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Abstract
In the modern world, the ubiquity and critical importance of metallic materials are evident in everything from infrastructure
and transportation to electronics and aerospace. Additive manufacturing (AM) of metals has revolutionized traditional pro-
duction methods by enabling the creation of high-value components with topologically optimized complex geometries and
functionalities. This review addresses the critical need for sophisticated physics-based models to investigate and optimize the
AM processes of metals. We explore both melt-based and solid-state AM techniques, highlighting the current state-of-the-art
modeling approaches. The purpose of this review is to evaluate existing models, identify their strengths and limitations,
and suggest areas for future research to enhance the predictability and optimization of AM processes. By summarizing and
comparing various modeling techniques, this review aims to provide a comprehensive understanding of the current research
landscape. We focus on the pros and cons of different models, including their applicability to key elements and processes
common to both melt-based and solid-state AM methods. Where multiple models exist for a single technique, a compar-
ison is drawn to highlight their relative pros and cons. Concluding this review, we contemplate prospective advancements
in sophisticated physics-based process modeling and strategies for their integration with models for structure-properties
relations.

Keywords Additive manufacturing · Physics-based modeling · Metallic materials

1 Introduction

The evolution of metallic materials has been a cornerstone of
societal progress, marking significant leaps from the Bronze
Age to today’s high-tech alloys, each transition underpinning
advancements in technology and industry [1]. Achieving the
urgent societal goals of reduced emissions and increasing
energy efficiency is driving the development of novel metals
with unprecedented performance [2]. One path is lightweight
metals (e.g., Al and Mg) for room-temperature applications
such as infrastructure and transportation [3]. A second path is
ductile metals at low or cryogenic temperatures (e.g., stain-
less steels and Ti alloys) for high-latitude vessels and Arctic
pipelines [4]. The third path is high-temperature damage-
tolerant metals (e.g., superalloys and metallic glasses) for

B Shuozhi Xu
shuozhixu@ou.edu

1 School of Aerospace and Mechanical Engineering, University
of Oklahoma, Norman 3019-1052, OK, USA

2 Department of Mechanical and Aerospace Engineering, Utah
State University, Logan 4322-4130, UT, USA

aircraft engines and nuclear reactors where the thermal effi-
ciency generally increases with the operating temperature
[5]. Many of these metals can be produced by additive man-
ufacturing (AM), which makes objects from 3D model data,
usually layer upon layer, as opposed to subtractive method-
ologies where objects are formed by removing materials
through cutting, drilling, milling, or grinding [6]. AM is
advantageous over subtractive manufacturing in that high-
value component with topologically optimized complex
geometries and functionalities become achievable [7]. There-
fore, metal AM (MAM) has the potential to improve the
sustainability of key industrial sectors, eliminate several
energy-intensive fabrication steps, and reduce raw material
requirements [8]. In the meantime, it can produce parts with
mechanical properties that are comparable or superior to the
traditionally manufactured ones [9].

There are two main types of MAM: melt-based and
solid-state [10]. MAM has many advantages, including the
freedom to create complex geometries, the ability to process
hard-to-machine materials, and the ability to manufacture
functional prototypes directly for use. Despite this, there
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are several challenges associated with the melt-based MAM,
including high residual stresses, significant thermal gradi-
ents, and defects such as porosity and hot cracking caused
by melting and rapid solidification [11, 12]. It is possible
that these issues can adversely affect the mechanical proper-
ties and dimensions of the fabricated parts. In the meantime,
solid-state AM processes do not melt the material, thereby
reducing residual stresses and defects resulting from phase
changes [13]. However, solid-state AM is not without its own
challenges, which include limited material choices and dif-
ficulty achieving high-density parts. As a general rule, while
solid-state AM reduces thermal problems, melt-based AM
offers greater versatility when it comes to materials and part
complexity [14].

