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A B S T R A C T

The phase-field dislocation dynamics (PFDD) method, originated in 2002, is a continuum dislocation model
that uses order parameters to describe dislocation slips in crystalline materials. In the past two decades, and
especially since it was last reviewed in 2016, PFDD was advanced significantly in terms of the mathematical
formulation, numerical implementation, and applicability. The main purpose of this short review is to
summarize recent progress made to improve the energy functional formulation and numerical techniques of
PFDD as well as its recent applications. Some recommendations for future work to further extend the PFDD
method are presented.
1. Introduction

Phase-field dislocation models are energy-based continuum dislo-
cation models, in which dislocations are characterized by order pa-
rameters which evolve such that the free energy of the dislocated
system approaches a local minimum [1]. The first phase-field dislo-
cation model, termed phase-field microelasticity (PFM), was proposed
by Khachaturyan and his colleagues [2] in 2001, taking advantage
of the Khachaturyan–Shatalov microelasticity theory (KSMT). In the
past two decades, different PFM variants were developed, differing in
energy functional, initial and boundary conditions, and/or numerical
techniques. Most variants kept the original name, e.g., the atomistic
phase-field microelasticity (APFM) method developed by Mianroodi
and Svendsen [3]. Other KSMT-based models, e.g., the microscopic
phase-field (MPF) model developed by Shen et al. [4], do not contain
‘‘PFM’’ in their names.

One phase-field dislocation model that was influenced by PFM but
did not take its name was developed by Koslowski et al. [5] in 2002. It
was named the phase-field dislocation dynamics (PFDD) method for the
first time in 2011 [6], and the name PFDD was used in most subsequent
publications where this method was referred to. The PFDD method was
last reviewed in 2016, by Beyerlein and Hunter [7]. Since then, PFDD
has been significantly extended on multiple fronts. The purpose of this
short review is to summarize recent developments and applications
of PFDD, with a focus on those between 2016 and March 2022, and
to provide the author’s recommendations for future work to further
advance this method for mechanics and materials science problems.

In general phase-field models, order parameters are employed to
distinguish ‘‘phases’’, e.g., solid vs. liquid [8], face-centered cubic (FCC)
crystal vs. body-centered cubic (BCC) crystal [9], and paramagnetic
state vs. ferromagnetic state [10]. In phase-field dislocation models,
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each phase corresponds to a ‘‘state of slip’’, be it non-slipped, slipped
by one dislocation, slipped by two dislocations, etc. Numerically, each
phase is assigned an order parameter 𝜙𝛼 whose values are integers,
e.g., 0, 1, 2, …, corresponding to the 𝛼th slip system. Individual dislo-
cations are thus phase boundaries where at least one order parameter
is not an integer. At a given continuum point 𝒙, multiple phases,
i.e., multiple states of slip, could co-exist. This suggests that the same
point may be slipped by one dislocation within one slip system while
unslipped within another system, in agreement with the physics of
dislocation slip.

In its most general form to date, the total energy density 𝜓 in PFDD
contains four terms at 𝒙: elastic energy density 𝜓ela, lattice energy
density 𝜓lat , gradient energy density 𝜓gra, and external energy density
𝜓ext , i.e.,

𝜓(𝒙) = 𝜓ela(𝒙) + 𝜓lat (𝒙) + 𝜓gra(𝒙) − 𝜓ext (𝒙). (1)

Formulations of the four energy terms are motivated by the atom-
istic structure of a dislocation. An example is provided in Fig. 1,
showing a dissociated edge dislocation in Cu based on a prior molecular
static (MS) simulation [11]. 𝜓lat represents the energy stored in atoms
within the intrinsic stacking fault (ISF). 𝜓gra represents the energy
stored in atoms within the two Shockley partial dislocation cores. 𝜓ela
represents the energy stored in all atoms outside the ISF and partial
cores. 𝜓ext represents the energy arising from externally applied stress
and/or strain.

