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Abstract.
Recent experimental studies have reported that thick interfaces in nanolaminates can lead
to greater strengths than conventionally sharp interfaces without sacrificing deformability.
Using a multi-phase phase-field dislocation dynamics model, dislocation transmission across
a compositionally graded, nanoscale thick interface is investigated. Thicker interfaces over a
finite range are found to lead to greater resistance to transmission. The limit interface thickness
at which the peak resistance is reached, and the strengthening capacity of the interface are
greater when the dislocation is dissociated, as in a face-centered cubic lattice, than when it is
compact, as in a body-centered cubic lattice. The composition transitions within the interface
are treated with multiple sublayers, and it is found that the interface transmission barrier is as
strong as its most resistance composition.

1. Introduction
Nanolaminates have drawn considerable attention due to their extraordinarily high strength,
beyond the volume averaged strength based on their constituents [1, 2]. They consist of a stack
of alternating layers of two or more dissimilar materials, wherein the individual layer thicknesses
are nanoscale in dimension. Their superior strength, as well as many other notable properties,
such as outstanding thermal stability [3], good room temperature ductility [4, 5], and excellent
shock resistance [6, 7], have been attributed to their high density of interfaces. Interfaces in
conventional face-centered cubic (FCC)/body-centered cubic (BCC) nanolaminates are sharp,
composed of one atomic plane of Cu and one atomic plane of Nb [8]. In 2018, Chen et al. [9]
synthesized Cu/Nb nanolaminates with interfaces that were on the contrary thick. As shown in
figure 1, these thick Cu/Nb interfaces extend out of plane by at least a few nm and are chemically,
crystallographically, and/or topologically distinct from those of the Cu or Nb crystals they
join. Compression testing 40 nm/40 nm Cu/Nb nanolaminates revealed that when the interface
thickness is about 10 nm, the yield stress is 50% higher and the flow stress 22% higher than
when the interface is sharp, while retaining the same strain to failure of 14%. Another study
revealed that even higher strengths and deformability were possible when both the interface and
layer thicknesses equaled 10 nm [10]. Clearly, these thick or so-called 3D interfaces introduce
newer and more variables to interface design than the commonly studied sharp or 2D interfaces.
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In this work, we use a recently developed multi-phase phase field dislocation dynamics (PFDD)
model [11] to investigate the role of 3D interface thickness h′ and composition on the critical
stress for dislocation transmission.

Figure 1. (a) A high-resolution transmission electron micrograph of a 3D Cu-Nb interface
between a Cu layer and a Nb layer. More details were presented in Ref. [10]. (b) An atom
probe tomography chemical map of the 3D interface. The purple cylinder represents a region of
interest from which the line profile of chemical composition in (c) is extracted. The horizontal
dashed arrow indicates the directionality in (b) and the two vertical dotted lines correspond to
the two horizontal yellow lines in (a). More details were presented in Ref. [12].

2. Methods
2.1. PFDD formulation
In the formulation, each phase field order parameter is associated with an available slip system.
Accordingly, the set of order parameters ϕ consists of nop order parameters, for which there are
Nsp slip planes and nsp slip directions per slip plane. Thus, nop = Nspnsp. The order parameter
for a given slip system α, denoted by ϕα, is 0 for the unslipped state and 1 or more for the
slipped state. The total system energy consists of energetic terms that are a function of the
evolving order parameters [13]. For a multi-phase material, a second quantity, a virtual strain
tensor ϵv independent of ϕ, is introduced and included in the solution [11].

The total energy density ψ at a given material point x contains the elastic ψela, lattice ψlat,
gradient ψgra, and external ψext energy densities [14],

ψ(x) = ψela(x) + ψlat(x) + ψgra(x)− ψext(x) (1)

where ψlat and ψgra only exist in materials that contain dislocations.
The first energy density, ψela, consists of two terms, the “equivalent” homogeneous elastic

energy density, ψeq
ela(x), and the “extra” elastic energy density, ψex

ela(x) [15], i.e.,

ψela(x) = ψeq
ela(x) + ψex

ela(x) (2)
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ψeq
ela(x) =

1

2
[ϵ(x)− ϵ0(x)] · C[ϵ(x)− ϵ0(x)] (3)

ψex
ela(x) =

1

2
ϵv(x) ·M [N ](x)ϵv(x) (4)

where C is the elasticity tensor and ϵ the strain tensor, given by ϵ = symβ, where β = ∇u is
the distortion with u the displacement in material N , 1 < N ≤ Nmat. ψ

ex
ela exists in all materials

except material N = 1. The eigenstrain tensor ϵ0 depends on the material, according to

