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Abstract: Additive manufacturing (AM) has revolutionized the production of complex metallic
components by enabling the direct fabrication of intricate geometries from 3D model data. Despite
its advantages in reducing material waste and customization of mechanical properties, AM faces
challenges related to microstructural heterogeneity and mechanical property variability. This review
highlights the structure–property relationships in additively manufactured metals, emphasizing how
heterogeneous microstructure influences yield strength and fracture toughness. Phenomenological
equations are provided based on the integration of neural networks and genetic algorithm-based
models to predict mechanical properties from composition and microstructural features. We also
outline key considerations such as acquiring high-fidelity datasets and understanding mathematical
correlations within the data needed to formulate phenomenological equations.
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1. Introduction

Additive manufacturing (AM) encompasses a diverse array of techniques engineered
to fabricate complex metallic components with exceptional precision [1]. By employing
controlled melting and solidification during layer-by-layer deposition, AM enables the
construction of intricate geometries directly from computed models, significantly accel-
erating the transition from design to finished parts [2]. AM minimizes material waste by
employing a layer-by-layer deposition process, which ensures precise material utilization.
Unlike conventional subtractive methods, AM enables near-net-shape fabrication, reduc-
ing excess material removal [3]. Moreover, the flexibility of AM extends to the spatial
variation of composition and microstructure within a component, allowing for the local
customization of mechanical properties to meet specific performance requirements. These
advantages make AM a transformative technology in various fields, including biomedical
applications [4,5], aerospace and automobile components [6], and oil and gas industries [7].

The structural properties of AM products are primarily determined by processing
parameters and the microstructural features developed during solidification. Rapid solidi-
fication rates (up to 104 K/s [8] or 105 K/s [9]) render AM processes far from equilibrium.
Additionally, cyclic melting [10] and non-uniform thermal histories over successive layer
depositions [11] complicate microstructural predictions. These challenges give rise to
several issues in AM products, including residual stresses, structural distortion, pore for-
mation [12], and phase transformations [13]. Variations in heat flux during the deposition
process lead to significant changes in the grain growth direction of printed parts [14].
Notably, the literature reports considerably different microstructures, primarily because
microstructure formation depends on the location within the sample [15], where different
thermal histories occur. Local heterogeneity in composition and microstructure complicates
structure–property investigations in additively manufactured parts.
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Although a significant body of work exists on studying microstructural evolutions in
additively manufactured metals [16,17], exploring the phenomenological models is limited
in elucidating the relationships between composition, microstructure, and mechanical
properties of 3D-printed components [18]. One of the key challenges is collecting the re-
quired high-fidelity information that covers all key parameters and represents the majority
of governing mechanisms. AM parameters influence several attributes, including fluid
dynamics, thermal distribution, chemical reactions, solidification and phase transformation,
deformation, and shrinkage. However, optimizing these parameters is challenging due
to their nonlinear interactions. Adjusting one parameter can lead to complex changes in
others, resulting in intricate variations in material properties. The complex relationships
between variables and their impact on the output make data collection challenging. For
instance, it is nearly impossible to change one microstructural variable while keeping others
constant. In other words, it is challenging to experimentally isolate the effect of a single
variable on the output without interference from other variables [19].

This paper highlights the structure–property relationships in additively manufactured
metals, focusing on how microstructural evolutions during the manufacturing process
influence key mechanical properties. It further reviews phenomenological models for
predicting yield strength based on microstructural characteristics and compositional factors
using the integration of neural networks (NNs) with genetic algorithms (GAs). Such
a model helps predict the independent role of each parameter affecting the resultant
property. This study provides a framework for developing NN- and GA-based models
to predict the mechanical properties from composition and microstructural features. It
outlines key considerations in developing such models, including (i) acquiring high-fidelity
datasets, (ii) discerning the mathematical correlations within the data, and (iii) formulating
phenomenological equations.

2. Structure–Property Relationship

While the ability to fabricate intricate geometries directly from virtual designs makes
AM fascinating, the mechanical properties of AM-fabricated components are of paramount
importance, especially considering their applications in the aerospace industry. A wide
variation in mechanical properties such as yield strength, toughness, and fatigue resistance
has been reported in AM products. These variations are subject to the selected AM meth-
ods, composition, process parameters, build orientation, and post-heat treatments [20–22].
For instance, the tensile strength of AM-fabricated samples is orientation-dependent and
significantly varies with respect to the build direction [23]. Such variations in mechani-
cal properties make AM-fabricated components less reliable for sensitive applications like
aerospace components. This variability has driven research efforts toward understanding the
underlying microstructural features that contribute to these mechanical property differences.