Given the challenges and high costs of preparing feed
materials and operating MAM machines [15], utilizing
physics-basedmodels to study theMAMprocess has become
increasingly popular [16]. Several reviews have focused on
the physics-based modeling of melt-based MAM techniques
[17–22], while much fewer have addressed solid-state meth-
ods [23]. As a result, we provide here a short review to
summarize mainstream physics-based models in most, if not
all,MAMprocesses. This review is unique because it focuses
on the pros and cons of different models for important ele-
ments or processes, some of which are common between the
melt-based and solid-state approaches. A list of open-source
software packages is also provided for each model.

2 Classification

There are two types of melt-based MAM methods: powder
bed fusion (PBF) and directed energy deposition (DED) [24].
PBF uses a laser or electron beam to selectivelymelt and fuse
powder materials layer by layer within a confined bed area
[25]. On the other hand, DED involves no bed but instead
feeds powders or wires directly into a focused energy source,
such as a laser beam, an electron beam, or an arc, whichmelts
the metal as it is deposited on the build surface or an exist-
ing part [26]. Between the two types of feed materials, wires
have a higher deposition efficiency with less waste, while
powders have greater material variety and are better for com-

plex geometries [27]. PBF is renowned for its high precision
and the ability to create complex internal shapes, while DED
stands out for its rapid material deposition capabilities and
its proficiency in repairing or adding to existing parts [28]. In
both approaches, compared with the laser beam, the electron
beam offers deeper material penetration and faster build rates
but requires operation under vacuum conditions and may not
be optimal for metals that are prone to adverse effects from
electron scattering [29]. A summary of different types of
melt-based MAM techniques is provided in Fig. 1.

There are four types of solid-state AM methods: cold
spray, field-assisted AM, friction-based AM, and binder jet-
ting [30]. The cold spray uses a high-velocity gas jet to
accelerate metal particles onto a substrate, creating a coating
or part without significant heating [31]. Working at room
temperature, it preserves the original material properties
and avoids thermal distortion. Field-assisted AM employs
electric, magnetic, acoustic, shear, and/or thermal fields to
facilitate the bonding of powders, foils, plates, or wires [32].
It can process a wide range of metals, including difficult-
to-sinter ones. Friction-based AM, such as friction welding,
generates heat through mechanical friction to join met-
als [33]. Because the metal is refined, the produced parts
can have excellent mechanical properties. Binder jetting
deposits a liquid binding agent onto layers of powder metal,
bonding these layers together to form a part [34]. It is
material-efficient and suitable for complex geometries with-
out support structures. An overview of the various solid-state
AM techniques is offered in Fig. 2.

3 Feedstockmodels

3.1 Powder

One of the most popular types of feedstock in either melt-
based or solid-state AMs is the powder. For example, in PBF
and powder-based DED, respectively, powder spreading and
powder feeding are the first step and significantly influence

Fig. 1 Different types of
melt-based MAM methods
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Fig. 2 Different types of
solid-state MAM methods

the subsequent melting process [35]. Powder dynamics also
play an important role in cold spray [36], field-assisted AM
[37], and binder jetting [38], as long as the feedstock is pow-
der. For a given metal, factors relevant to powder dynamics
include but are not limited to powder shape, powder size,
powder layer thickness, powder feeding rate, rake shape,

and rake speed. There are mainly two views of the powders:
discrete and continuum, as shown in Fig. 3. In the discrete
view, cubic arrangements [39] and particle deposition [40]
have been employed to simplify the powder bed. However,
the most popular method is the discrete element method
(DEM) [41], because it accurately simulates individual par-

Fig. 3 a Discrete and b
continuum treatments,
respectively, of the powder bed.
In b, temperature is in units of
◦C. a is reproduced from
Ref. [47], which is under CC
BY. b is reproduced with
permission from Ref. [48]
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ticle interactions, including contact mechanics, cohesion,
and adhesion. DEM’s ability to handle non-spherical parti-
cles and dynamically track their behavior allows for realistic
simulations of powder flow, crucial for optimizing machine
design and process parameters [42]. In the continuum view,
the powder is treated as a granular flow. As such, common
fluidmodels such as the computational fluid dynamics (CFD)
method [43], the lattice Boltzmann method (LBM) [44], and
the smoothed particle hydrodynamics (SPH)method [45] can
be applied. However, one shortcoming of approximating the
powders as a continuous fluid is that it fails to accurately
capture collision, friction, and interlocking between parti-
cles, which are critical in determining the realistic behavior
of powder deposition and spreading inMAM processes [46].

