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Abstract Generalized continuum mechanics (GCM) has attracted increased
attention in the context of multiscale materials modeling, an example of which is a
bottom-up GCM model, called the atomistic field theory (AFT). Unlike most other
GCM models, AFT views a crystalline material as a continuous collection of lattice
points; embedded within each point is a unit cell with a group of discrete atoms. As
such, AFT concurrently bridges the discrete and continuous descriptions of mate-
rials, two fundamentally different viewpoints. In this chapter, we first review the
basics of AFT and illustrate how it is realized through coarse-graining atomistic
simulations via a concurrent atomistic-continuum (CAC) method. Important aspects
of CAC, including its advantages relative to other multiscale methods, code
development, and numerical implementations, are discussed. Then, we present
recent applications of CAC to a number of metal plasticity problems, including
static dislocation properties, fast moving dislocations and phonons, as well as
dislocation/grain boundary interactions. We show that, adequately replicating
essential aspects of dislocation fields at a fraction of the computational cost of full
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atomistics, CAC is established as an effective tool for coarse-grained modeling of
various nano/micro-scale thermal and mechanical problems in a wide range of
monatomic and polyatomic crystalline materials.

12.1 Generalized Continuum Mechanics (GCM)

In classical continuum mechanics (CCM), a material consists of continuously
distributed material points with infinitesimal size that fill the entire region of an
infinite space they occupy [1]. The micro-scale kinetics or dynamics are implicitly
averaged. The physical properties of each point are determined only by the
deformation and history of that point, i.e., each point behaves independently fol-
lowing the same constitutive law. Interactions between these points take place only
through the balance equations. Mechanics of real materials, however, deals with
finite-sized materials with finite-sized material points, e.g., a large number of
molecules, or the primitive unit cell of a crystal. From the atomic viewpoint, there is
a lower limit to divisibility for any material, as continuum quantities such as mass
density only have physical meaning in regions actually containing matter. Thus,
CCM fails to describe the materials deformation at the atomic/nano-scale.

Limitations of CCM have motivated the development of various enhanced
methods, a vast number of which aim at tackling the locality issue. Among these
methods, a weakly nonlocal theory, named generalized continuum mechanics
(GCM, also known as microcontinuum field theory), extends the classical field
theory to microscopic space and time scales [2]. In GCM, materials are envisioned
as a continuum collection of deformable point particles. Each point particle, with a
finite size, has a continuous internal deformation which is represented by some
vectors attached to it. Accordingly, a particle is identified by its position vector
R and some director vectors attached to this point Ξα in the undeformed state. In a
solid crystal, R is employed to describe the continuous lattice deformation, in which
the material is viewed as a collection of infinitesimal point particles, while Ξα

considers each point particle with finite size and describes its continuous internal
deformation. Both R and Ξα have their own motions or mappings to the deformed
states r and ξα at time t, respectively, i.e.,

R → tr, Ξα → R, tξα, α=1, 2, 3, . . . , N ð12:1Þ

Such a medium is called microcontinuum of grade N. By introducing Ξα, the
microcontinuum naturally brings length and time scales into the field theories; by
considering the ratio of the external characteristic length to the internal character-
istic length, the GCM theories are nonlocal in character. For the first grade
microcontinuum (N = 1), Ξ1 are three deformable directors, conferring each point
particle nine extra degrees of freedom (DOFs) compared to the local theory. This is
the micromorphic continuum. The other two are the microstretch continuum and the
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micropolar continuum, which can be achieved by constraining the director vectors
in certain ways.

In the last seven years, Maugin [1–7] dedicated an extensive effort to the
understanding and dissemination of GCM by offering a historical perspective, deep
mathematical and physical insights, as well as a clear explanation of its essences.
Maugin [3] summarized and discussed three possible paths towards the general-
ization of continuum mechanics: “involving an additional microstructure at each
material point”, “introducing higher order gradients of the displacement in the
energy density (weak nonlocal theory)”, and “considering spatial functionals for
the constitutive equations (strongly or truly nonlocal theory)”. Maugin [3] further
posited and addressed three questions: “(1) Do we need GCM at all? (2) Do we find
the necessary tools in what exists nowadays? (3) What is the relationship between
discrete and continuous descriptions if there must exist a consistent relationship
between the two?”

For the third question, Maugin [3] wrote “the author personally believes that any
relationship that can be established with a sub-level degree of physical description
is an asset that no true physicist can discard”. This perspective is based on the
distinction between atomic and continuous descriptions of matter; for the former,
matter is manifested as discrete particles, whereas for the latter, matter is infinitely
divisible. These two different views lead to fundamentally different theories. The
“material point”, Maugin [2] wrote, “is quite suspiciously defined in a classical
continuum”; “A point is the intersection of two immaterial (zero-thickness) curves
on a two-dimensional surface. This, Newton already knew in his ‘Principia
Mathematica’ where mass at a so-called ‘material point’ can only be defined by
density multiplied by volume”. To avoid introducing the physical concept of a
material point, CCM textbooks use global conservation laws to derive the local
balance laws by purely mathematical means, leaving the question on the conditions
under which the differential form of balance laws are valid unanswered. While
continuum physics is always an approximation to the underlying discrete molecular
physics, GCM is undoubtedly a better approximation than CCM to the description
of real materials. It helps to bridge the gap between continuum and atomic views of
materials.