The rapid and localized directional solidification during each layer deposition leads to
the development of grains with preferred orientation, scientifically known as texture [24].
This texture persists across multiple layers, forming high-aspect-ratio grains that follow
the solidification direction. Columnar grains formed across multiple deposited layers
are schematically presented in Figure 1a. The preference for solidification growth in a
particular direction is attributed to differences in free energy at the solid–liquid interface
and the stiffness of different crystallographic planes at the interface. Furthermore, as the
direction of beam energy deflects the thermal gradient, the columnar growth deviates
angularly based on the scanning direction, leading to columnar growth with multiple
deviations attributed to the scanning direction of each layer [25]. Since dislocation climb
and cross-slips are crystallographic orientation-dependent, the mechanical properties are
highly influenced by texture. This leads to anisotropy in mechanical properties with respect
to the direction of deposition. Figure 1b demonstrates the variation in hardness within
the deposited layers in an additively printed α/β titanium part. Such heterogeneity in
hardness further necessitates detailed microstructural characterization to understand the
mechanical response and performance of additively manufactured metallic materials.
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Figure 1. Considerable variations in microstructure can be a reason for location-dependent properties.
(a) A schematic representing columnar grains formed across multiple deposited layers; (b) hardness
variation within the deposited layers in an additively printed α/β titanium part.

Rapid solidification and post-heat treatments in the AM of multicomponent systems
provide a wide scope for the formation of thermodynamically stable or metastable phases,
including martensitic phases, bulk metallic glasses, and eutectic structures. For example,
in laser-deposited Ti-6Al-4V, elongated prior β grains [26], as well as the coexistence of
equiaxed α and basketweave microstructures, have been observed [15]. In the case of
electron beam deposition, a very fine α/β lamellar microstructure was observed [27,28]. It
has been shown that Widmanstätten morphology grows in columnar prior β grains [9,29],
containing a martensitic α′ phase [9]. In directed energy deposition, a fine Widmanstätten
microstructure was reported in a Ti-6Al-4V deposited sample [30]. Furthermore, post-heat
treatments or certain AM methods allow for the precipitation of uniformly distributed pre-
cipitates, significantly affecting precipitation hardening [31–34]. The presence of multiple
phases and precipitation hardening significantly affects deformation characteristics and,
consequently, mechanical properties such as yield strength and toughness.

There is considerable uncertainty in the mechanical properties of additively man-
ufactured metallic materials. These uncertainties are attributed to heterogeneity in mi-
crostructure and composition or the formation of defects during deposition. To increase the
reliability of additively manufactured materials, we should (1) quantitatively assess the
contributions of microstructure, composition, and defects to mechanical properties, and
(2) tune the processing parameters to achieve the desired microstructure and composition
that lead to the desired mechanical properties and performance. However, the nonlinear
relationships among processing parameters impose significant challenges in experimental
optimization. To address this issue, well-trained phenomenological models integrated with
neural networks (NNs) and genetic algorithms (GAs) have been applied to enhance the
desired properties by tuning these parameters.

3. Model Development

The integration of NN with GA optimizes the desired property by training a multipa-
rameter model, applying genetic operations, and running the algorithm until the desired
property reaches an optimal or near-optimal NN configuration. Notably, NNs have been
used in many applications, such as predicting the mechanical response and phase trans-
formations of titanium alloys [35–41], nickel [42], and steel [43–48]. GAs have also been
applied to many materials science problems to find the best parameters involved in a
mechanism [49,50] and to model the evolution of microstructure [51,52]. GAs have been
combined with NNs to tune predictions [53–55]. For example, the heat treatment procedure
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for the AA7175 aluminum alloy can be modified based on the expected properties and
performance by combining NNs with GAs [56].

3.1. Collecting High-Fidelity Datasets

NNs require high-fidelity datasets to effectively model complex systems, especially
when predicting mechanical properties influenced by microstructure and chemical compo-
sition. The accuracy of these models hinges on the adjustment of internal weights during
training, which requires robust and diverse datasets to capture the full spectrum of material
variations, minimize bias, and prevent overfitting. In investigating structure–property
relationships, datasets must cover a broad range of input parameters, including variations
in chemical composition (e.g., concentrations of alloying elements) and microstructural
features (e.g., phase fractions, precipitate size, distribution, crystal orientation, and grain
morphology). Microstructural characteristics, such as columnar, equiaxed, dendritic, or
twinned grains, directly influence mechanical properties such as yield strength, toughness,
and fatigue resistance. Therefore, to ensure comprehensive coverage of material behavior,
multiple dataset entries must represent each combination of composition and microstructure.