A powder model can be calibrated by adjusting the phys-
ical properties of particles such as shape, size, cohesion,
friction, and inter-particle forces, to align the model’s pre-
dictions of powder behavior and flow characteristics with
experimental observations [49].

Nine open-source DEM software packages were recently
reviewed by Dosta et al. [50]. It was found that while each can
handle selected case studies with similar initial setups yield-
ing comparable results, variations are mostly due to differ-
ences in the implementation of contact models, particularly
the treatment of tangential forces in particle-wall interac-
tions, and the sensitivity of results in penetration tests. As of
July 2024, DEM software packages that are being actively
developed include GranOO [51], Kratos Multiphysics [52],
MercuryDPM [53], MUSEN [54], and Yade [55].

3.2 Other feedstocks

In addition to powders, other feedstocks in MAM include
wires, rods, plates, sheets, and foils. In melt-based meth-
ods, the only non-powder feedstock is wire which is used
in some DED processes, e.g., wire arc AM (WAAM). When
simulating the WAAM process, the wire itself is usually not
explicitly modeled [56]; instead, only results of the heat/wire
interactions, e.g., thermal energy or melt, are considered.
In solid-state AMs, deformation of the non-powder feed-
stocks is mainly described by continuum models such as
SPH or finite element method (FEM) due to their ability to
simulate complex structural behaviors and mechanical inter-
actions under various loading conditions especially severe
plastic deformation. For example, a rod in additive friction
stir-deposition (AFS-D) processes has been modeled using
SPH [57, 58]. Overall, there are much fewer modeling stud-
ies of non-powder feedstocks compared with powders in the
literature.

4 Melting

Once the feedstocks are in place, they are selectively melted
by a heat source in melt-based MAM. Therefore, modeling
melting is relevant only in melt-based MAM, not in solid-
state one. The melt pool behavior in MAM is complicated
because the interaction between the beam and the metallic
powder or wire introduces variables such as the Marangoni
effect, evaporation, and denudation zones [59]. The pro-
cessing parameters can significantly influence the melt pool
behavior [60]. Take the PBF as an example. When the laser
or electron beam power is too high, deep penetration is cre-
ated in the melt pool resembling a keyhole shape [61]; when
the heat power is too low, the powder particles are insuf-
ficiently melted, leading to poor bonding between particles
and layers, known as lack of fusion [62]. In addition, thermal
gradients within the melt pool result in various solidification
rates, residual stresses, and potential defects like porosity or
microcracks, making precise control challenging [63].

In the literature, different CFD techniques such as FEM
[64], LBM [65], and SPH [66], the finite volume method
(FVM) [67], and the level setmethod[68], have been employed
for melting. Two examples are shown in Fig. 4. Each of these
methods brings distinct advantages when applied to themelt-
ing process of MAM. For example, LBM is good at handling
complex boundary interactions, making it efficient for mod-
eling the rapid dynamics [69]; as a mesh-free method, SPH
canwell handle the free-surface flows and large deformations
occurring in the melt pool [70]. However, they may face spe-
cific challenges too. For instance, FVM may struggle with
capturing sharp interfaces such as those between solid and
liquid metals without adequate mesh refinement [71]; LBM
may fail to capture the phase change phenomena due to the
inherent simplifications in its collision model.

Two phenomena that are closely intertwined with melt-
ing are heat transfer and evaporation. The former is related
to one unique characteristic of melt-based MAM — high
thermal gradient [74]; the latter affects the size, shape, and
stability of the melt pool while altering the heat and chem-
ical composition in the molten metal [75]. Thus, melting,
heat transfer, and evaporation are strongly coupled, necessi-
tating their simultaneous resolution. All five CFD techniques
mentioned earlier can be coupled with additional equations
to model heat transfer and evaporation [76]. However, their
efficacy in capturing key physical phenomena varies. For
instance, FVM is perhaps the best-suited because it conserves
mass, momentum, and energy effectively, making it ideal for
addressing the interactions among fluid flow, thermodynam-
ics, and mass loss [77]. Meanwhile, typical implementations
of SPH struggle to accurately simulate mass transfer and
sharp interfaces, rendering it less ideal for modeling evapo-