Once the initial and boundary conditions are set, the time-
dependent Ginzburg–Landau (TDGL) equation is used to update the
order parameters such that the total energy (not its density) approaches
a minimum, i.e.,

�̇�𝛼(𝒙) = −𝑚0[𝜕𝜙𝛼 (𝒙)(𝜓ela(𝒙) + 𝜓gsf (𝒙) − 𝜓ext (𝒙)) − ∇ ⋅ 𝜕∇𝜙𝛼 (𝒙)𝜓gra(𝒙)] (2)
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Fig. 1. An MS-based dissociated edge dislocation that belongs to a double tilt wall in a Cu thin film [11]. Visualization is realized in OVITO [12]. Based on the adaptive common
neighbor analysis [13], red and white atoms correspond to those within the ISF and Shockley partial dislocation cores, respectively.
Fig. 2. Selected configurations for an edge dislocation bypassing six Cu0.8Nb0.2 precipitates in a Cu matrix. The applied stress is constant and is slightly higher than the critical
stress. Snapshots are colored by the disregistry field 𝜉, where blue and red correspond to 𝜉 being 0 and Burgers vector magnitude, respectively. Voids are denoted by dashed green
circles.
Source: Reproduced with permission from Ref. [23].
where the superposed dot denotes the time derivative and the
Ginzburg–Landau coefficient 𝑚0 is non-negative.

In the remainder of this paper, recent advancements made to im-
prove the four energy density terms and numerical techniques of PFDD
as well as its recent applications will be reviewed.

2. Elastic energy

The original PFDD method assumed elastic isotropy in a homoge-
neous medium [5]. In 2019, Xu et al. [14] first implemented elastic
anisotropy into PFDD, with details presented in a subsequent pa-
per [15]. It was found that simplifying an elastically anisotropic
medium to an isotropic one may result in incorrect predictions of
the dislocation core structure [15–18], Peierls stress [17], non-Schmid
effects [19], and dislocation transmission through an incoherent twin
boundary (ITB) [20]. Thus, it is suggested that anisotropic elastic-
ity always be used in PFDD simulations. Independent of the elastic
anisotropy issue, elastic heterogeneity was introduced to PFDD to
simulate a void in matrix in 2013 by Lei et al. [21] and a bi-phase
material in 2016 by Zeng et al. [22]. Those two papers, however,
assumed that the materials were elastic isotropic. The first time PFDD
was applied to an elastically anisotropic, bi-phase medium was in
2022, when Xu et al. [23] studied dislocation/obstacle interactions, as
shown in Fig. 2. Note that the elastic heterogeneity is realized in PFDD
following Eshelby’s inclusion theory [24] which requires introduction
of an order parameter-like quantity: virtual strain tensor. As a result,
the elastic energy density formulation is revised and an additional set of
TDGL is needed to minimize the total energy of the system with respect
to each component of the virtual strain tensor.

Outlook: All PFDD work to date addressed either single-phase or
bi-phase materials. In the meantime, most real-world materials con-
2

tain multiple phases that vastly differ in their size, from micron to
nanoscale, and in properties, such as elasticity and crystal structure.
To simulate dislocation dynamics in these multi-phase materials, the
elastic energy in PFDD should be further extended. Such an extension
has been achieved in PFM to model dislocation dynamics in a system
containing a thin film, a substrate, and a vacuum [25].

3. Lattice energy

In the original PFDD method, the lattice energy density was a
piecewise quadratic function of the order parameter [5]. The idea was
that the lattice energy should mimic the Peierls potential, i.e., the
energy pathway along which the dislocation moves between two Peierls
valleys. Only one slip system was considered per slip plane. In 2004,
Koslowski and Ortiz [26] extended PFDD to three slip systems per
slip plane. However, for each dislocation, only one slip system, rep-
resented by one order parameter, was considered. Then in 2011, Lei
and Koslowski [6] used the generalized stacking fault energy (GSFE)
curve to approximate the Peierls potential, and a sin2 function was used
to approximate the GSFE. Since there was no local minimum, both
quadratic and sinusoidal functions resulted in undissociated disloca-
tions. Later that year, Lee et al. [27] used a fourth-order polynomial
for an undissociated dislocation and a six-order polynomial (which
contains a local minimum) for a dissociated one. In all four papers, only
one order parameter was adopted for each dislocation. On the other
hand, three of those papers [5,26,27] studied FCC crystals, in which
three slip systems co-exist to describe a dissociated dislocation.

