]
in which κ was used for two scaling factors, the following relation holds:

ag0 = kG0kH0 (11)

Once the free energy density ψ is calculated, the time-dependent Ginzburg-Landau
(TDGL) equation is employed to recursively minimise the total free energy with
respect to each fa, ie

ḟa = −m0dfa
c (12)

where the superposed dot denotes the time derivative, and the mobility m0 is
assumed a non-negative constant for all order parameters for simplicity and to
ensure non-negative dissipation and gradient flow of the system toward thermo-
dynamic equilibrium.
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3. Formulation and parameterisation in APFM and PFDD

APFM and PFDD differ in many ways in terms of formulation and parametriza-
tion, and we are motivated to understand the impact of these choices on the pre-
dicted disregistry fields of the same dislocation. One major difference between
the two methods is that in APFM, Equation (4) is fully employed, while in
PFDD, the effect of the order parameter gradient, ∇f, is not considered, and
so cgra is neglected. To assess the influence of this difference, cgra is intentionally
omitted in some APFM calculations, and the corresponding results are termed
‘APFMng’; otherwise, the APFM-based results are simply referred to as
‘APFM’. Another difference concerns the calculation of ggsf in Equation (7).
Based on ab initio or atomistic GSFE data, ggsf is usually represented in look-
up table form [17] or in 2D truncated Fourier series form [27]. While both
forms are implemented into PFDD, only the look-up table form is employed
in APFM. To consider this difference, the PFDD-based results based on the
look-up table and Fourier series forms are termed ‘PFDD’ and ‘PFDDfs’, respect-
ively. As a result, this paper effectively adopts four variants of PF-based
approaches: APFM, APFMng, PFDD, PFDDfs. It follows that the TDGL equation
becomes

ḟa = m0 ∇ · ∂∇fa
c− ∂fa

c
[ ]

(13)

in APFM and

ḟa = −m0∂fa
c (14)

in APFMng, PFDD, and PFDDfs. In all four methods, the embedded-atom
method (EAM) potentials for Au [28] and Al [29] are employed to calculate
certain parameters. All differences among these methods are summarised in
Table 1; more details are provided in the remainder of this section.

3.1. Order parameter f

Let ba = |ba| be the magnitude of ba. In APFM and APFMng, two order par-
ameters, one along , 110 ., and the other along , 112 ., are employed on

Table 1. A summary of the differences among the four PF-based methods that are employed in
this work.

n h CE ha cgra ggsf lgsf TDGL

APFM 8 a0/
��
3

√
anisotropic bAaf

A
a/d111 Yes Look-up table form d111 Equation (13)

APFMng 8 a0/
��
3

√
anisotropic bAaf

A
a/d111 No Look-up table form d111 Equation (14)

PFDD 12 a0/
��
2

√
isotropic bPadaf

P
a No Look-up table form bP Equation (14)

PFDDfs 12 a0/
��
2

√
isotropic bPadaf

P
a No Equation (26) bP Equation (14)

Notes: n is the total number of order parameters for all possible slip systems; h is the uniform grid spacing in a
structured grid; CE is the elastic stiffness tensor; ha is the amount of shear of the αth order parameter; cgra is
the gradient energy density; ggsf is the GSFE surface, and lgsf is the factor between the GSFE density cgsf and
ggsf in Equation (7).
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each {111} plane [17]. Accordingly, b1 =
��
2

√
a0/2 and b2 =

��
6

√
a0/2. Given that

there are four equivalent {111} planes in an FCC lattice, the total number of
order parameters n=8 in the APFM-based variants. In PFDD and PFDDfs,
three order parameters, each corresponding to one of the , 110 . directions
on the slip plane, are used per {111} plane, and so ba = ��

2
√

a0/2 for all order par-
ameters and n = 12 to account for all possible slip systems. On one {111} plane,
the two sets of order parameters can be related following two steps: first, due to
the crystallographic symmetry, any fP

a with α being 1, 2, or 3 can be assumed
along fA

1 ; second, if f
A
2 is in the clockwise/counterclockwise direction of fA

1 ,
the remaining two fP

a must also be sequentially in the clockwise/counterclock-
wise direction of the first fP

a. In this work, as illustrated in Figure 2, the relations
are

fA
1 = bP

bA1
(fP

1 − fP
2 cos 60

◦ − fP
3 cos 60

◦) = fP
1 −

1
2
(fP

2 + fP
3) (15)

fA
2 = bP

bA2
(fP

2 sin 60
◦ − fP

3 sin 60
◦) = 1

2
(fP

2 − fP
3) (16)

where superscripts A and P stand for APFM-based and PFDD-based variants,
respectively. In what follows, we let bP = ��

2
√

a0/2.