12.2 Atomistic Field Theory (AFT)

In micromorphic field theory, the motion of point particles is governed by con-
servation equations of mass, microinertia, generalized spin, linear momentum, and
energy. Based on micromorphic field theory, Chen and Lee [8] proposed a new
GCM model, called the atomistic field theory (AFT), which treats a crystalline
material as a continuous collection of material points (unit cells), but with each
material point possessing internal DOFs that describe the movement of atoms inside
each unit cell, as shown in Fig. 12.1. In this way, the micromorphic theory is
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connected with molecular dynamics (MD) and encompasses the atomic scale [9].
Here, the local density function is continuous at the level of the unit cell, but
discrete in terms of the discrete atoms inside the unit cell [10, 11].

AFT differs from CCM in that it has two-level structure description of materials.
It is also distinct from popular generalized continuum theories, such as the Cosserat
theory [12], micropolar theory, [13, 14], micromorphic theory [15–20], or other
generalized continuum theories [21, 22], in that the sub-level structure and physical
description are not continuous but discrete. As a result of the discrete sub-level
description in AFT, only balance of linear momentum is relevant to the dynamics.
A comparison of the material description in AFT with those in GCM and CCM is
presented in Table 12.1.

The main theoretical tool to link the atomic to the continuum description is
statistical mechanics [23–26]. Statistical mechanics views thermodynamics and

Fig. 12.1 Macro- and micro-motions of a material particle P in a micromorphic theory and
b AFT. Left in a and b is the reference state at time 0 while right is the deformation state at time
t. X and x are the positions of the mass center of the unit cell, Ξ and ξ are internal positions, Yα and
yα are positions of atom α with respect to X and x, respectively, Na is the number of atoms in a unit
cell. Reproduced with permission from Ref. [11]

Table 12.1 Comparison of CCM, top-down formulated theories of GCM, and AFT

Theory Material
description

Constituents
of materials

Internal DOF Governing laws Constitutive
relations

CCM A single
phase single
component
continuum

0D Material
point
without
structure

None Conservation of
mass, linear and
angular momentum,
and energy

11
constitutive
relations

GCM A continuum
with
embedded
microstructure

Finite-sized
material
particles

3 in
micropolar,
9 in
micromorphic

Conservation of
mass, micro-inertia,
linear and angular
momentum,
generalized spin,
and energy

20
constitutive
relations

AFT A crystal
structure as
lattice + basis

Atoms 3 Na (Na is
the number of
atoms in one
basis)

Conservation of
mass, linear
momentum, and
energy

Interatomic
potential
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continuum mechanics as coarse-grained (CG) descriptions of classical N-body
dynamics, and defines “coarse-graining” as “the process of representing a system
with fewer degrees of freedom than those actually present in the system” [27]. From
this definition, existing CG models are either atomistic CG models that are derived
bottom-up from the underlying atomistic model or phenomenological models that
have no direct connection to the underlying atomistic model. Existing
coarse-graining methods for derivation of atomistic CG models can be further
divided into three categories [11]: (1) reducing the order of particle representation
of the molecular structure, e.g., the super-atom method, united-atom method, and
multiscale-CG [28–31], (2) assuming continuous deformation of the lattice (affine
or using some other imposed shape functions), e.g., quasicontinuum (QC) [32],
hot-QC [33–35] and coarse-grained molecular dynamics (CGMD) [36], and
(3) deriving an equivalent continuum field representation for the atomistic system,
e.g., the Irving-Kirkwood (IK) statistical mechanics formulation of hydrodynamics
[37], MD formulation of micromorphic theory [17–20], and the AFT formulation
[8, 9]. These are shown in Table 12.2.

Different from other GCM theories that are derived via a top-down approach,
AFT is bottom-up derived from the underlying atomistic model, and hence it is also
a CG atomistic model. The AFT formulation is an extension of the IK formulation
of “the hydrodynamics equations for a single component, single phase system” [37]
to a two-level structural description of general crystalline materials. It employs the
two-level crystalline materials description in solid state physics, i.e., crystal struc-
ture = lattice + basis [38]. As a result of its bottom-up atomistic formulation, all the

Table 12.2 Comparison of atomistic CG methods. ODE and PDE stand for ordinary differential
equations and partial differential equations, respectively

Atomistic CG
methods

Route to CG Entities in
simulations

Representative
CG models

Governing
laws

Governing
equations

Structural
reduction

From atoms to
super-atoms
through
grouping many
atoms into one
super-atom

Super-atoms Super-atom
method, united
atom method,
multiscale-CG
[28–31]

Newtonian
Mechanics

2nd order
ODE

Assuming
homogeneous
displacements
of atoms

From atoms to
rep-atoms
using the
Cauchy-Born
rule or other
prescribed
shape
functions

Representative
atoms

QC [32],
hot-QC [33–35]

Energy
minimization

1st order
ODE

Using
continuum
representation

From atomistic
to continuum
using statistical
mechanics

Material points IK
hydrodynamics
[37], AFT [8, 9]

Conservation
laws

2nd order
PDE
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essential atomistic information of the material, including the atomic-level crystal
structure and the interactions between atoms, is attained. The formulation naturally
leads to a concurrent atomistic-continuum representation of the materials governed
by a single set of balance equations for both atomic and continuum regions, as an
exact consequence of Newton’s second law [8, 9], in the following forms,

dρα

dt
+ ρα ∇x ⋅ v+∇yα ⋅Δvα

� �
=0 ð12:2Þ

ρα
d
dt

v+Δvαð Þ=∇x ⋅ tα +∇yα ⋅ τα + fαext ð12:3Þ

ρα
deα

dt
=∇x ⋅ qα +∇yα ⋅ jα + tα:∇x v+Δvαð Þ+ τα:∇yα v+Δvαð Þ ð12:4Þ

where x is the physical space coordinate of the continuously distributed lattice;
yα α=1, 2, . . . , Nað Þ, with Na being the total number of atoms in a unit cell, is the
subscale internal variable describing the position of atom α relative to the mass
center of the lattice located at x; ρα, ρα v+Δvαð Þ, and ραeα are the local densities of
mass, linear momentum, and internal energy, respectively; v+Δvα is the
atomic-level velocity and v is the velocity field; fαext is the external force field; t

α and
qα are the momentum flux and heat flux due to the homogeneous deformation of
lattice, respectively; τα and jα are the momentum flux and heat flux due to the
reorganizations of atoms within the lattice cells, respectively.