123

4 The International Journal of Advanced Manufacturing Technology (2024) 134:1–13



Fig. 4 Laser-induced melt pool
modeled by a FVM and b FEM,
respectively, compared with
experiments. a is reproduced
from Ref. [72], which is under
CC BY. b is reproduced with
permission from Ref. [73]

ration without significant modifications to the code [78]. On
another note, regardless of the chosen CFD technique, the
melting model should be integrated with the powder dynam-
ics model (e.g., DEM) [79] to simulate related phenomena
such as powder spattering [80].

A melting model can be calibrated by modifying thermal
properties, energy input parameters, and phase change char-
acteristics to ensure its predictions of melt pool geometry
match experimental observations [81].

There are many CFD software packages that, when
combined with appropriate heat transfer and evaporation
models, can be applied to the melting process in MAM.
Some open-source, general-purpose CFD software packages
have been customized specifically for MAM. For example,
additiveFOAM [82], developed at the Oak Ridge National
Laboratory, is based on OpenFOAM [83] and utilizes FVM.
Similarly, researchers at the Los Alamos National Labora-
tory developed TruchasPBF [84], which is based on Truchas
[85] and also employs FVM. In other cases, software was
applied to MAMwithout significant modification, for exam-
ple, FEniCS [86] (which uses FEM), Palabos [87] (which
uses LBM), and DualSPHysics [88] (which uses SPH).

5 Solidification

As the heat source moves away, the molten metal solidifies.
Thus, like melting, modeling solidification is not relevant
in solid-state MAM, but only in melt-based one. During
the solidification, key microstructural characteristics such as
grain boundaries and cracks emerge. Hence, solidification
directly influences the microstructure of the printed metals
[89], which in turn dictates their mechanical properties such
as strength, toughness, and fatigue resistances [90]. The rapid
cooling rates typical of MAM can lead to non-equilibrium
microstructures, such as fine grains and metastable phases,
which may enhance material properties but also introduce
anisotropy and residual stresses [91]. Accurately modeling
solidification is thus essential for predicting and controlling
these microstructural features and ensuring the structural
integrity and performance consistency of the final product
[92]. Moreover, understanding solidification patterns allows
for the optimization of process parameters to minimize
defects such as unwanted porosity and cracking, thereby
enhancing the reliability and efficiency of the MAM process
[93].
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The initial and boundary conditions, e.g., thermal gradi-
ents and cooling rates, for solidificationmodeling are usually
provided by the melting simulation. Simple solidification
models, such as those based on the volume-of-fluid (VOF)
method [96], can distinguish between fluid and solid phases.
However, these models do not account for the microstructure
of the solid phase. Three numerical methodsmost commonly
applied to microstructure modeling during solidification in
MAM, in order of decreasing computational complexity, are:
the phase-field (PF)method, kineticMonteCarlo (kMC), and
cellular automata (CA) [89]. Examples based on the PF and
CA methods are shown in Fig. 5. PF is adept at handling
the diffuse interface between phases and capturing the com-
plexmorphologies of solid-liquid interfaces without the need

Fig. 5 Solidification modeled by a CA and b PFmethods, respectively.
Inb, the edge lengths are in units of 0.2µm.Reproducedwith permission
from Refs. [94, 95]