ϵ0(x) =


ϵp(x), x ∈ material 1

ϵp(x) + ϵv(x), x ∈ material N where dislocations exist

ϵv(x), x ∈ material N where dislocations do not exist

(5)

where ϵp and ϵv are the plastic strain tensor and virtual strain tensor, respectively. The tensor
ϵp is related to plastic distortion tensor βp and order parameter ϕ via

ϵp = symβp (6)

βp(ϕ) =

nop∑
α=1

bαϕα
dα

sα ⊗ nα (7)

where sα is the slip direction unit vector, bα is the slip vector magnitude, nα is the slip plane
unit normal, and dα is the interplanar distance for slip system α. In equation 4,

M
[N ]
ijkl(x) = −C [1]

ijmn

[
∆C [N ]

mnpq(x)
]−1

C
[1]
pqkl − C

[1]
ijkl (8)

∆C
[N ]
ijkl(x) = C

[N ]
ijkl(x)− C

[1]
ijkl (9)

The second energy density in equation 1, ψlat, is a function of ϕ [16], i.e.,

ψlat(x) =
γ
[N ]
gsf (ϕ(x))

l
[N ]
gsf (x)

(10)

where γ
[N ]
gsf is the generalized stacking fault energy (GSFE) and l

[N ]
gsf is the interplanar spacing

for material N . For one system in the {110} glide plane in the BCC lattice, nsp = 1 and γgsf is
represented by a GSFE curve along the ⟨111⟩ direction. For the FCC lattice, the three coplanar
slip systems on the {111} glide plane are used, and hence nsp = 3 and γgsf is a GSFE surface.

The third energy density, ψgra, represents the energy associated with the change in ϕ at the
dislocation and hence is a function of the gradient ∇ϕα(x) [17]. It is related to the projection
of the curl of the distortion tensor (Nye’s tensor) in equation 7 onto each slip system as follows

ψgra(x) =

nsp∑
α,β=1

η
[N ]
αβ ∇ϕα(x) ·Ξαβ(x)∇ϕβ(x) (11)

where η
[N ]
αβ is a scaling factor for the gradient energy and has units of energy per unit length. It

can be specified for a pair of order parameters αβ in material N . The tensor Ξαβ depends on
geometry and is:

Ξαβ =
bα · bβ
dαdβ

[(nα · nβ)I − nβ ⊗ nα] (12)
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where I is the identity tensor. Here, for simplicity sake, we set η
[N ]
αβ the same for all αβ pairs in

the same material, and we drop the subscripts in what follows.
The last energy density in equation 1, the external energy density ψext, is given by

ψext(x) = σapp · ϵ0(x) (13)

where σapp is the applied stress tensor.
With the energy functional defined and order parameters initialized, the total system energy

is minimized with respect to each order parameter ϕα and each virtual strain component ϵab
(where a, b = 1, 2, 3) via the time-dependent Ginzburg-Landau equations:

ϕ̇α(x) = −m0[∂ϕα(x)(ψela(x) + ψlat(x)− ψext(x))−∇ · ∂∇ϕα(x)ψgra(x)] (14)

ϵ̇vab(x) = −mv
0∂ϵvab(x)(ψela(x)− ψext(x)) (15)

where the superposed dot denotes a time derivative. equation 15 is not applied to material 1.
The Ginzburg-Landau coefficients, m0 and mv

0, are non-negative but not necessarily equal.

2.2. Simulation set-up
Figure 2 illustrates the 3D periodic simulation cell composed of an edge dislocation dipole
bounded by a pair of 3D interfaces that lie perpendicular to the glide plane. To isolate the role
of chemistry and interface thickness h′, the two matrix crystals on either side of the interface
belong to the same pure metal while the 3D interface consists of one or two Cu-Nb alloys with
the same crystal structure as the matrix.

Figure 2. (a) Schematic of the simulation cell for an edge dislocation dipole interacting with
two 3D interfaces in a Nb matrix or a Cu matrix. The grey parallelogram is the slip plane,
while the interface plane normal is along the x axis. (b–d) In a Nb matrix, cyan and orange
layers indicate BCC Cu0.05Nb0.95 (interface A) and BCC Cu0.1Nb0.9 (interface B), respectively;
in a Cu matrix, cyan and orange layers correspond to FCC Cu0.9Nb0.1 (interface A) and FCC
Cu0.8Nb0.2 (interface B), respectively.