To better link physics and the PFDD model for FCC metals, Hunter
et al. [28] used a Fourier series function to construct the GSFE sur-
face in 2011. The function has seven unknown parameters which are
obtained from atomistic simulations. Three order parameters, each
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Fig. 3. The difference between the GSFE surface based on (a) a seven-term Fourier series function or (b) an eleven-term Fourier series function and the actual GSFE surface on
the (111) plane in Au. GSFEs are in units of J/m2. The seven or eleven points selected to fit the Fourier series functions are highlighted.
Source: Adapted with permission from Ref. [16].
of which corresponds to a ⟨110⟩{111} slip system, were used per
dislocation. Since the ⟨110⟩{111} slip vector would dissociate into
two non-parallel ⟨112⟩{111} vectors on the GSFE surface upon energy
minimization, those PFDD simulations naturally yielded dissociated
dislocations. Later, in 2014, Hunter et al. [29] used density functional
theory (DFT) calculation data to inform the seven-term Fourier series
function. In 2019, an eleven-term Fourier series function, developed by
Xu et al. [16], was shown to better approximate the actual GSFE surface
than the seven-term one (Fig. 3). In the same paper, the authors devel-
oped a PFDD model in which the GSFE surface was constructed using
discrete data from atomistic simulations instead of from a continuous
function. Later, Xu et al. [15] conducted PFDD simulations using GSFE
surfaces that are directly from DFT calculations of Su et al. [30].

In BCC crystals, slip vectors are along ⟨111⟩ directions on three
possible slip plane groups: {110}, {112}, and {123}. Unlike its coun-
terpart in FCC crystals, a slip vector in BCC crystals does not dissociate
upon energy minimization on either of the three GSFE surfaces [31].
Therefore, only one order parameter is used per slip plane, and the
lattice energy is then related to a GSFE curve, instead of a surface.
Since there is no local minimum along this curve, the PFDD-predicted
dislocation is undissociated, in agreement with atomistic simulations.
Like the GSFE surface, the GSFE curve may be either approximated
using a continuous function (e.g., a one-term sin2 function) [32–34]
or directly calculated from atomistic or DFT calculations [35]. PFDD
simulations using a one-term sin2 function predicted higher critical
stresses for the Frank–Read source operation in two BCC metals than
those using GSFE curves made of discrete DFT data [35]. Indeed, it was
shown in the same paper that a two-term sin2 function provided a better
approximation of the GSFE curve than the one-term one.

Recall that the GSFE curve was initially proposed to approximate
the Peierls potential [6], which differs greatly among dislocations with
different character angles in BCC metals [36]. To account for such
anisotropy, the GSFE, which is character angle-independent, may be
multiplied by an angle-dependent scaling factor [32]. It was shown that
such a modification resulted in a better prediction of the dislocation
loop shape [33]. Alternatively, the GSFE scaling factor may be a func-
tion of the applied shear stress and the angle between the maximum
resolved shear stress plane (MRSSP) and the glide plane, as one way
to capture the non-Schmid effects in BCC metals [19]. Another way to
model the non-Schmid effects is through adjusting the gradient energy
coefficients, which will be discussed in Section 4.