for tracking or remeshing [97]. Nonetheless, the accuracy of
PF simulations is highly dependent on the choice of input
parameters, which can be difficult to determine and requires
extensive calibration against experimental or higher-fidelity
simulations. kMC can effectively handle complex reaction
mechanisms and is adaptable to varying conditions, making
it useful for exploring different solidification scenarios [98].
However, due to its stochastic nature, kMC can introduce
statistical noise into the results, requiring multiple simula-
tions or larger sample sizes to achieve reliable outcomes.
The last method, CA, is particularly effective at modeling
the microstructures of materials, allowing detailed visual-
ization and analysis of grain growth and orientation during
solidification [99]. Nevertheless, CA often simplifies com-
plex physical phenomena into discrete states, which can limit
its accuracy in predicting continuous physical changes and
interactions. All three methods require thermodynamic data
as inputs to accurately simulate the microstructural evolution
during solidification. For pure metals, simple data such as
meltingpoint and latent heat of fusion are sufficient [100]. For
binary alloys, the solidification path can be pre-determined
from the phase diagram [101]. For multi-component alloys,
however, the use of thermodynamic software becomes neces-
sary because the complexity of interactions among multiple
elements requires detailed calculations of phase equilibria
and thermodynamic properties across a range of tempera-
tures and compositions [102].

A solidification model can be tuned by altering material
properties and processing conditions to ensure its predictions
of microstructural evolution and the final structure conform
to experimental observations [103].

Many open-source software packages based on PF, kMC,
or CA can be directly employed or adapted to simulate
microstructural evolution inMAM.For example, Tusas [104]
and AMPE [105], both of which are based on the PFmethod,
have been employed for the subgrain scale solidification.
SPPARKS [106], which was originally designed for atomic-
scale kMC simulations, has been extended to micro-scale
solidification. Based on the CA method, ExaCA [94] was
developed for CA simulations on exascale supercomputers.

6 Late-timemicrostructural evolution

In melt-based MAM and some solid-state MAM processes
that involve heat (e.g., AFS-D), solid-solid phase transfor-
mations occur during cooling or heating [107]. For example,
in PBF, the previously solidified grains may experience
re-growth as they are re-heated when powders above are
being scanned [108]. The same phenomena can also man-
ifest during post-build heat treatments, which are frequently

123

6 The International Journal of Advanced Manufacturing Technology (2024) 134:1–13



required when the “as-built” microstructure through melt-
based MAM does not satisfy the targeted property specifi-
cations [109]. For instance, in precipitation-hardened alloys,
the rapid cooling rates associated with laser PBF typically
preclude the possibility of diffusion-based precipitation reac-
tions [110]. Consequently, a post-build heat treatment, such
as annealing or aging, is essential to facilitate the precipi-
tation of strengthening phases. An example is displayed in
Fig. 6. Both in situ and post-build solid-solid phase transfor-
mations are collectively called “late-time” microstructural
evolution. Since the physics at this stage is similar to the
microstructural evolution in solidification, all three meth-
ods — PF, kMC, and CA — are theoretically applicable.
For example, the PF method, using MEUMAPPS-SS [111],
has been applied to describe the heat-treatment process for
alloys made by laser PBF. As another example, kMC has
been adopted to simulate the grain growth in friction-based
solid-state MAM processes [112, 113]. Generally, inputs to
late-time models are the as-built microstructures generated
from the solidification models.

7 Processes unique to solid-state AM

As mentioned earlier, there are four solid-state AM tech-
niques: cold spray, friction-based AM, field-assisted AM,
and binder jetting.

In cold spray, powdered metals are accelerated at high
velocities onto substrates without melting. SPH has been
employed to simulate the cold spray AM process involv-
ing multi-layer multi-track powders [115]. This mesh-free
approach, enhanced by kernel gradient correction, adaptive
smoothing length, and a constitutive model, adeptly han-
dles large deformations and moving interfaces typical in
cold spray processes. The use of SPH, inherently suited for
capturing discontinuities such as voids during high-velocity
impacts, provides a robust framework for modeling complex
physical phenomena, including phase changes and jet for-
mations at the substrate-powder interfaces. The experimental
and simulation results are compared in Fig. 7.

There are three stand-alone field-assisted MAM pro-
cesses, based on electric field, acoustic field, and thermal
field, respectively [116]. To our best knowledge, no physics
models have been developed or applied to any of them. How-
ever, physics models have been employed to simulate these
fields when they were used as auxiliary fields to aid in melt-
based AM processes [117]. For example, in DED, acoustic
and thermal fields, respectively, have been simulated using
VOF [118, 119] and FEM [120, 121]. We emphasize that
those AM processes are melt-based instead of solid-state.

