
Computational Materials Science 50 (2011) 2411–2421
Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci
An analysis on nanovoid growth in body-centered cubic single crystalline vanadium

S.Z. Xu a,⇑, Z.M. Hao a, Y.Q. Su b, Y. Yu a, Q. Wan a, W.J. Hu a

a Institute of Structural Mechanics, China Academy of Engineering Physics, 621900 Mianyang, PR China
b School of Earth and Space Sciences, University of Science and Technology of China, 230026 Hefei, PR China
a r t i c l e i n f o

Article history:
Received 27 December 2010
Received in revised form 13 February 2011
Accepted 15 March 2011
Available online 17 April 2011
0927-0256/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.commatsci.2011.03.019

⇑ Corresponding author. Tel.: +86 15883770742; fa
E-mail address: shuozhixu@gmail.com (S.Z. Xu).
a b s t r a c t

Molecular dynamics simulations were performed to analyze nanovoid growth in single crystalline vana-
dium under tension. Radial distribution function at the first nearest neighbor distance was calculated to
find out the critical strain rate below which the deformation of specimen was static. Then a tensile stress
was exerted on both void contained box and intact box under two constraint conditions. Homogenous
dislocations were nucleated in intact box at yield point; while for void contained box with void radius
twice the lattice constant, h111i{110} shear loops were punched out from void surface. The formation
of shear loops was the result of the splitting of purely screw cores on three non-planar planes, as well
as their transformations to more stable two-fold non-planar dislocations under tension. The asymmetry
of loops was influenced by both strain rate and triaxiality of system. It is also found that, in lower rate
cases the yield point and peak stress point coincided; however, the two points separated at higher rate
due to the inadequate void growth rate. Mean square displacement of void surface atoms were given
out to geometrically depict the void evolution. Moreover, simulations with different initial porosity
and box size were performed respectively. It is shown that when void reduced to contain only one
vacancy, dislocations can be nucleated independently of the void; when porosity was large enough,
the interactions between void and its periodic images were noticeable. Also, when both the void and
box were large, triangular prismatic loops on {110} planes were observed at void surface, which may
be contributed to a combined effect of the intersection of shear loops and the ledges along the void
surface. Finally, the results of our MD simulations agreed well with that from Lubarda equation.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The nucleation and growth of nanovoid play an important role
in failure of ductile metals [1]. Under tensile loading, void nucle-
ates initially at weak points of material such as the grain boundary
[2]. Then void dilates due to the need to relax internal stress, min-
imizing the associated elastic energy in the system; meanwhile,
void transforms into an irregular shape under the localization of
shear stress, e.g., an initial spherical void will become nonspherical,
even under all-around uniform far-field tension [3]. Eventually,
void will either interact with adjoining ones before coalescence
[4], or collapse into a crack [5], both of which are known as the pri-
mary causes of failure of ductile metals. Such processes and rele-
vant nanomechanisms have been investigated extensively in the
last few decades [6–9].

Most of the early works on void growth were continuum treat-
ments, some of which were focused on physically valid damage
function [10–12], where the mass transport was taken as the void
growth mechanism [13,14]. It was due to the development of
ll rights reserved.
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molecular dynamics (MD) methods that the void growth of nano-
scale can be analyzed more thoroughly. To the authors’ knowledge,
Belak [15] was the first person who studied the nucleation and
growth of nanovoids in single crystalline and polycrystalline metal
at high strain rate using large-scale MD simulation. This work,
along with others of LLNL [2,16–20], showed that the growth of
spherical voids occur through anisotropic dislocation nucleation
and emission. Moreover, regardless of the orientation of the simu-
lation cell, voids in FCC lattice grow with octahedral shape, which
is in agreement with the shape of the growing voids observed
experimentally by Stevens et al. [21]. In addition, a laser-driven
shock experiment conducted by Lubarda et al. [22] showed that
void growth can not be accomplished by vacancy diffusion alone,
even when the shock heating is taken into account. They proposed
two dislocation-emission-based mechanisms for void growth—
prismatic loop and shear loop. After emitted, the loops intersect
across each other at junctions, making materials stronger [19].
These mechanisms have been verified by other works [23,24]. Re-
cently, Lubarda [25] extended his own theory to nanovoids growth
under combined loading.