For the BCC crystal, the glide plane is {110} and the glide direction is ⟨111⟩. The
corresponding lattice orientations of the cell are

(ix, iy, iz) =

(√
3

3
[111],

√
2

2
[1̄10],

√
6

6
[1̄1̄2]

)
(16)

For the FCC crystal, the slip system is {111}⟨110⟩ and the cell orientations are

(ix, iy, iz) =

(√
2

2
[1̄10],

√
3

3
[111],

√
6

6
[112̄]

)
(17)
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The lengths of the simulation cell, Lx, Ly, and Lz along the x, y, and z direction, respectively,
are selected to minimize numerical artifacts. The number of grid points along the three
directions, respectively, are 1024, 64, and 128. The two dislocations lie along the z axis on
the mid-y plane, and are separated by Lx/2 along the x direction since this separation results
in an equilibrium dipole position in its stress-free state. The two 3D interfaces are separated by
7Lx/8 along the x direction. The distance between an interface and its adjacent dislocation is
selected such that the two do not overlap even in the case of the thickest 3D interface studied
(≈ 15 nm).

The interface composition is selected such that the interface would form a coherent, cube-
on-cube orientation relationship with the adjoining matrix material. In a prior work, with
some additional calculations from this work, atomistic calculations were conducted to determine
the structure, lattice parameters, elastic moduli, and GSFEs for the full spectrum of Cu-Nb
compositions [15]. They identify that Cu0.05Nb0.95 and Cu0.1Nb0.9 are stable BCC alloys while
Cu0.8Nb0.2 and Cu0.9Nb0.1 stable FCC alloys. The other compositions, with intermediate Cu
and Nb compositions, are amorphous materials and not considered here for the interface phase.

A compositionally graded 3D interface is modeled as a series of three layers, wherein the two
outer layers bound to the matrix have the same composition, while the inner layer has a different
composition. This transition intends to mimic the gradual composition transitions within the
3D interface seen in figure 1 [12]. Figure 2(d) shows this “trilayer” representation of a graded
3D interface, in which each layer thickness is h′ and the total thickness is thus 3h′. For the BCC
case, the matrix is Nb and the interface transitions from Cu0.05Nb0.95 then Cu0.1Nb0.9 and back
to Cu0.05Nb0.95 and Nb. Likewise, for the FCC case, the matrix is Cu and the trilayer interface
is first Cu0.9Nb0.1 then Cu0.8Nb0.2, and returns to Cu0.9Nb0.1. The interface thickness 3h

′ varies
from 1.71 nm (5.94bNb) to 15.42 nm (53.56bNb) in a Nb matrix, and from 1.53 nm (5.95bCu) to
15.42 nm (60.01bCu) in a Cu matrix.

For comparison, separate simulations are performed considering 3D interfaces but with a
single alloy composition, as depicted in figure 2(b,c). When the matrix is Nb, the monolayer
interface is either BCC Cu0.05Nb0.95 alloy or BCC Cu0.1Nb0.9 alloy. The thickness h′ varies
from 0.57 nm (1.98bNb), approximately three times the inter-{111}-planar spacing, to 13.68 nm
(47.52bNb). When the matrix is Cu, the interfaces considered are either Cu0.9Nb0.1 or Cu0.8Nb0.2.
The h′ ranges from twice the inter-{110}-planar spacing, 0.51 nm (1.98bCu) to 10.03 nm
(39.03bCu).

Table 1. Lattice parameters a0 (in Å), elastic constants C11, C12, C44 (in GPa), isotropic shear
modulus in Voigt form µ = (3C44+C11−C12)/5, and uniform gradient energy coefficients η (in
µb2) of the two pure metals and four random binary alloys used in this work.