In hexagonal close-packed (HCP) crystals, possible slip planes in-
clude basal, prismatic-I, pyramidal-I, and pyramidal-II planes [37]. To
date, PFDD simulations have been applied to studying ⟨𝑎⟩ disloca-
tion on the basal plane, ⟨𝑎⟩ dislocation on the prismatic-I plane, and
⟨𝑎 + 𝑐⟩ dislocation on the pyramidal-II plane [18,38]. Since the basal
plane in HCP crystals is similar to the {111} plane in FCC crystals,
a seven-term Fourier series function was used to approximate the
3

GSFE surface [38]. Three order parameters were used per basal plane,
and the dislocation was dissociated upon energy minimization. Within
the pyramidal-II GSFE surface, the ⟨𝑎 + 𝑐⟩ slip vector dissociates to
two co-linear smaller vectors upon energy minimization in ten HCP
metals [18]. The prismatic-I plane is more complicated. First, it is
corrugated, i.e., there exist closely- and loosely-spaced planes [39];
PFDD was applied to only the loosely-spaced prismatic-I planes on
which the dislocation glide is easier [40]. Second, the slip vector within
the loosely-spaced prismatic-I plane dissociates to two co-linear vectors
in Ti and Zr but undissociates in Mg [38]. Thus, only a GSFE curve
is needed per prismatic-I or pyramidal-II plane. In Refs. [18,38], each
GSFE curve was approximated by a DFT-informed nine-term Fourier
series function, although they could have been based on direct DFT
calculations. Overall, in HPC crystals, the PFDD-based dislocations are
dissociated in most cases.

Another line of advancing the lattice energy is to make it spatially
variable. This feature is needed in modeling multi-principal element
alloys in which the GSFE depends on the atomic-scale local chemical
composition [41]. In 2019, Zeng et al. [42] and Su et al. [43] used
PFDD to model dislocations in FCC MPEAs. More recently, Smith
et al. [33] and Fey et al. [34] explored dislocation dynamics in a BCC
MPEA using PFDD. Examples of dislocation glide in MPEAs are shown
in Fig. 4. It is worth mentioning that the spatial variation in lattice
energy usually requires a large number of PFDD simulations, which
naturally result in a large amount of data. Rather than attempting to
relate the inputs and outputs analytically, the task is better done via
machine learning (ML). Indeed, the PFDD data from Zeng et al. [42]
have been processed using ML by Vilalta et al. [44].

Taken together, it is suggested that (i) DFT data are preferable to
atomistic simulation data and (ii) direct atomic-level calculation-based
GSFE surfaces or curves are preferable to those based on continuous
functions. Note that in a heterogeneous material, the lattice energy is
non-zero only in phase(s) where dislocations exist.

Outlook: To date, the PFDD model has not been applied to slips
on the pyramidal-I plane in HCP crystals, although doing so would be
straightforward. Like the prismatic-I plane, the pyramidal-I plane is also
corrugated, and so there are loosely- and densely-closed planes [39].
There are two types of slip vectors, ⟨𝑎⟩ and ⟨𝑎 + 𝑐⟩, within each type
of pyramidal-I plane. From the GSFE surfaces on the loosely-spaced
pyramidal-I planes in Mg, Ti, and Zr [40], one sees that, upon energy
minimization, the ⟨𝑎 + 𝑐⟩ vector would dissociate into two non-parallel
ones, while the ⟨𝑎⟩ vector would not dissociate. On the densely-spaced
pyramidal-I planes in Ti and Zr, it is the opposite: the ⟨𝑎⟩ vector
dissociates into two non-parallel ones, while the ⟨𝑎 + 𝑐⟩ vector does not
dissociate [40].

In any crystal structures, the rule of thumb is that a GSFE surface
should be used in PFDD if the slip vector dissociates to two or more
vectors and at least one of them is not parallel to the original vector;
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Fig. 4. (a) Gliding of a dissociated edge dislocation in an FCC CoCrFeMnNi MPEA. Different ISF energies are assigned randomly to different regions within a {111} slip plane.
(b) Gliding of an undissociated screw dislocation in a BCC MoNbTi MPEA within a {110} or a {123} slip plane. The background is colored by local unstable stacking fault energy
(USFE). The initially straight dislocation (in black) becomes wavy during glide (in white) under stress but is then arrested and returns to a straight morphology (in red).
Source: (a) is reproduced with permission from Ref. [42]. (b) is reproduced with permission from Ref. [34].
a GSFE curve should be employed if the slip vector dissociates to two
or more vectors that are all parallel to the original one, or it does not
dissociate at all. Should the GSFE surface be used, the PFDD-predicted
dislocation would be dissociated; should the GSFE curve be employed,
the dislocation would be dissociated if at least one local minimum exists
on the curve; otherwise, the dislocation would not be dissociated.