3.2. Elastic energy density cela

In Equation (6), ha(f
A
a) = bAaf

A
a/d111 in APFM-based variants, and

ha(f
P
a) = bPadaf

P
a in PFDD-based variants, with da being the glide-plane

Dirac measure. In practice, da equals the reciprocal of the grid spacing along
the na direction. In all methods, lattice parameter a0 is needed to determine
ba. In Equation (5), the elastic stiffness tensor CE — for cubic systems, the
three elastic constants C11, C12, C44 — are required. The four parameters are
summarised in Table 2. In APFM-based variants, the anisotropic elastic
stiffness tensor CE is built directly from the three elastic constants. In PFDD-
based variants, the medium is assumed elastically isotropic, and so two

Figure 2. An illustration of the two order parameters (fA
1 , f

A
2 ) in APFM and APFMng, and the

three (fP
1, f

P
2, f

P
3) in PFDD and PFDDfs.
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independent elastic parameters — Lamé constants μ and λ — are calculated by
Voigt average [30], ie

m = 3C44 + C11 − C12

5
(17)

l = 4C12 + C11 − 2C44

5
(18)

which are then used to form CE.

3.3. Generalized stacking fault energy density cgsf

In Equation (7), lgsf = d111 and bP in APFM-based and PFDD-based var-
iants, respectively. In terms of the determination of the GSFE surface,
ggsf , the first way is the look-up table form. To this end, a simulation
box containing 2700 atoms that initially sit at their perfect lattice sites is
subject to 199 and 598 displacement steps in the [�110] and [�1�12] directions,
respectively. Following each displacement, the system is relaxed using a con-
jugate gradient algorithm with the atoms allowed to move along the (111)
slip plane normal direction. For each displacement set [f�110,f�1�12], the
excess energy per unit ISF area relative to the ideal FCC lattice is taken
as ggsf . To calculate the GSFE part of ∂fa

c in Equations 13 and 14, ie
∂fa

cgsf = ∂fa
ggsf/lgsf , for each [f�110,f�1�12], we take advantage of the follow-

ing Fourier transform property,

∂fa
ggsf (f�110,f�1�12) = R F−1 qaĝgsf (k�110,k�1�12)

[ ]( )
(19)

where the superposed hat denotes a 2D discrete Fourier transform from
physical space (f�110,f�1�12) to Fourier space (k�110,k�1�12), F−1 conducts the
inverse 2D discrete Fourier transform, and qa is given by Willot [31]

qa = iNa sin (ka/Na) (20)

where Na = 199 and 598 are the numbers of discrete GSFE data in the
[�110] and [�1�12] directions, respectively, and the wave numbers ka are

ka = 2p 0,1, . . . ,
Na

2

⌊ ⌋
,
1− Na

2

⌈ ⌉
. . . ,− 1

{ }
(21)

Table 2. Lattice parameter a0 (in units of Å) and elastic constants C11, C12, C44 (in units of GPa) are
calculated from the EAM potentials for Au [28] and Al [29].

a0 C11 C12 C44

Au 4.08 201.65 169.53 45.97
Al 4.05 113.80 61.55 31.60
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In the meantime, a given set of fA
1 and fA

2 — either directly obtained in
APFM and APFMng or transformed from fP using Equations 15 and 16 in
PFDD and PFDDfs — should be mapped into [0,1], by

fA
a = fA

a − fA
a

⌊ ⌋
(22)

if fA
a , 0 or fA

a . 1, which may occur in the presence of dislocations with
negative signs or multiple dislocations in the same slip plane. This mapping
is needed because the look-up table form only considers one period within
the GSFE landscape, which is periodic as a result of the atomic periodicity
of the crystal. Note that the mapping is only carried out locally in calculat-
ing cgsf , but not cela or cgra. For the Fourier series-based ggsf , however, this
mapping is not necessary since its periodicity is guaranteed by the trigono-
metric functions fi (Equation (26)).

Once the 2D discrete ∂fa
ggsf (f�110,f�1�12) surface is obtained, a bilinear interp-

olation is conducted for each order parameter α to calculate ∂fA
a
ggsf (f

A
1 ,f

A
2 ) in a

look-up-table fashion. In APFM and APFMng, the interpolated ∂fA
a
ggsf is used

directly in Equation (13). However, in PFDD, it is ∂fP
a
ggsf that is used in

Equation (14). Thus, with the help of Equations 15 and 16, adopting the
chain rule yields

∂fP
1
ggsf = ∂fA

1
ggsf · ∂fP

1
fA
1 + ∂fA

2
ggsf · ∂fP

1
fA
2 = ∂fA

1
ggsf (23)

∂fP
2
ggsf = ∂fA

1
ggsf · ∂fP

2
fA
1 + ∂fA

2
ggsf · ∂fP

2
fA
2 = − 1

2
∂fA

1
ggsf +

1
2
∂fA

2
ggsf (24)

∂fP
3
ggsf = ∂fA

1
ggsf · ∂fP

3
fA
1 + ∂fA

2
ggsf · ∂fP

3
fA
2 = − 1

2
∂fA

1
ggsf −

1
2
∂fA

2
ggsf (25)

The second way to obtain ggsf is via a truncated Fourier series. In PFDDfs, ggsf
takes the form [32]

ggsf =
∑Nfs

i=1

cifi (26)

where Nfs is the number of terms in the truncated Fourier series, fi are trig-
onometric functions of all order parameters on the same slip plane, and
coefficients ci are related to Nfs selected ggsf values taken from the GSFE
surface. In the literature, Nfs = 2 [34], 6 [15], 7 [27, 32], 8 [35], 12 [36],
or 16 [37]. In particular, the 7-term Fourier series is by far the most
popular choice for pure FCC metals [16, 38, 39] and has been employed
in all previous PFDD simulations. The seven points on the GSFE surface,
A, G, G1, G2, G3, T, and T1, are illustrated in Figure 3(a,b). In terms of
(f�110,f�1�12), A lies at the origin; T and G are located at (0.5,0) and
(0.5,0.5/3), respectively; T1 lies half-way between A and T; and G1, G2,
and G3 are evenly spaced between A and G. The choice of these seven
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points is justified by the fact that half of the actual extended edge and screw
dislocation paths lie within the triangle AGT.