Lattice a0 C11 C12 C44 µ η
Nb BCC 3.324 [18] 245 [19] 132 [19] 28.4 [19] 39.64 0

Cu0.05Nb0.95 BCC 3.287 236.76 139 35.66 40.95 0
Cu0.1Nb0.9 BCC 3.274 [15] 221.58 [15] 141.63 [15] 40.63 [15] 40.37 0
Cu0.8Nb0.2 FCC 3.759 [15] 195.16 [15] 128.44 [15] 79.32 [15] 60.94 0.19 [11]
Cu0.9Nb0.1 FCC 3.699 [15] 187.25 [15] 135.8 [15] 81.88 [15] 59.42 0.28 [11]

Cu FCC 3.634 [20] 169 [19] 122 [19] 75.3 [19] 54.58 0.38 [11]

Table 1 and Table 2 present the input parameters for every material and, when available, their
originating references. The uniform gradient energy coefficient η scales directly with the size of
the partial dislocation core, excluding the intrinsic stacking fault (ISF) [21]. For undissociated
dislocations, such as those in BCC metals, the gradient term is neglected (i.e., η = 0). For the
dissociated dislocations in FCC materials, η is characterized by comparisons with the partial
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Table 2. Unstable stacking fault energy (SFE) γusf and intrinsic SFE γisf of the six materials
in Table 1, in mJ/m2.

Nb Cu0.05Nb0.95 Cu0.1Nb0.9 Cu0.8Nb0.2 Cu0.9Nb0.1 Cu
γusf 676.78 [18] 710.13 703.46 [15] 151.18 [15] 155.19 [15] 160.52 [20]
γisf 38.17 [15] 40.67 [15] 41.83 [20]

core widths in the same material based on atomistic simulations [11]. The boundaries between
different materials are assumed coherent since the lattice misfit between any adjoining matrix
and interface phase is sufficiently small. Further, any residual Burgers vector left after dislocation
transmission would also be small and due to the appreciable thickness of the 3D interfaces, would
be distributed across the interface thickness.

A resolved shear stress is applied to the system to drive the dislocations to glide towards the
3D interfaces. For FCC materials, the edge dislocation under no stress dissociates into leading
and trailing Shockley partials. Under the stress applied here, the magnitude of the shear stress
resolved on each partial is the same and drives them in the same direction. The applied stress is
incremented in order to identify σc, the critical stress for the dislocation to transmit the entire
thick interface. Specifically, when the minimum applied stress for transmission σ0 is found, we
set σc = σ0−∆σ0/2, where ∆σ0 = 10−4µ is the smallest difference between the two stresses and
µ is the isotropic shear modulus of the matrix. For each stress level, the iterations performed to
solve equation 15 are terminated when the Euclidean norm of the difference in global vector of
each order parameter and each virtual strain component between successive iterations is smaller
than 10−5. The Ginzburg-Landau coefficients m0 and mv

0 are set to unity and the timestep used
is ∆t = 0.02.

3. Results
3.1. Monolayer interface
Figure 3 presents σc for both interface compositions as a function of h′ in the BCC case.
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Figure 3. Critical stresses for transmission of an edge dislocation across thick interfaces in a
Nb matrix, as a function of interface thickness.
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Interfaces of any thickness substantially increase σc (30–60%) compared to the glide resistance
in pure Nb, 0.033µNb (using the same model). The strengthening observed can be attributed to
both higher µ and γusf of the interface. For the same h′, the Cu0.05Nb0.95 interface composition,
with the higher values of µ and γusf , provides the stronger barrier to transmission, than
Cu0.1Nb0.9. The impact is large–with 4.8% higher γusf yielding on average 36% higher σc.

Importantly, thicker h′ leads to higher σc. The positive size effect of h′ on σc prevails,
however, over a short range from 0.57 nm until ≈ 3 nm, beyond which there is no noticeable
benefit to strengthening. The precise limit h′ at which σc peaks is 9.12 nm for the Cu0.05Nb0.95
interface and 10.29 nm for the Cu0.1Nb0.9 one. Since σc is associated with a critical state of
the dislocation, the locations of the dislocation in their sub-critical configurations are examined.
Some configurations are shown in figure 4. They reveal that σc is needed to force transmission
across the first boundary into the interface. For smaller h′ where a positive size effect is seen,
this first transmission event is aided by the image stresses from the interface boundary on the
other side of the thick interface. For larger h′, the aid diminishes and along with it, the size
dependence.

(a) Cu0.05Nb0.95 (b) Cu0.1Nb0.9

Figure 4. Position of the edge dislocation (vertical dashed line) with respect to the interface
in a Nb matrix when the applied stress is slightly lower than the critical one. In each case, the
dislocation moves from right to left, as indicated by the arrow. Partial views of the areas of
interest are shown and do not represent the entire length of the simulation cell.