4. Gradient energy

The original PFDD model did not include the gradient energy term
in its total energy [5]. That PFDD version was shown to be physically
equivalent to the generalized Peierls–Nabarro model [45]. In 2019, the
gradient energy was added to the PFDD model by Xu et al. [14]. The
augmented model has been compared against the original one to assess
the effects of the gradient energy on the dislocation core structure [14,
15,17,43], Peierls stress [17], and non-Schmid effects [19]. In most
cases, the gradient energy leads to a more diffuse core configuration
and a lower Peierls stress. Including the gradient energy is generally
desirable in FCC metals because it results in a core structure in better
agreement with atomistic simulations, as shown in Fig. 5(a); yet there
are some exceptions [15].

If it has been decided that the gradient energy should be included
in a PFDD simulation, the next step is to determine the gradient
energy coefficients. Although there are two independent coefficients,
most PFDD simulations to date assumed that they have the same
value. It was shown that non-uniform coefficients are better than the
uniform one because the former predicts a better dislocation core
structure [17]. Therefore, it is suggested that non-uniform coefficients
be used whenever possible. On the other hand, regardless of whether
the gradient energy coefficients are uniform or not, there are three ways
to determine their values in PFDD. Each way adjusts the coefficients
such that the corresponding PFDD simulation results, being either ISF
width [15,17,43], core width [19], or disregistry field [14], agree well
with atomistic simulation data. Note that Kim et al. [19] tailored the
gradient energy coefficients such that the core width would correctly
yield the non-Schmid effects, as shown in Fig. 5(b). Like the lattice
energy, the gradient energy in a heterogeneous material is non-zero
only in phase(s) where dislocations exist.

Outlook: To date, the gradient energy coefficients were determined
by fitting PFDD-derived core structures to those of atomistics, even
when the GSFEs were DFT-based [15,43]. That was because it was
much easier to model a dislocation using atomistic simulations than
DFT. Future work may fit the gradient energy coefficients to DFT-based
dislocation core structures, especially when modeling materials whose
GSFEs are from DFT.
4

5. External energy

The original PFDD model only allowed for stress-controlled load-
ing [5]. In 2015, the strain-controlled loading feature was added to
PFDD by Cao et al. [46]. Recently, Kim et al. [19] modified the stress-
based external energy to account for the inclined and perpendicular
stress components, but the corresponding PFDD simulations did not
correctly reproduce the non-Schmid effects (see the golden curve in
Fig. 5(b)). Note that in a heterogeneous material, one needs to slightly
revise the external energy density formulation to involve the virtual
strain tensor [23].

6. Numerical techniques

The original PFDD model required no computational grid [5]. In
2004, Koslowski and Ortiz [26] introduced 2D numerical grids to PFDD
simulations to describe a dislocation network. Then in 2011, 3D grids
were used for the first time [6]. In that application, the undeformed
simulation cell contained a few dislocations within one slip plane; then
during loading, new dislocations on other slip planes were nucleated
in the absence of sources on those planes. However, it is difficult to
ensure the accuracy of the critical stress for homogeneous dislocation
nucleation in either phase-field dislocation model [47] or Peierls–
Nabarro model [48]. On the other hand, the theoretical framework
of the phase-field dislocation model, e.g., PFM [2], assumes that for
one dislocation, its inelastic displacement field is confined to the slip
plane. Taking this point into consideration and following the MPF
model [4], Xu et al. [14] developed a PFDD model that confined all
slips to pre-defined slip planes. That PFDD model was shown to result
in a more diffuse dislocation core and a lower Peierls stress than the
non-confined version. If only one slip plane is activated, imposing
this confinement would reduce the problem to 2D. However, problems
involving multiple active slip planes (e.g., Refs. [49,50]) remain 3D
even when the confinement is applied. In either 2D or 3D problems,
the confinement precludes most, if not all, homogeneous dislocation
nucleation.