With respect to the look-up table form, the 7-term Fourier series-based GSFE
surface has two main drawbacks: (i) local energy minima are predicted in some
regions that should be an energy maximum, as shown in Figure 3(c), and (ii) the
three points (G1,G2, and G3) between A andGmay not be sufficient to describe a
complex GSFE curve along the , 112 . direction. To overcome these draw-
backs, which are especially pronounced in Au, we propose an 11-term Fourier
series. First, we identify four additional points on the GSFE surface: M, M1,
G4, and G5, which are shown in Figure 4(a). In terms of (f�110,f�1�12), M is at
the previous artificial local minimum (0,1/3); M1 is in the middle of A and M;
G4 is in the middle of G1 and G2; and G5 is in the middle of G2 and G3.
Since, with respect to the origin A, all four new points are along the mirror-sym-
metric , 112 . direction, four additional cosines [37], associated with four
coefficients c7, c8, c9, and c10, are added to the original 7-term Fourier series

Figure 3. (a) 3D relaxed GSFE surface in a look-up table form on a (111) plane along both [�1�12]
and [�110] directions. (b) is the projection of (a) onto the (111) plane. The seven points selected to
fit the 7-term Fourier series [32] are highlighted in (a) and (b). (c) GSFE surface based on the 7-
term Fourier series and (d) its difference with respect to the look-up table form. In (b–d), the
solid and dashed black curves illustrate the actual paths for extended edge and screw dislo-
cations, respectively [33]. All results are based by an EAM potential for Au [28], with ggsf in
units of J/m2. The solid and dashed green arrows represent the paths of Shockley partial dislo-
cations and perfect dislocations, respectively.
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[32], ie

ggsf = c0 + c1[ cos (2py)+ cos (py + qz)+ cos (py − qz)]

+ c2[ cos (2qz)+ cos (3py + qz)+ cos (3py − qz)]

+ c3[ cos (4py)+ cos (2py + 2qz)+ cos (2py − 2qz)]

+ c4[ cos (py + 3qz)+ cos (py − 3qz)+ cos (4py + 2qz)

+ cos (4py − 2qz)+ cos (5py + qz)+ cos (5py − qz)]

+ c5[ sin (2py)− sin (py + qz)− sin (py − qz)]

+ c6[ sin (4py)− sin (2py + 2qz)− sin (2py − 2qz)]

+ c7[ cos (6py)+ cos (3py + 3qz)+ cos (3py − 3qz)]

+ c8[ cos (8py)+ cos (4py + 4qz)+ cos (4py − 4qz)]

+ c9[ cos (4qz)+ cos (6py + 2qz)+ cos (6py − 2qz)]

+ c10[ cos (6qz)+ cos (9py + 3qz)+ cos (9py − 3qz)]

(27)

where p = 2p/(
��
3

√
bP) and q = 2p/bP are magnitudes of the reciprocal lattice

vectors [32], y = fA
2 b

A
2 , and z = fA

1 b
A
1 . In Au, with respect to the look-up

table form, the errors in the Fourier series-based GSFE surface are significantly
smaller for the 11-term Fourier series form than the original 7-term one, as
shown in Figures 3(d) and 4(b). In particular, the GSFE curve along the [�1�12]
direction given by the 11-term Fourier series form is more accurate, as shown
in Figure 5(a). With the help of Equations (15) and (16), Equation (27) can

Figure 4. (a) GSFE surface based on the 11-term Fourier series and (b) its difference with respect
to the look-up table form in Figure 3(b). In (a), the four additional points with respect to the 7-
term Fourier series are highlighted in green. Results are based on an EAM potential for Au [28],
with the energies in units of J/m2.
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be written as a function of the three order parameters in PFDDfs, ie

ggsf = c0+c1[cos2p(f
P
2 −fP

3 )+cos2p(fP
3 −fP

1 )+cos2p(fP
1 −fP

2 )]

+c2[cos2p(2f
P
1 −fP

2 −fP
3 )+cos2p(2fP

3 −fP
1 −fP

2 )+cos2p(2fP
2 −fP

1 −fP
3 )]

+c3[cos4p(f
P
2 −fP

3 )+cos4p(fP
3 −fP

1 )+cos4p(fP
1 −fP

2 )]

+c4[cos2p(3f
P
1 −fP

2 −2fP
3 )+cos2p(3fP

1 −2fP
2 −fP

3 )+cos2p(2fP
1 +fP

2 −3fP
3 )

+cos2p(2fP
1 −3fP

2 +fP
3 )+cos2p(fP

1 +2fP
2 −3fP

3 )+cos2p(fP
1 −3fP

2 +2fP
3 )]

+c5[sin2p(f
P
2 −fP

3 )+ sin2p(fP
3 −fP

1 )+sin2p(fP
1 −fP

2 )]