In the Cu matrix, introduction of a thick interface provides even greater increases in σc
than in the Nb matrix. For comparison, the glide resistance for an edge dislocation in pure Cu
using this model is 0.00035µCu [11]. As shown in figure 5, introduction of even the finest layer
≈ 0.6 nm increases σc at least 40 times. Further, unlike in the BCC case, the influence of 3D
interface h′ is strong and does not weaken until h′ increases to around ≈ 4–5 nm. Between the
two compositions, the Cu0.9Nb0.1 interface provides the greater transmission resistance than the
Cu0.8Nb0.2 one, which would be expected since the former has the greater γusf and γisf .

The strengthening potential and strong size effect are counter-intuitive since transmitting
and gliding across these interfaces from Cu would be expected to be easier than gliding in Cu
alone since both interface compositions have a lower γusf , γisf , and their difference γusf − γisf
than pure Cu. It is also intriguing that the interfaces in the BCC counterpart did not provide
strengthening to this extent although they have larger µ and γusf than the Nb matrix.

Analysis of sub-critical configurations in a Cu matrix suggests that the formation of the
relatively low-energy ISF in the interface produces a strong pinning effect, that would not be
realized in Nb. Figure 6 shows the positions of the leading (L) and trailing (T) partials in the
sub-critical configurations, right before the pair (the full dislocation) completes transmission
for a few h′. The L and T partials transmit across the first matrix/interface boundary and the
interface thickness, maintaining approximately the same ISF width of ≈ 1.5–2 nm. This width is
lower than the zero-stress ISF width in Cu, which is 2.53 nm (= 9.85bCu) and those in the alloys,
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Figure 5. Critical stresses for transmission of an edge dislocation through two interface
compositions in the Cu matrix, as a function of the interface thickness.

which are 2.59 nm and 2.63 nm, respectively [11]. For all thicknesses, the L partial transmits
into the recipient Cu layer, while leaving the T partial in the interface and or the originating Cu
layer. The σc is needed to push the T partial across the interface. As h′ increases, the distance
the L partial extends into Cu increases. The limit of h′ is reached when the portion of the ISF
width in the recipient Cu layer increases above that in the interface.

3.2. Trilayer interface
From the monolayer 3D interfaces, we turn our attention to the more compositionally complex
trilayer interface, i.e., interface C in figure 2. We first consider the BCC case, in which the matrix
is Nb and the interface transitions from Cu0.1Nb0.9 in the first outer layer adjacent to the Nb
matrix to Cu0.05Nb0.95 in the central layer and back to Cu0.1Nb0.9 in the third layer. Figure 7
indicates that this gradient 3D interface of any thickness 3h′ leads to an increase in σc above the
Peierls stress in Nb, 0.03355µNb [15]. Importantly, these gradient interfaces have similar σc as
the Cu0.1Nb0.9 monolayer interfaces for the same total thickness. Of the two compositions in the
interface, Cu0.05Nb0.95 is the stronger one. An “inverse” weakest-link response is thus identified,
wherein the barrier strength of the graded interface is as strong as its strongest composition.

Like the BCC monolayer interface, the size effect in 3h′ on σc is positive for a short range
until ≈ 3h′ = 3.42 nm when the size effect weakens and further increases in thickness produce
little gain in barrier strength. For even greater 3h′, a strict limit thickness is reached at which
the peak σc is achieved. This limit 3h′ = 10.26 nm and is about three times the limit h′ for
either monolayer alloy interface. The locations of the dislocation at its critical point for a select
set of 3h′ are shown in figure 8a. In all cases, the critical stress is needed to force the dislocation
to transmit across the first boundary into Cu0.05Nb0.95. Attaining this configuration is affected
weakly by 3h′. The limit 3h′ is related to the distance beyond which the image stresses from
the other boundaries become sufficiently minimized.

In a Cu matrix, the trilayer interface consists of two Cu0.9Nb0.1 layers adjacent to the matrix
and one Cu0.8Nb0.2 layer in the middle. Like the monolayer interface, a strong size effect arises,
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(a) Cu0.9Nb0.1

(b) Cu0.8Nb0.2

Figure 6. Position of the dissociated dislocation in its critical configuration in the Cu matrix
when the applied stress is slightly lower than the critical one. Two Shockley partial dislocations
are denoted by two vertical red lines, respectively, while the ISF by a semi-transparent red block
between the two partials. “L” and “T” denote the leading and trailing partials, respectively.

as shown in figure 7, wherein σc nominally increases with 3h′. The dependence on interface
thickness is more pronounced than the gradient 3D interface in a Nb matrix. The σc peaks and
then plateaus when 3h′ reaches 9.24 nm, which is nearly twice the limit h′ of the monolayer
interfaces of the same compositions. The plateau value, 0.04µCu, however, is close to that of
the monolayer Cu0.9Nb0.1 interface, the stronger composition. Again, we find that the barrier
strength of the graded interface of two compositions is as strong as its stronger composition.