Much has been learnt about the ductile fracture through nano-
void growth. Except the studies on nanomechanisms, some more
methodology-type influences on single void growth under static
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deformation can be categorized into several factors: strain rate [2],
loading pattern [26], initial porosity and void volume growth [27],
initial void shape and shape change [17], specimen size [20], lattice
orientation [28–30], etc. Recent works were also devoted to ana-
lyze the shock-induced void collapse [31–33], void–void interac-
tion and coalescence [18,34], void–dislocation interaction [35–
39], void evolution and vacancy emission under irradiation
[40,41]. Compared with void evolution in FCC lattice, there are
much fewer discussions on that in BCC case due to the higher Pei-
erls barrier for dislocation motion in BCC metal, leading to its ten-
dency to twinning at high rate deformation and its character that
the loops are formed from perfect dislocations rather than partials
spanned by stacking fault ribbons in FCC lattice [20,42]. Also, the
breakdown of Schmid law, which has been known to be the result
of a combined effect of the shear stresses parallel and perpendicu-
lar to the Burgers vector [43,44], makes the void growth for BCC
lattice more complicated. The contributions by Marians et al.
[45], Rudd [20] and Tang et al. [46] represent the most significant
efforts to reveal the growth and collapse of nanovoids in BCC
monocrystals.

In the present study, we will discuss the effects of strain rate,
specimen size, constraint condition and initial porosity on void
evolution in BCC single crystalline vanadium, whose alloys are con-
sidered to be among the candidate materials for nuclear fusion
application, where the microstructural evolution is very important
[47–50]. Although all of these factors have been examined in void
growth independently as mentioned above, none have really stud-
ied all of them together, particularly for BCC vanadium. Another
reason we choose these factors is that the first three ones are sig-
nificant even in intact specimen, see Refs. [51–53] for strain rate ef-
fects, Refs. [54,55] for specimen size effects and Refs. [56,57] for
influences of boundary and constraint conditions. We investigated
the void growth in pure vanadium at the atomic level here, so as to
provide a first step forwards the comprehensive analysis of vana-
dium alloys.

This paper is organized as follows. It started in Section 2 with an
overview of the MEAM potential, strain controlled MD method,
atomic stress, critical strain rate, highlight of dislocations and void
surface, as well as mean square displacement of void surface
atoms. Detailed parameters used in this paper were also listed. In
Section 3.1, both the void contained box and intact box were ex-
panded at different rates under two constraint conditions. The
stress–strain response, Poisson ratio, void volume growth and dis-
location loops pattern were analyzed. Then specimens with various
void sizes, from the smallest one containing only one vacancy to
one that was large enough to interact with its neighboring images,
were investigated in Section 3.2. In Section 3.3, the yield stress of
specimens of different sizes but with uniform porosity were stud-
ied, and compared with the model presented by Lubarda et al. [22].
The conclusions were summarized in Section 4.
2. Simulation methodology