+c6[sin4p(f
P
2 −fP

3 )+ sin4p(fP
3 −fP

1 )+sin4p(fP
1 −fP

2 )]

+c7[cos6p(f
P
2 −fP

3 )+cos6p(fP
3 −fP

1 )+cos6p(fP
1 −fP

2 )]

+c8[cos8p(f
P
2 −fP

3 )+cos8p(fP
3 −fP

1 )+cos8p(fP
1 −fP

2 )]

+c9[cos4p(2f
P
1 −fP

2 −fP
3 )+cos4p(fP

1 +fP
2 −2fP

3 )+cos4p(fP
1 −2fP

2 +fP
3 )]

+c10[cos6p(2f
P
1 −fP

2 −fP
3 )+cos6p(fP

1 +fP
2 −2fP

3 )+cos6p(fP
1 −2fP

2 +fP
3 )]

(28)

Fitting Equation (27) or Equation (28) to the positions of the eleven points
yields

c0 = 0.106G+ 0.719G1 − 0.108G2 − 0.344G3 − 0.758G4 + 0.758G5 + 0.202T

+ 0.375T1 + 0.108M + 0.094M1

(29)

c1 = −0.043G− 0.092G1 + 0.083G2 + 0.092G3 + 0.320G4 − 0.32G5 − 0.112T

− 0.083M + 0.028M1

(30)

Figure 5. The GSFE curve along the [�1�12] direction given by the look-up table form, the 7-term
Fourier series form, and the 11-term Fourier series form for (a) Au and (b) Al.
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c2 = −0.059G− 0.035G1 + 0.142G2 + 0.461G3 + 0.175G4 − 0.528G5

− 0.071T

− 0.25T1 + 0.072M + 0.017M1

(31)

c3 = 0.044G+ 0.24G1 − 0.083G2 − 0.24G3 − 0.253G4 + 0.253G5

+ 0.171T

− 0.028M − 0.088M1

(32)

c4 = −0.02G+ 0.046G1 − 0.046G3 − 0.16G4 + 0.16G5 − 0.028T

+ 0.028M1 (33)

c5 = 0.144G+ 0.144G2 − 0.144M − 0.144M1 (34)

c6 = −0.048G+ 0.144G2 + 0.048M − 0.144M1 (35)

c7 = 0.115G+ 0.092G1 − 0.011G2 − 0.342G3 − 0.32G4 + 0.32G5 − 0.013T

+ 0.25T1 + 0.011M − 0.1M1

(36)

c8 = −0.072G− 0.24G1 + 0.24G3 + 0.253G4 − 0.253G5 − 0.005T

+ 0.005M1 (37)

c9 = −0.008G− 0.24G1 + 0.119G2 + 0.115G3 + 0.253G4 − 0.253G5 + 0.016T

− 0.125T1 − 0.008M + 0.052M1

(38)

c10 = 0.028G− 0.058G1 − 0.214G2 − 0.119G3 + 0.145G4 + 0.208G5

+ 0.001T (39)

Note that these equations only apply to the 11-term Fourier series form, not the

Table 3. Locations and values of ggsf (in mJ/m2) for the eleven selected points (Figure 4(a)) on
the GSFE surface calculated from the EAM potentials for Au [28] and Al [29].

f�110 f�1�12 ggsf (Au) ggsf (Al)

A 0 0 0 0
T1 1/4 0 184.2 212.7
T 1/2 0 323.3 395.1
G1 1/8 1/24 51.3 65.3
G4 3/16 1/16 64.3 112.5
G2 1/4 1/12 77.2 144.2
G5 5/16 5/48 86.8 161.9
G3 3/8 1/8 89.4 167.1
G 1/2 1/6 40.6 145.4
M1 0 1/6 314.1 392.9
M 0 1/3 493.5 576.4
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7-term Fourier series one, for which the coefficients were presented in Ref. [16].
Locations and values of ggsf for the eleven selected points on the GSFE surface
are summarised in Table 3. It follows that ∂fa

ggsf is calculated by taking the
partial derivative of ggsf with respect to each order parameter fP

a in Equation
(28). In this paper, both 7-term and 11-term Fourier series forms are applied
to investigate disregistry profiles of dislocations in PFDDfs.

3.4. Gradient energy density cgra

The gradient energy density is included only in APFM. The values of the three
parameters in Equation (10) are presented in Table 4. These were fit from MS
simulations of an extended edge monopole.

4. Simulation set-up

In this section, we present the set-up used in both theMS andPF-based simulations
for static extendeddislocations of pure edge or pure screw type.Adislocation dipole
consisting of two dislocations of the same type but with opposite Burgers vector is
built into a 3D periodic simulation box, which has lattice orientations

(ix,iy,iz) =
��
2

√

2
[�110],

��
3

√

3
[111],

��
6

√

6
[11�2]

( )
(40)

for the edge dislocation dipole, and

(ix,iy,iz) =
��
6

√

6
[�1�12],

��
3

√

3
[111],

��
2

√

2
[�110]

( )
(41)

for the screw dislocation dipole. Let Lx, Ly, and Lz be the edge length of the simu-
lation box along the x, y, and z directions, respectively. Within each dipole, the two
dislocation lines are along the z axis, lie on the x-z plane, and are separated by Lx/2
along the x direction. In all simulations, larger Lx, Ly, and Lz were tested and the
results were unchanged. The calculated 2D disregistry fields of one dislocation,
which is referred to as amonopole in what follows, will be compared in Section 5.1.