Experimentally exploring the entire range of input parameters to develop such datasets
poses significant challenges. Despite this, researchers have successfully generated high-
fidelity datasets by selectively varying key input parameters and measuring corresponding
mechanical properties. For instance, Collins et al. [41,57] developed a dataset for α-β
titanium alloys by adjusting the concentrations of aluminum, vanadium, iron, and oxygen,
and applying thermomechanical treatments above and below the phase transformation tem-
perature. They measured tensile strength for each condition, providing valuable insights
into the relationship between composition, microstructure, and mechanical properties,
emphasizing α-phase size and morphology. Similarly, Kusano et al. [58] generated a dataset
by varying solution treatment times and temperatures to correlate microstructural features
(grain size, aspect ratios, and pore characteristics) with tensile properties. These studies
demonstrate how targeted experimental designs can yield valuable datasets, even when a
full parameter space exploration is impractical.

Characterization techniques, particularly X-ray methods such as synchrotron X-ray
tomography, X-ray diffraction, and scattering, are useful in generating high-fidelity datasets
for machine learning models to obtain insights into microstructural features and chemical
compositions [59–61]. Rezasefat et al. [62] performed X-ray micro-computed tomogra-
phy scans of alumina and analyzed them to identify porosities, impurities, and the 3D
microstructural geometry of the material. These data were processed to threshold segmenta-
tion, reconstruct the 3D inclusions, and analyze their volume, aspect ratio, and distribution.
The 3D morphological data derived from the CT scans were used to create FE models, where
simulations were performed to predict stress–strain responses and progressive damage.

Datasets for NN training can be expanded using physics-based simulations [63] and
finite element methods [64], which predict microstructure-dependent mechanical proper-
ties. Dai et al. [65] generated the data using the visco-plastic self-consistent model. This
model simulated datasets of stress, strain, and grain orientations (texture) for copper under
different load conditions (e.g., uniaxial tension, compression, and simple shear). By inte-
grating both experimental and simulation-generated data, researchers can develop more
comprehensive and versatile datasets, ultimately improving the predictive accuracy of
machine learning models.

3.2. Establishing the Mathematical Relationships Between the Collected Data

To elucidate mathematical relationships within the collected datasets, the model
utilizes the majority of the data for training while reserving a smaller portion for testing the
NN analysis. In our work, a model based on MacKay’s Bayesian NN code [66,67] serves
as a primary basis for training NNs. Figure 2 shows a schematic of an NN model with
input and output parameters. The intermediate layers are the hidden layers represented
by the circles between the input and output layers. They consist of neurons that apply
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transformations to input data using learned weights and biases, followed by an activation
function. These layers enable the network to capture complex patterns and relationships
within the data. In the model presented by Dai et al. [65], the architecture has multiple
layers with hyperbolic tangent activation functions between layers.
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tionships. C1, C2, and C3 refer to the concentration of alloying elements in a multicomponent material.

To mathematically study the impact of each compositional and microstructural vari-
able on the mechanical properties, the trained NN model was applied to synthetic datasets.
These datasets were generated by varying only one variable over its experimental range
while keeping the other variables fixed at constant values (e.g., mean values). From the ex-
perimental data alone, it is impossible to draw clear conclusions about the effect of one input
parameter on the output (e.g., the effect of equiaxed alpha size on yield strength) because
changing one variable leads to variations in other variables that affect the microstructure.
However, the results of virtual experiments using NN provide the opportunity to show the
impact of each variable on the output while the other variables are held constant.

While NN models are very flexible and can capture complex relationships between
inputs and outputs, these models are not readily interpretable. The lack of interpretabil-
ity arises because NNs are composed of mathematical functions (e.g., summation and
hyperbolic tangent functions) without explicit physical meaning.

3.3. Establishing the Phenomenological Equation

Figure 3 presents the method for establishing the phenomenological equation from
a dataset. The NNs capture the complex relationships between the inputs and outputs,
followed by virtual experiments using the well-trained NN model. Virtual experiment
databases are generated by changing each variable from its minimum to its maximum
measured value while keeping other variables at their average values.
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While NN models can accurately predict properties, their complexity makes physical
interpretation difficult. GA addresses this by deriving more interpretable phenomenolog-
ical equations based on physical metallurgy principles. For instance, it can be assumed
that in single-phase metallic alloys, the contribution of composition to strengthening can
be attributed to the intrinsic strength of the material, solid solution strengthening, and
grain boundary strengthening (Hall–Petch relation). In multi-phase metallic systems, the
phenomenological equation includes additional terms such as particle strengthening and
precipitation hardening. Voigt and Reuss models are introduced in multi-phase systems to
predict the elastic properties [68]. The model to define crystal plasticity considers material
properties such as strain hardening and dynamic recovery [69].