All numerical grids discussed above were orthogonal. In 2021,
Peng et al. [51] developed non-orthogonal 3D numerical grids for
FCC and BCC metals. One advantage of this type of grids is that
it reduces the Gibbs oscillations (caused by the fast Fourier trans-
form (FFT) algorithm) and better describes dislocation annihilation
(Fig. 6(a)), compared with the orthogonal grids. Another advantage is
that non-orthogonal grids can capture the process of screw dislocation
cross-slip [52], as shown in Fig. 6(b). Note that since cross-slip concerns
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Fig. 5. (a) ISF widths of seven dislocations with different character angles in FCC Al, predicted by PFDD and MS simulations. PFDDg and PFDDng refer to PFDD models with and
without the gradient energy term, respectively. (b) The critical resolved shear stress (CRSS) of a screw dislocation in BCC Fe, predicted by different PFDD models, MS, and Schmid
law. 𝐵, 𝜂, 𝜏, and 𝜒 are GSFE scaling factor, uniform gradient energy coefficient, applied shear stress, and the angle between the MRSSP and the glide plane, respectively.
Source: (a) is adapted with permission from Ref. [14]. (b) is adapted with permission from Ref. [19].

Fig. 6. (a) Snapshots of two dislocation loops expanding in a 3D non-orthogonal grid. The loops expand, meet, and annihilate at the screw segment marked in white. (b) Cross-slip
of a screw dislocation from the (110) plane to the (101) plane. 𝜙1, 𝜙2, and 𝜙3 are three order parameters.
Source: (a) is adapted with permission from Ref. [51]. (b) is reproduced with permission from Ref. [52].
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Fig. 7. (a) FCC structure showing a {111} slip plane with three ⟨110⟩ dislocations. (b) HCP structure showing four slip planes with ⟨𝑎⟩ and ⟨𝑐 + 𝑎⟩ dislocations. B: basal plane; P:
prismatic-I plane; 𝜋: pyramidal plane. (c) BCC structure showing four slip planes with ⟨111⟩ dislocations. In all subfigures, Burgers vectors are denoted as arrows.
Source: (b) is reproduced with permission from Ref. [40].
a change of slip plane for the same dislocation, the aforementioned slip
confinement should not be imposed.

Over the years, efforts were also made to accelerate the PFDD code.
In 2011, the code was parallelized via message passing interface [53].
Then in 2018, it was alternatively sped up by graphics processing
unit [54].

Outlook: The spacings in 3D orthogonal grids were studied by Xu
et al. in both FCC [17] and BCC metals [35]. It was found that grid spac-
ings with atomic resolution should be applied if PFDD-based disregistry
fields were to match those from atomistic simulations. However, since
the grid was uniform, a fine grid spacing is used even in regions far
from the dislocation cores. One way to improve the computational
efficiency is to employ non-uniform grids which are adaptively refined
near dislocation cores. This has been achieved in a GPN model [55],
and should be implementable in PFDD as long as the current FFT
algorithm is properly revised to handle non-uniform grids [56].

Another issue in PFDD is that currently periodic boundary condi-
tions must be applied on all three directions of the simulation cell.
This is a requirement of the FFT algorithm that is used to solve the
elastic energy. If the finite element method (FEM) were used instead,
more flexible boundary conditions could be considered. A comparison
between FFT and FEM in crystal plasticity simulations has been pre-
sented by Liu et al. [57], shedding light on how the current PFDD code
could be revised.