4.1. MS simulations

All MS simulations in this work are carried out with LAMMPS [40]. The simu-
lation box sizes, in units of d111, are as follows: Lx = 120

��
6

√
, Ly = 180, and

Table 4. Values of the three parameters in Equation (10) for Au and Al determined from the MS
simulations of an extended edge monopole as discussed in the text.

g0/(md111) l0/d111 ag0

Au 0.0547 9.62 0.8264
Al 0.0626 6.17 0.8294

Note: ag0 is unitless.
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Lz = 9
��
2

√
/2 for the edge dislocation dipole, and Lx = 180

��
2

√
, Ly = 180, and

Lz = 3
��
6

√
for the screw dislocation dipole. The two types of boxes contain the

same number of 259200 atoms. In order to quantitatively compare the simu-
lation results, in MS calculations, we use the same EAM potentials [28, 29] as
used for all material properties needed in the PF free energy model.

In each simulation, the energy of the dislocation-free system is first mini-
mised via conjugate gradient relaxation. Then an undissociated perfect dislo-
cation dipole is created by applying the corresponding isotropic elastic
displacement fields to all atoms [25]. Under zero stress, we apply two
types of relaxation methods in sequence, the first being the fast inertial relax-
ation engine (FIRE) [41] and the second the conjugate gradient method,
during which each perfect dislocation monopole extends on its glide plane.
The FIRE relaxation is conducted by 2500 steps. The conjugate gradient-
based minimisation iterations are terminated when one of the following
two criteria is satisfied: (i) the energy change between successive iterations
divided by the most recent energy magnitude is less than or equal to
10−15 and (ii) the length of the global force vector for all atoms is less
than or equal to 10−15.

4.2. PF-based simulations

A structured grid with uniform grid spacing h is employed, where
h = d111 = a0/

��
3

√
in APFM and APFMng while h = bP = a0/

��
2

√
in PFDD

and PFDDfs. The numbers of grid points along the x, y, and z directions are
294, 180, and 7, respectively, in APFM and APFMng, and 128 in all three direc-
tions in PFDD and PFDDfs. The elastic energy density cela is calculated by the
3D fast Fourier transform method with the help of Green’s functions. Following
the MS simulations, an undissociated perfect dislocation dipole is inserted by
assigning non-zero fa to the grid points needed to achieve a given dislocation
character. During recursively running the TDGL equation, in which the time
step size and mobility m0 are 0.5 and 1, respectively, each dislocation monopole
becomes extended. Iterations are terminated when the change in the Euclidean
norm of global vector of each order parameter between successive iterations is
smaller than 10−3. Parallel simulations starting from fully dissociated dislo-
cations are also run and the results are almost identical, suggesting that the
final relaxed dislocation structures are likely independent of the initial configur-
ation and energy minimisation path. Note that in APFM, the three parameters in
Table 4 are determined from the MS-based Shockley partial dislocation core
structures of a dissociated edge dislocation are used for both edge and screw dis-
location dipoles. Note that in the current case of only one slip plane, b1 · b2 = 0
in APFM, and so N12 = N21 = 0 according to Equation (9), suggesting that the
interactions between different order parameters are not considered in calculating
the gradient energy density.
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5. Results and discussions

5.1. Comparison of the disregistry fields

In this section, the disregistry profiles both along and normal to the perfect dis-
location Burgers vector direction based on MS and different PF-based simu-
lations are compared. In what follows, these two disregistry fields are denoted
as z1 and z2, respectively. In MS, the disregistry vector z (Equation (2)) is pro-
jected onto the two directions. In PF-based methods [16], for a given slip plane,

zb =
∑nsp
a=1

faba · sb (42)

where nsp is the total number of order parameters on the slip plane within which
the αth order parameter and β direction lie. For edge monopoles, the results are
also compared against the classical PN model, which was the first analytic model
of the 1D disregistry field of a perfect dislocation along the Burgers vector direc-
tion x, ie [42, 43],

zPN(x) =
bP

p
arctan

2x(1− n)
d111

+ bP

2
(43)

where n = l/[2(l+ m)] is the isotropic Poisson’s ratio of the material, with μ
and λ determined by Equations 17 and 18. Figures 6–9 show that the PF-
based disregistry fields are systematically closer to the MS-based ones than the
1D PN model prediction. However, note that there are a few aphysical local
extrema on the PFDDfs-based disregistry profiles in Au. Specifically, this is the
case in all four profiles when the 7-term Fourier series form is used to approxi-
mate ggsf , except z1 of the screw monopole. On the other hand, only one disreg-
istry profile, ie z2 of the edge monopole, contains the aphysical local extrema if
the 11-term Fourier series form is adopted for ggsf . Therefore, the aphysical
PFDDfs-based results are likely attributed to the failure of the Fourier series

Figure 6. Disregistry fields of an edge monopole in Au (a) along and (b) normal to the perfect
dislocation Burgers vector direction.
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forms to correctly reproduce the GSFE surface. Note that the aphysical local
extrema do not exist in any disregistry profile in Al in this work, nor in previous
PFDDfs results when the 7-term Fourier series form was fit to ab initio calcu-
lation-informed GSFE data [30].