For conservative systems, i.e., in the absence of an internal source that generates
or dissipates energy, the energy equation (Eq. 12.4) is equivalent to the linear
momentum equation (Eq. 12.3). We remark that, supplemented with the inter-
atomic force field, the first two AFT balance equations (Eqs. 12.2 and 12.3) are
sufficient for a wide range of thermal and mechanical problems, some of which will
be discussed in Sect. 12.4. Employing the classical definition of kinetic tempera-
ture, which is proportional to the kinetic part of the atomic stress, the linear
momentum equations can be expressed in a form that involves the internal force
density and temperature T [39–41], i.e.,

ραu ̈αðxÞ+ γαkB
ΔV

∇xT = fαintðxÞ+ fαextðxÞ, α=1, 2, . . . , Na ð12:5Þ

where uαðxÞ is the displacement of atom α at point x; the superposed dots denote
the material time derivative; ΔV is the volume of the finite-sized material particle
(the primitive unit cell for crystalline materials) at x; kB is the Boltzmann constant;
γα = ρα ̸∑Na

α=1 ρ
α, and fαint is the internal force density and is a nonlinear nonlocal

function of relative atomic displacements. For systems with a constant temperature
field or a constant temperature gradient, the temperature term in Eq. 12.5 can be
considered as a surface traction on the boundary or a body force in the interior of
the material, fαTðxÞ [40]. Denoting the finite element shape function as ΦξðxÞ, the
Galerkin weak form of Eq. 12.5 can be written as
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Z

ΩðxÞ

ΦξðxÞ ραüαðxÞ+ fαTðxÞ− fαintðxÞ− fαextðxÞ
� �

dx=0 ð12:6Þ

where ΩðxÞ is the simulation domain; the integral, using Gaussian quadrature, can
be approximated by a weighted sum of the evaluations of the integrand at a set of
integration points, leading to a set of discretized governing equations with the finite
element nodal displacement as the unknowns to be solved.

In summary, AFT coarse-grains a discrete atomistic model by introducing an
equivalent continuum description, i.e., by formulating a GCM representation of the
underlying atomistic model. The field equations are then discretized and solved
using finite element method (FEM). This process can be interpreted using Maugin’s
insightful and inspirational remarks: “continualization” is “to construct sensible
models”; “discretization” is “to be able to solve problems” [2].

12.3 The Concurrent Atomistic-Continuum
(CAC) Method

12.3.1 A Comparison Between CAC and Other Multiscale
Methods

The AFT-based concurrent atomistic-continuum (CAC) method outlined in this
chapter is an integral finite element approach for coarse-grained atomistics that
admits description of dislocation nucleation, migration, and interaction with or
without adaptive coarse-graining [9, 42–44], in contrast to QC. A CAC model, in
general, has two domains: an atomistic domain containing atoms and a
coarse-grained domain containing elements, as shown in Fig. 12.2. CAC employs a
unified atomistic-continuum integral formulation (Eq. 12.6) with elements that have
discontinuities between them and an underlying nonlocal interatomic
force-displacement relation as the only constitutive relation. Ghost forces arising
from a change of the underlying continuum formulation and energy summation
rules in other approaches based on domain decomposition or coarse-graining are
not an issue in CAC since the underlying integral formulation and constitutive
framework do not change. Dislocations can be modeled throughout the entire
domain, whether at full atomistic resolution or coarse-grained, because the elements
are assumed to have faces on slip planes of the lattice, e.g., {111} and {110} planes
in face-centered cubic (FCC) and body-centered cubic (BCC) lattices, respectively.
This sets it apart from methods that require full atomistic resolution at the dislo-
cation core. In contrast to QC, which has the objective of seeking convergence of
the adaptively coarse-grained solution to that of the full atomistic solution for
various field problems, CAC can have multiple purposes. On the one hand, it can
coarse-grain in regions away from atomistic domains of interest and capture
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long-range fields of dislocations, as in coupled atomistic and discrete dislocation
(CADD) [45, 46]. On the other hand, it can model dislocations across a range of
length scales to access trends and provide support for mechanistic understanding of
coarse scale behavior of fields of dislocations, smearing individual cores but pre-
serving the net Burgers vector, representing long-range and approximating
short-range interactions. While QC typically seeks the most accurate and efficient
solution to dislocation plasticity via adaptive remeshing of the domain near dis-
locations to full atomistic resolution, CAC can resolve full atomistics if necessary
near interfaces or crack tips, but allows dislocations to nucleate, multiply, migrate,
and interact even in the coarse-grained domain along interfaces between elements,
introducing the option to coarse-grain dislocation fields over larger scales.