7. Applications

7.1. Crystal structure

As discussed in Section 3, the original PFDD method was for {111}
planes in FCC crystals [5]. In 2020, Peng et al. [32] extended PFDD
to slips on {110} planes in BCC metals. Later that year, Xu et al. [35]
further extended it to {112} and {123} slip planes in BCC metals. Then
in 2022, Fey et al. [34] studied slips on {134} planes in a BCC MPEA.
Alternative to cubic crystals, Albrecht et al. [38] carried out PFDD
simulations in 2020 to model dislocations on basal, prismatic-I, and
pyramidal-II planes in HCP metals. Common slip systems in FCC, BCC,
and HCP crystals are illustrated in Fig. 7.
6

Outlook: The PFDD model is applicable to slips on any crystallo-
graphic plane in any crystal. Thus, there is no theoretical challenge
in applying PFDD to more crystal structures. In PFDD simulations to
date, a material, even the bi-phase one [22,23], had a uniform crystal
structure. Future PFDD work may consider a bi-phase or multi-phase
material in which two or more crystal structures co-exist.

7.2. Mechanics and materials science problems

The original PFDD model studied slips on a single plane [5]. In
2014, Hunter and Beyerlein [49] used PFDD to simulate slips on two
pre-defined, parallel slip planes. Only after the non-orthogonal grids
were developed in 2021 [51] was PFDD applied to slips on non-
parallel planes such as dislocation annihilation [51] and cross-slip [52].
However, the lattice energy formulation needs to be further revised if
PFDD were to study more complex dislocation intersections such as lock
formation. This has been achieved in PFM, although only undissociated
dislocations were considered [58].

The original PFDD model studied slips in a single crystal [5]. In
2015, Cao et al. [46] extended PFDD to nano-crystals, while assuming
isotropic elasticity. In 2022, Ma et al. [20] used PFDD to study a bi-
crystal containing an ITB. They compared results based on isotropic and
anisotropic elasticity. However, since the ITB is a special boundary, the
elastic tensors in both grains were the same, and so the bi-crystal was
effectively elastically homogeneous. To account for elastic anisotropy
in more general bi- or nano-crystals, virtual strain tensor [22,23] should
be introduced.

The original PFDD model studied slips in a pure metal [5]. In 2019,
Zeng et al. [42] extended PFDD to MPEAs, by spatially varying the
lattice energy, as discussed in Section 3.

In current PFDD model, the total energy density contains four terms
(Eq. (1)). Some other phase-field dislocation models, however, add
chemical potential to the total energy [59–61] to simulate interactions
between dislocations and solutes or crystalline precipitates. In those
models, a new set of order parameters, representing the chemical
concentration of solutes, was introduced. Since the solute concentration
was conservative, the Cahn–Hilliard diffusion equation, instead of the
TDGL (Eq. (2)), was used to update the new order parameters. These
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features can be included into PFDD to explore dislocation dynamics in
the presence of solutes such as hydrogen and oxygen.

In addition to solutes and crystalline precipitates, more complex
defects such as twins, amorphous precipitates, and general grain bound-
aries may also be considered in future PFDD work with the help of
the virtual strain tensor. In particular, current PFDD model assumes
that amorphous materials are unshearable by dislocations and do not
undergo any plasticity. However, it is known that amorphous materials
can deform plastically via, e.g., shear transformation zone [62]. An
additional set of order parameters may to be introduced to characterize
the plastic deformation of amorphous materials.

Lastly, most, if not all, PFDD simulations to date are deterministic.
Recent discrete dislocation dynamic simulations showed that important
phenomena such as dislocation wall formation is reproduced only when
the dislocation dynamics becomes stochastic, enabled by the Monte
Carlo method [63]. On the other hand, stochastic phase-field method
has been applied to brittle fracture [64], but not to any dislocation
model. It will be useful to develop stochastic PFDD method in the
future.

8. Conclusions

In this paper, developments and applications of the PFDD method
in the past two decades are reviewed, with a focus on those since 2016
when PFDD was last reviewed [7]. Advancements made to improve the
four energy density terms and numerical techniques are individually
discussed, followed by a brief summary of applications of PFDD to date.
Some recommendations for future work to further extend the PFDD
method are presented throughout the paper.
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