In friction-based AM processes, metals are joined and
built up by using frictional heat generated through mechani-
cal rubbing,which softens thematerialswithout fullymelting
them. The AFS-D process has been simulated using SPH
[57, 58]. This approach employs a fully coupled thermo-

Fig. 6 PF simulations and
experimental images of AMed
Inconel 718 before and after
homogenization at a
temperature of 1080◦C.
Reproduced from Ref. [114],
which is under CC BY
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Fig. 7 Comparisons between
experimental observation and
simulation for the spraying of a
Cu powder. Reproduced with
permission from Ref. [115]

mechanical model to handle the substantial plastic deforma-
tion and thermal gradients due to frictional heat. As shown
in Fig. 8, different actuator feed rates lead to different tem-
perature contours.

In binder jetting, a liquid binding agent is selectively
deposited onto a powder bed layer by layer to bond the pow-
der particles and form a solid part. Tan [122] employed a
Cartesian grid-basedVOFmethod to study the impact of pen-
etration of micrometer-sized droplets on a powder bed. The
physics-based model accurately tracks the interface between
the liquid and air during the impact, by integrating a contact
angle model to account for the wetting effects on the powder
particles.

Once a material is made by binder jetting, it is usu-
ally sintered to fuse particles together, thereby increasing
the material’s density and mechanical strength by reducing
porosity and creating solid, interconnected bonds between
the powder particles. The densification process in sinter-
ing has been simulated by FEM [123], which incorporates
material properties such as viscosity, creep parameters, and

thermal-mechanical properties dependent on relative den-
sity and temperature. Predictions based on the FEM model
aligned well with experimental observations [124, 125].

8 Conclusions and perspectives

Melt-based and solid-state MAM processes underscore the
transformative potential of these technologies in shaping the
future of industrial manufacturing. While both MAM tech-
niques offer distinct advantages — melt-based MAM for
its precision in creating complex geometries and solid-state
MAM for its superior mechanical properties and reduced
residual stress — the choice between them depends largely
on the specific application requirements and the inherent
material characteristics. As MAM continues to evolve, the
employment of advanced computational models is crucial

Fig. 8 Temperature (in ◦C)
contours in AFS-D
corresponding to different
actuator feed rates: a 63.5
mm/min, b 127mm/min, and c
254mm/min. Reproduced with
permission from Ref. [58]
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for enhancing the predictability and reliability of these pro-
cesses. The present review of those models not only helps in
understanding the intricate microstructural evolution during
and post-manufacturing but also aids in optimizing process
parameters to mitigate defects and enhance material proper-
ties.

Looking forward, the ongoing development and refine-
ment of these computational tools will play a pivotal role in
overcoming current limitations related tomaterial properties,
process stability, and cost-effectiveness. Moreover, as indus-
try and academia push the boundaries of what’s possible with
MAM, continued collaboration and knowledge exchange
will be vital. Open-source software and community-driven
innovations will likely lead to more accessible and versa-
tile MAM solutions, broadening the scope of applications
across sectors such as aerospace, automotive, and biomedi-
cal. Ultimately, the future of MAM is not only about refining
the processes and materials but also about integrating these
advancements into a sustainable manufacturing paradigm
that aligns with global economic and environmental goals.

Integrating physics-based process models with models
that elucidate the structure–property relation is essential for
comprehending the entire process-structure–property contin-
uum inMAM. This integration enables a holistic understand-
ing of how variations in manufacturing parameters influ-
ence microstructural features, and subsequently, how these
microstructures determine the mechanical properties of the
final product. Such models help in predicting and optimizing
the properties of manufactured parts by enabling simula-
tions that adjust processing conditions to achieve desired
outcomes. For example, adjusting heat power and scan speed
in melt-based MAM can be simulated to predict changes in
grain size and orientation, which directly impact the metal’s
strength and fatigue resistance. Ultimately, this comprehen-
sive modeling approach is fundamental for advancing MAM
technologies, allowing for the precise tailoring ofmaterials to
meet specific performance criteria, and facilitating the devel-
opment of next-generation alloys with optimized properties.
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