Like QC, CAC employs the same interatomic potential in both coarse-grained
and atomistic domains where dislocations evolve and interact. This introduces
systematic coarse-graining error, which originates from displacement approxima-
tion (i.e., the shape function) and the numerical integration. As the element size is
reduced, the CAC predictions properly converge to the fully atomistic results. The
coarse-graining error can be quantified and balanced with the high computational
demands of remeshing, according to the purposes of the mesoscale modeling, for
example in representation of dislocation core structures and short-range

Fig. 12.2 a–b A 2-D CAC simulation domain consisting of an atomistic domain (right) and a
coarse-grained domain (left). The atomistic domain is composed of atoms (black circles), which
follow the same governing equations in the atomistic simulation. The coarse-grained domain
consists of elements of varying size that have discontinuities between them, each of which contains
a large number of underlying atoms with the nodes (red circles) as the only DOFs. Only the force/
energy on integration points (green circles) and nodes are calculated. In a, an edge dislocation (red
⊥) is located in the atomistic domain. Upon applying a shear stress on the simulation cell, the
dislocation migrates into the coarse-grained domain in b, where the Burgers vector spreads out
between elements. c–d In 3-D, elements have faces on {111} planes and on {110} planes in an
FCC and a BCC lattice, respectively. The positions of atoms within each element (open circles) are
interpolated from the nodal positions. Reproduced with permission from Ref. [43]
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interactions. It can also be minimized by use of adaptive remeshing, based on the
level of the nodal displacement between elements [47]; this is necessary for general
field problems to allow dislocation migration along arbitrary extended slip planes.
However, remeshing need not be carried out to fully atomistic level, but can involve
simply splitting larger continuum elements containing many atoms. Unlike QC,
CAC does not employ the assumption of continuous lattice deformation throughout
the coarse-grained domain and admits dislocation activity/displacement disconti-
nuity between elements. As such, it pursues gradual coarse-graining from full
atomistic resolution upward. For example, if trends of behavior or collective
mechanisms are to be considered as a function of microstructure or stress state, as is
often the case in applications of dislocation dynamics (DD) models [48–57], CAC
may offer a means to support such parametric studies.

12.3.2 Code Development

The first version of the CAC numerical tool was developed by Xiong and Chen [57,
58] and Deng et al. [39, 59]. The reformulated balance equations [9] were
numerically implemented using FEM with trilinear finite element shape functions
and nodal integration. Later, the form and capabilities of the CAC method were
extended substantially in modeling quasistatic and dynamics behavior of disloca-
tions: elements that have discontinuities between them were employed, and the
Gaussian quadrature was used for integration in the coarse-grained domain [42, 60–
66]. Yang et al. [67–70] rewrote the CAC code for multiscale simulation of
polycrystalline ionic materials. Based on this code, Chen et al. [71–74] extended the
CAC method for space- and time-resolved simulation of the transient processes of
the propagation of heat pulses in single crystals and across GBs [72] as well as the
interactions between heat pulses and moving dislocations [71]; a new shape
function was designed to facilitate the seamless passing of waves between the
atomistic and coarse-grained domains [73]. More recently, Xu et al. [44] developed
PyCAC, a novel numerical implementation of the CAC approach. In PyCAC, the
CAC method is implemented in Fortran 2008 with a distributed-memory spatial
decomposition parallel algorithm, while a Python scripting interface is built to
provide a robust user interface to facilitate parametric studies via CAC simulations
without interacting with the underlying Fortran code and to improve handling of
input, output, and visualization options. For example, the finite element nodal
positions obtained in CAC simulations can be mapped back to atomic positions
through the Python interface; in this way, the atomic trajectories can be visualized
using common atomistic configuration viewers such as AtomEye [75] and OVITO
[76]. It has been demonstrated that the PyCAC code has a good parallel scaling
performance and is an efficient, user-friendly, and extensible CAC simulation
environment [44].
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12.3.3 Numerical Implementations in PyCAC

The PyCAC code [44] can simulate monatomic pure FCC and pure BCC metals
using the Lennard-Jones [77] and the many-body embedded-atom method
(EAM) [78] interatomic potentials in a constant temperature field. The energy
equation (Eq. 12.5) and the term fαT (Eq. 12.6) have not yet been implemented
because they have small effects on mechanical response in the case of constant
temperature. We remark that (i) there is ongoing work in interpreting fαT and in
comparing different descriptions of temperature in the coarse-grained domain [25,
26], and (ii) for monatomic crystals Na =1ð Þ, yα vanishes, and atom α sits at the
nodal site; Eqs. 12.2–12.4 reduce to the balance equations in CCM.

In the coarse-grained domain, the integral in Eq. 12.6 is approximated using
Gaussian quadrature, in which the positions and weights of the integration points
are usually determined by the order of the integrand. It is, however, difficult to
employ a unified set of integration points within an element because that the
interatomic potential-based fαintðxÞ can be a complicated and highly non-linear
function and that the variation of the integrand is not uniform within an element
[43, 79]. To circumvent this problem, each element is divided into a number of
non-overlapping subregions. In this way, one only needs to determine the order of
the integrand within each subregion, which is usually lower than that within the
entire element and is more easily approximated. In practice, either the first order
[42] or the second order [43] Gaussian quadrature can be adopted, with a trilinear
shape function ΦξðxÞ, and the force on node ξ is

F ξ =
∑μ ωμΦμξFμ

∑μ ωμΦμξ
+Fξext ð12:7Þ

where ωμ is the weight of integration point μ, Φμξ is the shape function of node ξ at
integration point μ, Fμ is the interatomic potential-based atomic force on integration
point μ, and Fξext is the external force applied on node ξ. We refer the readers to
Refs. [43, 79] where details of the Gaussian quadrature, subregion, and integration
points are presented.