In the next two subsections, all results are compared in terms of two charac-
teristics: the ISF width and the Shockley partial dislocation core size.

5.2. Intrinsic stacking fault width

The ISF width is a key parameter in quantifying the ISF structure associated with
an extended dislocation and is directly comparable with experiments [44], which
sometimes use the ISF width to determine the stable SFE of the material [45, 46].
Here, we discuss different methods to determine the ISF width, dj, with ξ denot-
ing a specific method.

In the continuum context, a dislocation can be represented as a continuous
dislocation array with infinitesimal Burgers vectors. Accordingly, the derivative

Figure 7. Disregistry fields of a screw monopole in Au (a) along and (b) normal to the perfect
dislocation Burgers vector direction.

Figure 8. Disregistry fields of an edge monopole in Al (a) along and (b) normal to the perfect
dislocation Burgers vector direction.
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of the disregistry along the Burgers vector direction with respect to the coordi-
nates, ie ∂xz1, is the Burgers vector density [47]. The classical PN model
(Equation (43)) does not consider dislocation dissociation and so the corre-
sponding ∂xz1 profile only has one peak. Later, the 1D PN model was advanced
to treat extended dislocations [48] and when employed, two peaks emerge in the
disregistry density profile. Particularly in FCC metals, analogous to the single
peak in the classical PN model for the perfect dislocation centre, the two
peaks of ∂xz1 in the extended PN model are assumed to correspond to the
centres of the two Shockley partial dislocations and their separation distance
is the ISF width d1, as illustrated in Figure 10(a). If the disregistry fields are
2D [27], two similar peaks exist for ∂xz2, between which is d2, as shown in
Figure 10(b). All derivatives here are approximated by the central difference
method. For an edge monopole, d1 and d2 represent the distances between the
edge and screw components, respectively, and vice versa for a screw monopole.

The determination of d1 and d2 is based on an assumption that there are two
local maxima ∂xzb in total, each on different sides of the perfect dislocation
centre. However, in some cases, eg those shown in Figure 11, either there is
only one maximum ∂xzb in total or there are more than one local maximum
∂xzb on the same side of the perfect dislocation centre. In the first case, the dis-
location may be considered as ‘undissociated’ and thus d=0. In the second case,
the location of the partial dislocation core centre, and hence the ISF width, are
not unique. This ambiguity originates from the physical and/or numerical noise
in the calculations of the disregistry fields zb. The noise is then amplified in ∂xzb
during the numerical differentiation process. We found that the noise in ∂xzb is
much greater in molecular dynamics simulations at 25 K than that in MS. More-
over, due to the combined effect of the elastic anisotropy of the material and that
in the same monopole the edge and screw components of the two partial dislo-
cations interact with each other differently, d1 and d2 are usually different, which
adds to the uncertainty in determining the ISF widths.

Figure 9. Disregistry fields of a screw monopole in Al (a) along and (b) normal to the perfect
dislocation Burgers vector direction.
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Figure 10. Different measurements dj with j = 1,2,pd of the ISF width based on MS diregistry
fields for a screw monopole in Au.

Figure 11. Partial derivative of the disregistry fields z1 with respect to the coordinates x for an
edge or a screw monopole in Au calculated by APFM and APFMng. APFMng results show that (i)
the screw monopole has only one maximum ∂xz1 in total and (ii) there are two local maxima ∂xz1
on each side of the perfect dislocation centre for an edge monopole. In the first case, the dis-
location is ‘undissociated’ and so dscr1 = 0. In the second case, the centre of the Shockley
partial dislocation core, and hence the ISF width dedg1 , is not unique.
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For these reasons, we resort to two new methods that (i) only use the disreg-
istry fields without taking derivatives and (ii) combine z1 and z2 into a single
functional form. The first method projects z1 and z2 along the directions of
the two partial dislocations, ie

zpd1 = z1 cos 30
◦ + z2 sin 30

◦ (44)

zpd2 = z1 cos 30
◦ − z2 sin 30

◦ (45)

each of which ranges between 0 and (
��
3

√
/2)bP, as shown in Figure 10(c). Taking

z1 = 0.5bP as the perfect dislocation centre, the two points with zpd = (
��
3

√
/4)bP

are assumed to correspond to the centres of the two Shockley partial dislo-
cations, between which the ISF width is measured as dpd.

The second approach is based on the ISF width in MS simulations identified
by CNA [13], ie the width of the region with red atoms in Figure 1. First, we
build an ISF detection function, ie

fisf (z1,z2) = exp −e
z1
bA1

( )2

−9e
z2
bA2

− 2
3

( )2
[ ]

+ exp −e
z1
bA1

− 1
2

( )2

−9e
z2
bA2

− 1
6

( )2
[ ]

+ exp −e
z1
bA1

− 1

( )2

−9e
z2
bA2

− 2
3

( )2
[ ]

(46)

which consists of a sum of Gaussian functions about the states
(z1/b

A
1 ,z2/b

A
2 ) = (0,2/3),(1/2,1/6),(1,2/3) that correspond to the ISFs on a

Figure 12. (a) fisf (z1,z2) with e = 15. (b) Calculation of dcn for a dissociated screw monopole in
Au in an MS simulation based on fisf [z1(x),z2(x)] and fcn(x) [13]. In particular, fisf (x) , 0.1,
0.1 , fisf (x) , 0.31, and fisf (x) . 0.31 correspond to FCC, disordered, and HCP local structures,
respectively. dcn is the distance between the two middle intersections (red circles) formed
between the fisf (x) and fcn(x) profiles.
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GSFE surface, as shown in Figure 12(a). For relatively smooth Gaussian func-
tions, e = 15.