The unknown parameters in the phenomenological equation are the coefficients and
exponents. These unknown parameters are determined using the GA method. GA is
an optimization method that can find the optimum values for the unknown coefficients
and exponents to minimize the difference between the NN and GA predictions. The
phenomenological equation is modified iteratively by adding new terms to reduce the
difference between the NN and GA predictions and removing terms that have a small con-
tribution to the estimated yield strength values. The models were designed to capture both
continuum variables (such as yield strength and reduction in area) and micromechanistic
details (like microcracking and void nucleation). The models underwent virtual experi-
ments to explore how each variable functionally depended on the predicted toughness,
which helped establish the phenomenological relationships [57].

Even though multiple iterations are performed on the phenomenological equation
during the refinement of coefficients and exponents, it is important to consider that a
lack of accuracy in NN and GA predictions can be observed for certain parameters. Such
inaccuracies can be attributed to factors that might not be considered in the model. The
limitations of virtual experiments must be acknowledged, as simulation models are in-
herently unable to fully capture real-world complexities. To enhance predictive accuracy,
additional equations need to be considered to quantitatively map critical parameters, such
as the distribution of densities of geometrically necessary dislocations and texture. Hayes
et al. [70] addressed this challenge by optimizing phenomenological equations for yield
strength prediction, incorporating these parameters (Table 1). The refinement of coefficients
and exponents over multiple iterations is included in the relevant strengthening equations.
Here, the relationship between dislocation density and the resulting material hardening is
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described by the Taylor hardening term. Xie et al. [71] introduced a data-driven approach
that integrates the concept of dimensional invariance within a hierarchical machine learning
model to identify the dominant dimensionless parameters underlying governing principles
from the limited experimental results.

Table 1. The optimized phenomenological equation [70]. FV, C, and t represent the volume fraction,
concentration, and thickness, respectively. In the Taylor hardening term, G, b, and r are shear modulus,
Burgers vector, and dislocation density, respectively.

Yield Strength
σy=

(
89 × Fα

V
)
+ (45 × Fβ

V) + Intrinsic strength
Fα

V ×
(
149 × C0.667

Al + 759 × C0.667
O

)
+ Solid solution strengthening (alpha phase)

Fβ
V ×

((
22 × C0.7

V
)0.5

+
(
235 × C0.7

Fe
)0.5

)2
+ Solid solution strengthening (beta phase)

Fcol
V × 150 ×

√
tβ−rib
tα−lath

+ Hall–Petch strengthening (alpha laths)

Fcol
V × 125 × t−0.5

colony+ Hall–Petch strengthening (colonies)
FBW

V × αMGb
√

ρ− Taylor hardening
AxisDebit Texture debits (easier slip)

NN and GA synergistically enable autonomous experimental loops by combining
predictive modeling and optimization capabilities. NN predicts material properties or
synthesis outcomes based on experimental conditions, significantly reducing the need for
exhaustive trial-and-error experiments. These models can be iteratively improved by inte-
grating active learning strategies, wherein new experimental data are selectively acquired
from regions of high uncertainty or interest, as identified by the NN. GA complements
this framework by optimizing experimental parameters to meet target objectives, such as
maximizing a desired property or minimizing resource use. In this context, the GA acts
as an optimizer, leveraging the predictions of the NN to guide the selection and evolution
of candidate experiments. This loop is further enhanced by using Bayesian optimization
within the GA to balance exploration and exploitation. The autonomous system continu-
ously refines itself by feeding experimental outcomes into the NN for retraining, creating a
closed-loop system that accelerates material discovery and design. This approach offers
substantial efficiency gains by prioritizing the most informative experiments and leveraging
machine learning for dynamic adaptation during the discovery process [72].

3.4. Model Performance

The performance of the NN and GA models is evaluated by comparing predicted
outputs against experimental values. Testing is performed with separate datasets (e.g.,
15–20% of the total data) to ensure the ability of the model to generalize beyond the
training set. The performance of the NN model is evaluated based on its agreement
with the experimental values of testing datasets. The key metrics used for evaluation
include the mean square error (MSE), average deviation, and maximum deviation between
predicted and experimental values. Correlation coefficients are utilized to measure the
fitting of predicted values with actual values. Multiple NN architectures are tested to
improve performance evaluation, and the models with the lowest MSEs are selected for
further interrogation.