In the atomistic domain, an atom can be viewed as a special finite element for
which the shape function Φξ in Eq. 12.6 reduces to 1 at the atomic site, and the
force on atom α is simply

Fα = −∇αE+Fαext ð12:8Þ

where E is the interatomic potential-based internal energy and Fαext is the external
force applied on atom α. As such, common atomistic simulation techniques are
employed: Newton’s third law is employed to promote efficiency in calculating the
force, pair potential, local electron density, and stress; the short-range neighbor
search employs a combined cell list [80] and Verlet list [81] method.
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Distinguished by how F and F are subsequently used, two main types of CAC
simulations—dynamic CAC and quasistatic CAC, by analogy with MD and
molecular statics (MS), respectively—have been developed. In dynamic CAC, the
equation of motion (Eq. 12.6) or its modified form of each node/atom is solved
directly using the velocity Verlet algorithm [82]. In quasistatic CAC, F and F are
used to adjust the nodal and atomic positions, respectively, at each increment of
system loading during energy minimization. For example, in both conjugate gra-
dient and steepest descent algorithms, F and F are taken as the initial directions
along which the nodes and atoms should move, respectively [43]. In practice, a
third type of CAC simulation—hybrid CAC—can be employed to perform periodic
energy minimization during a dynamic CAC simulation, so as to enable the con-
strained multiscale optimization for a sequence of non-equilibrium defect config-
urations in materials [83, 84]. In all types of CAC simulations, the nodes in the
coarse-grained domain and the atoms in the atomistic domain interact with each
other at each simulation step and are updated concurrently. More specific details of
PyCAC, including the input script format and a few example problems, can be
found in the PyCAC user’s manual that is hosted on www.pycac.org.

12.4 Applications of the CAC Method to Metal Plasticity

Metal plasticity is a multiscale phenomenon that is manifested by irreversible
microstructure rearrangement associated with nucleation, multiplication, interac-
tion, and migration of dislocations [85]. Long-range field interactions between
dislocations, along with the short-range dislocation reactions, are extremely
important to describe in predicting the overall plastic behavior of materials at the
macroscopic level. The former necessitates large solution scales, while the latter
demands treatment of core effects using accurate underlying interatomic potentials.
Metal plasticity therefore requires concurrent coupling across various scales.

In the context of dislocation/crack mediated metal plasticity, CAC has been used
in a number of applications. These include impact of a rigid ball against a plate in an
ideal FCC single crystal [59] and a SrTiO3 polycrystal [69], brittle fracture in an ideal
FCC crystal [39] and SrTiO3 [67], ductile fracture in Cu [47], dislocation nucleation
from notched specimens in Cu, Ni, and Al [42, 60, 61], nanoindentation in Cu [43,
60] and SrTiO3 [67], nucleation and growth of dislocation loops in Cu, Al, and Si [62,
63], dislocation nucleation fromGBs in SrTiO3 [69], crack/GB interactions in SrTiO3

[68], stationary dislocations in Cu, Ni, and Al [43, 86], quasistatic [43], subsonic
[47], and transonic [66] dislocation migration in Cu, Ni, and Al, quasistatic dislo-
cation migration across the atomistic/coarse-grained domain interface in Cu and Al
[43], screw dislocation cross-slip in Ni [87], edge dislocations bowing out from
obstacles in Al [88], dislocation multiplication from Frank-Read (FR) sources in Cu,
Ni, and Al [86], dislocation/void interactions in Ni [65], dislocation/stacking fault
interactions in Ni, Al, and Ag [89], sequential transfer of curved dislocations across
GBs in Cu, Al, and Ni [83, 84], dislocation/phonon interactions in Cu [66, 71] and
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Ni [64], phonon waves passing the atomistic/coarse-grained domain interface in 1D
monatomic, diatomic, and triatomic crystals [90] and Cu single crystals [73], as well
as phonon heat transport across a Σ19 symmetric tilt grain boundary (STGB) in Cu
polycrystals [72]. The success of these calculations suggests the viability of using
CAC simulations to study metal plasticity phenomena in a sufficiently large 3D
model, which would normally be inaccessible to atomistics.

We remark that applications to date of the quasistatic CAC implementation [43]
have been limited to monatomic crystals [43, 44, 79, 83, 84, 86, 87, 88, 89], while
polyatomic crystals have been considered in dynamic CAC applications [57, 58, 62,
67, 68, 69, 70, 90]. Nevertheless, there is no theoretical challenge in applying
quasistatic CAC to polyatomic crystals. The quasistatic implementation is consid-
ered useful for modeling reaction pathways for thermally activated dislocation
processes in a manner that avoids the overdriven character of dynamic simulations.
Hybrid CAC, with periodic energy minimization (e.g., every 50 time steps) while
using quenched dynamics at each time step, may be regarded to accord with the
concept of a sequence of constrained equilibrium states as espoused in internal state
variable theory [91, 92], traversing the energy landscape such that each stage of the
process (even with no dislocation flux) corresponds to a non-zero thermodynamic
force (the Peach-Koehler force on a dislocation), due to elastic interactions. In the
following, we discuss applications of the CAC method to static dislocation prop-
erties, fast moving dislocations and phonons, as well as dislocation/GB interactions.

12.4.1 Static Dislocation Properties

A question arises as to how well the non-singular dislocation core and associated
Burgers vector [93–95] are described in the coarse-grained domain in CAC. For this
purpose, quasistatic CAC simulations have been carried out to study certain
benchmark problems, including generalized stacking fault energy (GSFE) [43],
dislocation core structure/energy/stress fields [43, 86], and Peierls stress [86]. It is
found that the coarse-grained domain predicts a less relaxed dislocation core. As a
result, compared with atomistics, the coarse-grained domain exhibits a wider
stacking fault width [43], a lower SFE [43], a larger core radius [86], a higher core
energy [86], a lower Peierls stress [86], and a lower critical shear stress for dislo-
cation bowing-out between obstacles [86, 88]; a dislocation also changes its local
structure when passing across the numerical atomistic/coarse-grained domain
interface [43].