Next, the MS-based disregistry fields [z1(x),z2(x)] are substituted into
Equation (46). This action results in fisf (x) that can be plotted against the
CNA index fcn(x), where fcn = 0, 1, and 2 correspond to disordered, FCC, and
HCP local structures, respectively. Four intersections form between the two
curves, labelled by the two blue squares and two red circles in Figure 12(b),
which can be considered the transitions between the FCC and disordered
regions as well as those between the disordered and HCP regions, respectively.
The values of fisf at the two intersections nearest to the perfect dislocation centre,
ie the two red circles, are averaged to yield the HCP region threshold κ. It follows
that for a given PF-based fisf (x) profile, the distance between the two points
associated with fisf . k is the ISF width dcn. Note that the intersections, and
hence the threshold κ, depend on the relative scaling between fisf and fcn.
Thus, for each monopole, the value of κ, presented in Table 5, is determined
by fitting to the MS-based ISF width rendered by CNA (Figure 1).

Results of ISF widths d determined by different methods using MS and PF-
based simulation data are summarised in Table 6. All methods find that the
edge monopole has a larger ISF width than a screw monopole for the same
material in agreement with linear elasticity. Also for the same type of monopole,
the ISF width is larger in Au than in Al, between which the former has a lower
stable SFE. Among the PF-based methods, there are three main differences:

(1) Between APFM and APFMng, introducing the gradient energy density cgra

uniformly increases the ISF width d in all cases where d is non-zero. This
is an outcome revealed by the present calculations with the selected material
parameters. We find that it is more energetically favourable for the dislo-
cation to increase d, thereby reducing the interaction energy between the
partial dislocation at the expense of increasing the fault area than the other
way around. Note that this finding agrees with a prior PF-based work [49].

(2) Between APFMng and PFDD, two essential differences are elastic anisotropy
and grid spacing, the latter of which is negligible. It is found that when d is
non-zero, d is larger in PFDD than in APFMng, except d

edg
pd and dedgcn in Au.

Note that the elastic anisotropy index for cubic systems
Ac = 2C44/(C11 − C12) = 1.21 and 2.9 for Al and Au, respectively [50].
We remark that the influence of the elastic anisotropy on the core structure

Table 5. The HCP region threshold κ that is used to determine dcn based on fisf (x) for different
monopoles in Au and Al.

Au, Edge Au, Screw Al, Edge Al, Screw

κ 0.48 0.31 0.374 0.31
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of extended dislocations in FCC metals was also recently studied by anana-
lytic work [51].

(3) Between PFDD and PFDDfs, ggsf is calculated in different ways. In Au, with
respect to the PFDD results, PFDDfs tends to underestimate and overesti-
mate d, respectively, when the 7-term and 11-term Fourier series forms
are used to approximate ggsf . In Al, the PFDDfs results with the 11-term
Fourier series form for ggsf are generally more accurate than those based
on the 7-term Fourier series form, especially for the screw monopole
which has a narrow ISF.

5.3. Shockley partial dislocation core size

Here, following the determination of the interface region width in Ref. [52], the
core size of a Shockley partial dislocation is defined as

lb = |zb(+1)− zb(−1)|
|∂xzb(0)|

(47)

where x = 0 corresponds to the location with maximum ∂xzb, regardless of how
many maximum ∂xzb there may be; −1 and +1 refer to the boundaries

Table 6. ISF width measures, in units of d111, for Au and Al.
MS APFM APFMng PFDD PFDDfs(7-term) PFDDfs(11-term)