Figure 8b presents the sub-critical configurations of the L and T partials for the broad range
of 3h′ over which σc varies. From 3h′ ≈ 1–4 nm, when h′ is less than the ISF width of the
dislocation, σc enables L to cross the first two layers and into the final Cu0.9Nb0.1 layer while T
lies in the first Cu0.9Nb0.1 layer. Evidently σc is needed to force L and T to glide across the two
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Figure 7. Critical stresses for transmission of an edge dislocation through the gradient interface
in a Nb matrix or a Cu matrix, as a function of the total interface thickness.

stronger regions of the interface. The thicker h′ these regions is, the greater the resistance. When
3h′ increases above the ISF width from about 4 to 6 nm, however, σc still pushes L all the way
into the last Cu0.9Nb0.1 layer but T lies in the weaker Cu0.8Nb0.2 layer. The σc decreases since
achieving the critical configuration involves gliding through the weaker material. For greater
3h′, σc reaches a limit value. The critical state at this limit corresponds to when the entire
dislocation is on the verge of finally crossing the final interface/matrix boundary. The T partial
has yet to transmit from the interface and back into the matrix (figure 8b at 3h′ = 9.24 nm).

4. Discussion
The results indicate a clear benefit in thickening the interface, where “larger is stronger” up to
a limit thickness h′. These 3D interfaces can exhibit a non-negligible size effect on transmission
resistance for thicknesses in the range of 2–10 nm. For some finely structured nanolaminates,
these thicknesses are similar to or no smaller than the thickness of individual layers bounding
the interfaces. With the added size effect from the interface h′, altering both thicknesses
independently to achieve optimal strength can be easily envisioned.

When treating a gradient interface, it is useful to consider the thickness of the composition
within the interface that is the most resistant to glide. Calculations here forecast that rather
than the weakest or even the averaged resistance across all compositions in the interface, it is
the strongest portion of the interface and its volume fraction that dominates the resistance.

The dynamic, “composite” ISF width that transmits across the interface adds another
important length scale. Although the resolved shear stresses on the L and T partials are the
same, they often lie in different materials, differing in elastic moduli and lattice parameter. The
results imply that greater differences in γisf between the matrix and 3D interface and lower γisf
could possibly lead to even greater strengthening potential for 3D interfaces. Not only would
the boosts in strengthening over the pure constituents be realized but also the range of h′ could
be greater than those seen in the composite system studied here.
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(a) Nb matrix

(b) Cu matrix

Figure 8. Position of the dissociated dislocation in their critical state, that is, when the applied
stress is slightly lower than the critical one. Markers and parameters used are the same as those
in figure 4 and figure 6.

5. Conclusions
In this paper, we utilize a recently developed multi-phase PFDD model [11] to study the
transmission of an edge dislocation across compositionally gradient 3D interfaces of nanoscale
thicknesses. The calculations investigate the role played by the 3D interface thickness h′,
composition, and dislocation core structure, either undissociated in BCC crystals or dissociated
in FCC ones. One set-up consists of a fully BCC structure containing a thick 3D crystalline
Cu-Nb alloy interface sandwiched between two Nb crystals of the same orientation. Similarly,
the other one is composed of a completely FCC structure with two Cu crystals sharing one
common thick 3D Cu-Nb alloy interface. Even for the finest h′ (≈ 0.5 nm), the interface
increases the glide resistance, by 30–60% in the BCC structure and 40 times in the FCC one.
For both crystal structures, a positive size effect in h′ on transmission strength occurs up to a
limit h′ of ≈ 2–10 nm. We observe intrinsic stacking fault (ISF) strengthening, in which the
dissociated core of the FCC dislocation leads to boosts in transmission strength over a broad
range of nm thick interfaces. Comparisons with interfaces of uniform composition reveal that
the transmission strength of gradient interfaces is controlled by its strongest composition. Thus,
with the introduction of 3D interfaces, two important nm length scales arise, the thickness of
the interface and the dynamic ISF width of the transmitting dislocation.
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