To further understand the representation of dislocations in the coarse-grained
domain in CAC, we calculate the disregistry and distribution of the Nye tensor [95,
96] around an edge and a screw dislocation in Cu. The fully coarse-grained sim-
ulation cell, with a size of 180 nm × 32 nm × 6.5 nm along the x, y, and z di-
rection, respectively, contains about 3 million atoms; periodic boundary conditions
(PBCs) are applied along the dislocation line direction, i.e., the z direction, while
the x and y boundaries are assumed traction free. The interatomic interactions are
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described using an EAM potential [97], which gives an equilibrium lattice constant
a0 = 3.615Å. After displacing some nodes/atoms by b=

ffiffiffi
2

p
̸2

� �
a0 along a ⟨110⟩

direction on a {111} plane, a damped dynamic CAC simulation [42] is conducted
for 1 million steps with a time step of 1 fs at a near zero temperature to achieve an
equilibrium full dislocation, which is dissociated into two Shockley partial dislo-
cations with an intrinsic stacking fault in between [93, 94]. For comparison,
damped MD simulations are also performed using LAMMPS [98]. Based on the
interpolated atomic positions in the CAC simulations or the atomic positions in the
MD simulations, the disregistry along the Burgers vector direction and the Nye
tensor α are calculated, the latter of which uses Atomsk [99] following Hartley and
Mishin [100]. The calculations of α are conducted on atoms within an area around
the dislocation: 10 nm by 4.5 nm along the x and y axes, respectively; larger
calculation areas do not change the results.

Figure 12.3 shows that there exists a linear correlation between disregistry and
atomic position within an element, because of the trilinear shape/interpolation
functions employed in the coarse-grained domain. For the Nye tensor α, only α13
and α33 among the nine components are presented in Fig. 12.4 because they cor-
respond to the edge and screw components of the partial dislocations, respectively.
In both figures, with the smallest finite elements (64 atoms/element), results of the
CAC simulations agree well with those of the MD simulations; with an increasing
element size, the disregistry deviates and the separation between the two partial
dislocations changes. Nevertheless, for the same dislocation, an integration of α
within the calculation area, i.e., the Burgers vector, yields identical result between
CAC and MD, suggesting that the net Burgers vector (and so the long-range stress
field) of a dislocation is indeed preserved in the coarse-grained domain in CAC.

We emphasize it is not our intent here to shed light on improved understanding
of static dislocation core level phenomena, but rather to establish that CAC

(a) Edge disloca on (b) Screw disloca on

Fig. 12.3 Disregistry—the difference in the dislocation-induced displacement fields between two
layers of atoms across the slip plane—of the a edge and b screw dislocations in Cu; The results in
CAC with varying element size are compared with those of MD. ux and uz are the disregistry
components along the Burgers vector direction, i.e., the x and z directions in cases of the edge and
screw dislocation, respectively. b=

ffiffiffi
2

p
̸2

� �
a0 is the magnitude of the Burgers vector of a

dislocation, where a0 is the lattice constant
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adequately replicates essential aspects of dislocation fields, laying solid foundations
for more complicated dislocation-mediated metal plasticity problems. The
coarse-graining errors in the static dislocation properties are not essential in certain
cases, e.g., dislocation/GB interactions (Sect. 12.4.3), because the dislocation has a
correct core structure once it migrates into the atomistic domain in which the
dislocation/defect interactions to be investigated take place.

12.4.2 Fast Moving Dislocations and Phonons

While much is known about static dislocations, the physics of dislocations moving
near and above the sonic velocity in crystals remains relatively lightly explored [93,
94]. A dislocation moving in a lattice excites atomic vibrations and emits acoustic
phonons [101]. The friction created by these interactions slows down the disloca-
tion motion and reduces the mean distance between adjacent dislocations, leading
to a stronger coupling between the long-range stress fields than that for static
dislocations [66]. CAC is well-suited to explore fast moving dislocations and
phonons because it concurrently captures the highly nonlinear time-dependent
atomic-scale dislocation cores and the long-range elastic fields away from the cores.

For a fast moving dislocation in an otherwise perfect lattice, Xiong et al. [66]
reported that (i) subject to the same resolved shear stress, the coarse-grained domain
predicts a higher dislocation velocity, a larger phonon wavelength, and a larger

Fig. 12.4 Left: Nye tensor distribution around an edge or a screw dislocation in Cu, colored by
the magnitude of two components α13 and α33. CAC simulations with different element size (Nape