The GA is combined with NNs to refine a complex mathematical function derived
from the NN model, allowing it to minimize the difference between the model predictions
and experimental data. The GA iteratively modifies the predictions and selects the fittest
ones based on predefined rules. Over successive iterations, GA evolves toward an opti-
mal solution that minimizes the error between the predicted and measured mechanical
properties. The accuracy of the model was validated by conducting virtual experiments
exploring the influence of input variables (composition, microstructure, etc.) on mechanical
properties (tensile strength, fracture toughness, etc.).
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3.4.1. Performance in α + β Titanium Alloys

Predicting the mechanical properties of the α + β titanium alloy Ti-6Al-4V remains a
complex challenge due to its intricate two-phase microstructure, characterized by the coexis-
tence of hexagonal close-packed α-phase and body-centered cubic β-phase. The integration
of NN, GA, and Monte Carlo (MC) simulations has proven effective in developing robust
phenomenological models for these alloys. These models accurately incorporate various
strengthening mechanisms, including intrinsic phase strength, solid solution strengthening,
Hall–Petch effects, and the influence of basketweave microstructures.

Figure 4 illustrates the virtual compositional and microstructural dependencies af-
fecting the yield strength of Ti-6Al-4V, as predicted using NN and GA models. Oxygen
exhibited the strongest contribution to strengthening, followed by iron, aluminum, and
vanadium, which is consistent with established trends in solid solution strengthening.
Regarding microstructural factors, the grain size of the equiaxed α-phase and the vol-
ume fraction of the total α-phase were identified as key determinants of yield strength.
Finer grain sizes and greater α-phase volume fractions enhance yield strength through
Hall–Petch strengthening mechanisms. The strong correlation between neural network
predictions and the phenomenological model underscores the accuracy of these models in
predicting yield strength based on critical microstructural and compositional variables [73].
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The relationship between yield strength and fracture toughness in Ti-6Al-4V typically
follows an inverse pattern, where increases in yield strength generally compromise the
material’s resistance to crack propagation. Fracture toughness predictions were refined
by incorporating key microstructural features, such as the size of equiaxed α-phase grains
and the volume fraction of the α-phase, alongside variations in chemical composition.
The α-stabilizing elements, such as aluminum, significantly influence fracture toughness
through their role in enhancing yield strength. In contrast, β-stabilizing elements, including
vanadium and iron, exhibit more complex and nuanced effects on mechanical behavior.
Interestingly, iron has been observed to contribute positively to both yield strength and
fracture toughness, which is atypical compared to other alloying elements. The average
deviation between predicted and experimental fracture toughness values has been sig-
nificantly minimized, with reductions to as low as 0.9% and a maximum deviation of
5.8% [57].
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3.4.2. Performance in β Titanium Alloys

The optimized NN-GA model predicted yield strength with a maximum error of 5%,
providing an interpretable phenomenological equation that aligns with physical metallurgy
principles, incorporating intrinsic yield strength, solid solution strengthening, Hall–Petch
effects, and microstructural contributions. MC simulations showed that uncertainties in
variables such as aluminum content caused minor deviations in the yield strength esti-
mates. However, the NN-GA model consistently provided accurate predictions. Although
microstructural features like α-lath thickness and colony size influence strengthening, the
model identified solid solution strengthening, particularly from aluminum and oxygen,
as the primary contributor to yield strength, accounting for approximately 78% in β tita-
nium alloys. The phenomenological equation for β-processed alloys was similar to that of
α + β-processed alloys, but key differences were observed due to the absence of equiaxed
α microstructures in β-processed alloys and the stronger influence of the basketweave
microstructure [74].

4. Summary

AM presents substantial opportunities for the production of complex metallic compo-
nents with tailored properties. However, the variability in mechanical properties, resulting
from microstructural heterogeneity, introduces challenges for the reliable application of
AM in critical industries such as aerospace. This review emphasizes the significance of
understanding the structure–property relationships in additively manufactured metals and
examines the influence of microstructural evolution in single- and multi-phase titanium
alloys on their mechanical properties. It highlights the critical need for the development of
comprehensive models to predict these structure–property relationships accurately.

Integrating NN with GA effectively models the complex, nonlinear relationships
between processing parameters, microstructure, and mechanical properties. By leverag-
ing high-fidelity datasets and analyzing the mathematical correlations within the data,
phenomenological equations can be formulated to predict material behavior accurately.
The combination of NNs and GAs facilitates the optimization of these models, improving
predictive accuracy and enabling the tuning of processing parameters to achieve desired
properties. This progress is critical for the broader adoption of AM technologies in indus-
tries where material performance is of paramount importance.
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