Au dedg1 11.9 10.0 6.0† 6.12† – 7.35†
dedg2 10.8 10.0 6.0† 6.12† – –

dedgpd 9.53 8.55 6.14 5.11 2.52 6.6

dedgcn 10.8 9.75 6.54 5.59 3.06 7.13

dscr1 2.1 4.0 0‡ 0‡ 3.67 3.67

dscr2 6.3 6.0 1.0 3.67 – 3.67

dscrpd 2.63 3.34 1.07 1.38 1.19 2.38

dscrcn 4.1 5.42 1.72 2.21 1.93 3.26

Al dedg1 4.5 0‡ 3.0 0‡ 0‡ 0‡
dedg2 5.8 6.0 3.0 3.67 3.67 3.67

dedgpd 2.69 1.72 1.25 1.77 1.71 1.69

dedgcn 3.85 2.09 1.7 2.52 2.51 2.4

dscr1 0‡ 0‡ 0‡ 0‡ 0‡ 0‡
dscr2 4.2 4.0 2.0 3.67 2.45 3.67

dscrpd 1.13 1.2 0.47 0.54 0.87 0.58

dscrcn 1.05 1.53 0§ 0§ 1.49 0§

Notes: In PFDDfs, both 7-term and 11-term Fourier series forms are used to obtain the GSFE surface ggsf ; some results
for Au are presented as ‘–’ when the disregistry field profiles contain aphysical local extrema. Superscripts edg and
scr stand for edge and screw monopoles, respectively. Based on the numerical resolution, all APFM and APFMng
results are in +0.5d111, while all PFDD and PFDDfs results are in +0.5bP. † There are more than one local
maximum ∂xzb on the same side of the perfect dislocation centre. In this case, the largest local maximum
∂xzb on the same side of the perfect dislocation centre is assumed to correspond to the Shockley partial dislo-
cation core centre. ‡ There is only one local maximum ∂xz1 in total and hence d1 = 0 by definition. § The
maximum fisf is smaller than the corresponding HCP region threshold κ and hence dcn = 0 by definition.
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between the unslipped region and the partial dislocation and that between the
partial dislocation and ISF, respectively. The measures l1 and l2 are depicted
schematically in Figure 13(a,b). Since, as in the case of the ISF widths, usually
l1 = l2, we propose an averaged disregistry profile, zave, ie

zave =
���������������
z1
( )2+3 z2

( )2√
(48)

Figure 13. Different measurements lj with j = 1,2,ave of a Shockley partial dislocation core size
based on MS diregistry field for an edge monopole in Au.

Table 7. Shockley partial dislocation core size measures, in units of d111, based on Equations 47
and 48 for Au and Al.

Au Al

MS APFM APFMng MS APFM APFMng

ledg1 9.7 10.1 3.5 5.7 4.6 2.6

ledg2 8.2 9.7 3.4 4.3 4.9 2.2

ledgave 9.6 10.4 3.6 6.2 6.4 2.9

lscr1 5.2 7.2 4.7 3.2 3.6 1.5

lscr2 6.0 7.6 2.9 3.5 4.2 1.3

lscrave 7.1 8.7 2.8 4.7 5.4 2.4

Notes: Superscripts edg and scr stand for edge and screw monopoles, respectively. Based on numerical resolution,
all APFM-based results are+0.5d111. Only APFM-based results are presented for that lave is used as l0 in Equation
(10).

1422 S. XU ET AL.



which, along with the measurement of the core size lave, are shown in Figure 13
(c). In APFM, it is lave that is used as l0 in Equation (10). Values of lj with
j = 1,2,ave are summarised in Table 7 for Au and Al. Like the ISF widths, all
results here indicate that adding the gradient energy density cgra to the total
energy density increases the partial dislocation core size and yields a better
agreement with MS.

6. Conclusions

In this work, MS and PF-based methods are employed to calculate the 2D dis-
registry fields of extended dislocations with pure edge and pure screw characters
in two FCC metals: Au and Al, which have distinct stable SFE and elastic aniso-
tropy. Four PF-based methods, including APFM and PFDD methods as well as
their variants, are employed. A new 11-term truncated Fourier series form is
developed to better approximate the GSFE surface ggsf than the original 7-
term one in that the former addresses the artificial local energy minimum in
some regions and presents more accurate ggsf values in the region where
actual paths for the extended dislocations cross. As a result, the aphysical
local extrema on some disregistry profiles predicted by PFDDfs with the 7-
term Fourier series form for ggsf are removed in the 11-term Fourier series
form-based PFDDfs results. The general agreement between MS and PF-based
simulations confirms the accuracy of using the elastic energy density cela and
GSFE density cgsf in the latter as approximations to the corresponding atomic
quantities. Introducing the gradient energy cgra, which is done in APFM,
yields an improvement in the description of the dislocation core structure
with respect to the MS-based results, compared with the PF-based variantss
without cgra.

The differences in the calculated disregistry fields are quantified in terms of
the ISF width d and the Shockley partial dislocation core size l. A common
factor in determining d and l is the identification of the Shockley partial dislo-
cation core centre, whose location may not be unique if one assumes that it cor-
responds to a peak value in the partial derivative of the disregistry with respect to
the coordinates along the direction that is on the slip plane and normal to the
dislocation line. Accordingly, two new methods, which make use of only the
2D disregistry fields but not their derivatives, are proposed to calculate d. We
also propose one new method, which combines the disregistry fields along the
two perpendicular directions, to determine l. It is found that, in general

(1) Adding cgra to the total energy density increases both d and l, which help
achieve better predictions of the entire dislocation structure with respect
to MS;

(2) Approximating an elastic anisotropic medium as an elastic isotropic one
results in an overestimate of d;
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(3) Determining ggsf , and hence cgsf , using either the 2D truncated Fourier
series or the look-up table form, does not significantly affect the calculated
disregistry fields as long as the key parameters in the Fourier series are based
on the same interatomic potentials used in MS.

Ongoing work includes realising full elastic anisotropy in PFDD, carrying
out ab initio-based calculations to obtain more accurate GSFE surfaces for
common metals, and extending the current work to other lattices such as
HCP and body-centred cubic types. We will also compare the PF-based disreg-
istry profiles with those from other meso-scale modelling methods, and
compare the Shockley partial dislocation core centre determination methods
included in this work with other approaches based on the differential displace-
ment map or Nye tensor.
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