is the number of atoms per element) are employed, with the MD results also shown for
comparison. Right: Separation of Shockley partial dislocations (based on α13) with respect to the
element size, in the cases of an edge and a screw dislocation. Both quantities converge to MD
(horizontal lines) as each element has a smaller Nape. The partial dislocation is assumed to sit at the
mass center of the all surrounding atoms with the corresponding Nye tensor component that is
larger than half the maximum value among all atoms. The partial dislocation position is
unambiguously decided because most atoms have a value that is very close to either the maximum
value or 0
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magnitude of the dislocation core stress field oscillation than the atomistic domain
due to the linear shape/interpolation functions employed in the elements, and (ii) a
fast moving dislocation has a velocity-dependent asymmetric stress field in which
the leading partial dislocation possesses a higher stress level than the trailing partial
dislocation as a result of the emitted phonon waves. In 1D monatomic, diatomic,
and triatomic crystals, Xiong et al. [90] confirmed that the coarse-grained domain is
able to reproduce complete phonon branches. In dynamic CAC simulations of
dislocation/void interactions, Xiong et al. [65] discovered an inertia-induced tran-
sition from the Hirsch looping mechanism to the shearing mechanism, with the result
that a relatively large void (∼5 nm in diameter), which is a strong barrier for qua-
sistatic dislocations, can behave as a weak barrier to dislocation motions under high
strain-rate dynamic conditions. By performing fully coarse-grained atomistic simu-
lations of dislocation/phonon interactions, Xiong et al. [64, 66] and Chen et al. [71]
found that (i) the sub-THz phonon drag coefficient on dislocation migration increases
with the increase of phonon wave packet magnitudes or sizes but is insensitive to the
incident angles [64], and (ii) phonons reduce the dislocation energy, with some
energy lagging behind the decelerated dislocation or dispersed around the arrested
dislocation through emission of secondary phonon waves [66, 71]. In Cu poly-
crystals, Chen et al. [72] showed that the phonon/GB interactions alter the phonon
focusing direction and locally reconstruct the GB, as shown in Fig. 12.5.

However, the fact that a dislocation may have different mobility, phonon
wavelength, and dislocation core stress field in atomistic and coarse-grained
domains raises the question of how the interface between the atomistic and
coarse-grained domain affects the phonon transport in CAC [74]. The outstanding
issue of a spurious wave reflection problem at the atomistic/continuum domain
interface, encountered by many domain decomposition multiscale modeling
methods [48], is mainly caused by the differences in material descriptions and

Fig. 12.5 Time sequences of the normalized kinetic energy of transient heat flow in CAC
simulations of a 2D Cu polycrystal. The GBs, rendered in full atomistic resolution, are indicated by
white solid arrows. The phonons, with a wavelength of 5–250 nm, are generated in the simulation
cell center using a coherent phonon pulse model [102]. With simultaneous ballistic and diffusive
thermal transport, the phonon-focusing caustics are deflected by the GBs, which are indicated by
the dashed white arrows in c. In e, only 60% of the total kinetic energy initially excited by the heat
pulse is transmitted across the GBs; the phonon/GB interactions also give rise to the local GB
structure change. Adapted with permission from Ref. [72]
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governing equations between the atomistic and continuum models, which results in
a mismatch in phonon dispersion relations. In CAC, due to the fact that
coarse-graining cuts off short wavelength phonons [72, 73, 90], the phonon dis-
persion relations in the atomistic and coarse-grained domains overlap with each
other only for wavevector that is smaller than a certain value. For this reason, CAC
simulations of phonon/GB interactions [72] only involved medium- or
long-wavelength phonons because the GB region is rendered in atomistic resolu-
tion. Recently, new shape/interpolation functions, different from the original tri-
linear ones, have been developed and applied to 1D elements to preserve the
complete phonon information when a short-wavelength phonon seamlessly prop-
agates across multiple atomistic/coarse-grained domain interfaces [73]. Work is
underway to extend the new shape/interpolation functions to 2D and 3D for more
complicated crystalline materials.

12.4.3 Dislocation/GB Interactions

The mechanism for slip transfer of lattice dislocations that migrate to and interact
with GBs is one of the most pressing yet unresolved issues facing GB engineering
and polycrystal plasticity [103]. Although in situ transmission electron microscope
experiments capture the real-time dynamic process of slip transfer, they are unable
to discern 3D atomic-scale events at the dislocation/GB interaction sites to yield
quantitative information [104]. The multiscale nature of the sequential transfer of
slip across GBs, in which both the atomic scale structure of the interface and the
long-range fields of dislocation pile-ups are important, also poses challenges from
the perspective of computational simulation [85]. For example, dislocation-based
continuum approaches such as the crystal plasticity FEM (CPFEM) and rule-based
DD are not readily applicable to simulate the interactions between dislocations and
GBs because they usually do not naturally incorporate the necessary microscopic
DOFs associated with the GBs and other evolving internal state variables that relate
to detailed slip transfer criteria [48, 105]. On the other hand, atomistic simulations,
which are preferred for understanding local GB structure-specific slip transfer
responses, are limited by the size of the computational cell in considering the
long-range stress field [106].

We performed hybrid CAC simulations [44] to study the sequential slip transfer
of mixed character dislocations across a Σ3{111} coherent twin boundary (CTB) in
Cu, Ni, and Al [83, 84], as well as a Σ11{113} STGB in Ni [84]. In all simulations,
the GBs are rendered in full atomistic resolution while the coarse-grained domain is
used to accommodate long distance migration of dislocation pile-ups, which are
introduced either by multiplication from an FR source [83, 86] or Volterra knives
[84], the latter case is shown in Fig. 12.6a. The dislocations then move towards the
GB subjected to a constant applied shear stress.

For a Σ3 CTB in Cu and Al [83], it is found that, under a relatively small shear
stress, (i) in Cu, the leading screw segment cuts into the twinned grain, i.e., the CTB
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acts as a barrier to dislocation motion; (ii) in Al, the leading segment is absorbed
and glides on the CTB, which acts as sinks for lattice dislocations. In particular for
Al, four dislocation/CTB interaction modes are identified, which are affected by
applied shear stress, dislocation line length, and dislocation line curvature. This
study highlights the complexity of dislocation/GB interactions, as well as the sig-
nificance to let dislocations evolve freely in 3D and to probe the mechanisms of slip
transfer in polycrystalline and twinned metals using sufficiently large models. In
comparison, prior atomistic simulations in the literature [106] are limited to a small
set of simulation parameters: low applied shear stresses and short/straight dislo-
cation lines enforced by PBCs.

In Ni, five EAM potentials [108–112] were employed in CAC simulations of
dislocation/GB interactions [84]. For the Σ3 CTB, the leading screw segment is
transmitted into the twinned grain using two interatomic potentials (Fig. 12.6d),
but is absorbed and glides on the CTB when the other three potentials are employed
(Fig. 12.6e). In both reactions, each dislocation always follows the
recombination-redissociation process, without forming any CTB dislocations in the
process of recombination, as shown in Fig. 12.6c. For the Σ11 STGB, however,

Fig. 12.6 a Bicrystal simulation cells used to study sequential slip transfer of five
a0 ̸2ð Þ 110½ � 11 ̄1ð Þ dislocations (red S) across a Σ3 1 ̄11ð Þ CTB in Ni. An atomistic domain is
meshed in the vicinity the CTB; the jagged interstices at the cell boundaries are also filled in with
atoms, which are not shown here. Away from the GBs and cell boundaries are coarse-grained finite
elements, each containing 2197 atoms. All cell boundaries are assumed traction free to allow a full
3D description. Exploded views of the GB region appear in the lower region, where atoms in
different (110) atomic layers have different colors; the Σ3 CTB is composed of all D structural
units, and so all sites along the CTB are equivalent for dislocation impingement. b–e Snapshots of
dislocation pile-up with dominant leading screw character impinging against the CTB. Atoms are
colored by adaptive common neighbor analysis [107]: red are of hexagonal-close packed local
structure, blue are BCC atoms, and all FCC atoms are deleted. In a five incoming dislocations
approach the CTB subject to an applied shear stress. In b the leading dislocation is constricted at
the CTB, where two Shockley partial dislocations are recombined into a full dislocation. In c with
Mishin-EAM [108] and Voter-EAM [109] potentials, the dislocation effectively cross-slips into the
outgoing twinned grain via redissociation into two partials. In d with Angelo-EAM [110],
Foiles-EAM [111], and Zhou-EAM [112] potentials, the redissociated dislocation is absorbed by
the CTB, with two partials gliding on the twin plane in opposite directions. Adapted with
permission from Ref. [84]
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all five EAM potential fits predict dislocation absorption, during which the leading
partial dislocation in the incoming grain splits into a STGB partial dislocation and a
stair-rod type dislocation, which subsequently reacts with the trailing partial dis-
location in the incoming grain to form another STGB partial dislocation. This work
highlights the uncertainty in computed dislocation-interface reactions associated
with the deployment of a variety of interatomic potentials and suggests that the
applicability of dislocation/GB interaction criteria in the literature derived from
limited studies may be limited [106].

12.5 Conclusions

In this chapter, we first review the basics of GCM in Sect. 12.1 and establish, in
accordance with the insights of Maugin, that GCM is a better approximation than
CCM to the description of real materials. In Sect. 12.2, the theoretical foundations
and governing equations of AFT are introduced, in comparison with several rep-
resentative CG models in the literature. Fundamentally different from CG particle
models and most field theories such as the micromorphic theory, AFT views a
material as a continuous collection of material points, while embedded within each
point there is a group of discrete atoms, providing an analytical link between the
continuum quantities and the atomic variable. In Sect. 12.3, we discuss important
aspects of the AFT-based CAC approach, including its advantages relative to other
multiscale modeling methods, code development, and numerical implementations.
Applications of CAC to metal plasticity are reviewed in Sect. 12.4, with an
emphasis on static dislocation properties, fast moving dislocations and phonons, as
well as dislocation/GB interactions. It is shown that CAC provides largely satis-
factory predictive results at a fraction of the computational cost of the fully ato-
mistic version of the same models.

The CAC applications discussed in this chapter, as well as all others in the last
decade, establish that the CAC method is useful at intermediate length scales
between fully-resolved atomistics and mesoscale modeling approaches such as DD,
phase field method, and CPFEM. In this regard, CAC can serve as a complement to
methods at the lower and higher length scales. The CAC method is especially useful
to explore problems in which full atomistic resolution is required in some regions
(e.g., complex atomistic phenomena involving dislocations reactions with other
defects), with coarse-graining employed elsewhere to support representation of
dislocation interactions and transport. In such cases, dislocation lines span between
fully resolved atomistic and coarse-grained domains with the same constitutive
equation used everywhere. Compared with MD/MS, CAC is advantageous in that
with greatly reduced DOFs, the key characteristics of complex dislocation behavior
can be reasonably well described, despite the coarse-graining errors. Compared
with DD, in which only the dislocation lines are resolved, CAC simulations contain
more DOFs and are less computationally efficient; however, CAC resolves
dislocation core effects explicitly, in addition to long-range elastic interactions.
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It is anticipated that CAC may assist in computational techniques at higher length
scales by providing useful guidance regarding the form of higher scale constitutive
models.

Future applications of the CAC method to metal plasticity include slip transfer of
more general dislocation types with different curvatures across more general GBs,
the “valve effect” in fracture [113], and dislocation substructure evolution [114]. In
terms of the methodological development, we will implement higher order shape/
interpolation functions and/or enrichment functions within elements to admit dis-
locations in element interior regions, as well as design adaptive mesh refinement
schemes for dislocation migration. For finite temperature dynamic problems, the
next step is to develop a novel description of the temperature in the coarse-grained
domain such that it is consistent with that in MD [25]. Another future extension,
which is more challenging, is to advance non-equilibrium finite temperature
dynamic CAC for non-conservative systems, requiring the implementation of the
balance equation of energy (Eq. 12.4).
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