2.1. MEAM potential

In MD simulation, atoms interact with each other via empirical
or semi-empirical potential; by Newton’s law and equations of mo-
tion, new positions and velocities of atoms after a certain time step
can be calculated. Thus, the accuracy of MD simulation relies very
much on the reliability of potential, which depicts the forces be-
tween atoms. The embedded-atom method (EAM) of Daw and Bas-
kes [58], which is based on density functional theory, has been
successfully applied to FCC or nearly filled d-band transition metals
and their alloys. However, some BCC transition metals have non-
filled d-band, leading to directional bonding when adjacent atoms
overlap, which disagrees with the premise of isotropic electron
cloud in EAM theory. Since BCC vanadium, also one of the transi-
tion metal series, has an electron configuration of [Ar]3d34s2,
EAM potential will fail to be applicable. Based on EAM, the modi-
fied embedded-atom method (MEAM) presented by Baskes [59],
takes angular forces into account, and is now one of the most
widely used methods describing forces among atoms in a large
variety of materials [60]:
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where the first term of the right side is the average of the energy per
atom in the reference lattice at the first nearest neighbor (1NN) dis-
tance; the second term the difference between the actual embed-
ding energy and the average embedding energy in the reference
lattice at 1NN distance. The vanadium MEAM potential employed
in this paper is due to Baskes [59], and its reliability, of calculating
lattice parameter, elastic constants, cohesive energy, vacancy for-
mation energy and surface energy, has been examined carefully
by the authors. The calculations of Satou et al. [47] also showed that
the elastic constants computed by this MEAM potential are more
accurate than several vanadium EAM potentials.

2.2. MD simulation and atomic stress

A parallel molecular dynamics code LAMMPS [61] was used to
deform the single crystal model. The classical equations of motion
were integrated using Verlet algorithm with time step of 1 fs. The
simulation cell is a 3-D single crystal BCC lattice in a cubic box with
{100} faces. The lattice constant of BCC vanadium a0 is 3.03686 Å.
A certain number of atoms were removed to create a spherical void
in the middle. Periodic boundary conditions were applied on all
three directions in order to simulate a periodic array of voids in
an infinite system. After the energy minimization, a Nose–Hoover
thermostat [62,63] was applied for 10 ps to obtain the initial tem-
perature of 10 K and the pressure of 0 Pa.

A remote tension was then exerted along x axis at a constant
temperature of 10 K, which is quite low compared with that of
300 K employed in most previous works of nanovoid growth
[2,17,20,26–30,45,46]. At 10 K, the deformation behavior of BCC
vanadium is principally controlled by screw dislocations with
non-planar cores [64–69], which will play a significant role in
the loops pattern as will be discussed in Section 3.1. The strain-
controlled simulations were realized by Parrinello–Rahman meth-
od [70]. Each time the box size was changed, all atoms were re-
mapped to the new box, during which the coordinates of atoms
were multiplied by a diagonal scaling matrix to get the new posi-
tions. Note that the velocities of atoms were not altered, i.e., it was
not their new velocities that expanded the box, but an affine trans-
formation of the positions of atoms which exactly matched the box
deformation.

Though there are no free boundaries in the system apart from
the void, two constraint conditions were applied: free transverse
stress condition and fully constraint condition. In the first condi-
tion, the edges in y and z axes can shrink freely to make transverse
stress vanish; in another condition, the Poisson effect is not al-
lowed, so the transverse stress will increase as the box is expanded
along x axis. These two conditions have been used by Kitamura
et al. [57]. In our simulations, the free transverse stress condition
is referred as 1-D stress condition, while the other 1-D strain con-
dition, as shown in Fig. 1.

The definition of atomic level stress was originally presented as
the virial formulation by Clausius [71], and was summarized by
Born et al. [72]. However, Zhou et al. [73] have shown that the viri-
al stress is not equivalent to the continuum measure of Cauchy



Fig. 1. Two constraint conditions.
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stress. Thus, we employ here the virial definition without the ki-
netic portion [74] to calculate the macroscopic stress tensor of
system:
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where fij are interatomic forces of atom pairs hiji with correspond-
ing distance rij, a and b the Cartesian coordinates, V the voronoi vol-
ume of the specimen. Therefore, the hydrostatic stress rh of systems
can be calculated by

rh ¼
1
3

X
a

raa ð3Þ
2.3. Critical strain rate

It is known that the dynamic response of metal differs from that
of static state [75–78]. Since the parameters in MEAM potential are
fitted by both results of ab-initio calculation under ground state
and data from static experiments, it is necessary to evaluate the
reliability of this potential under extremely high rate deformation.
For a cubic box with edges length L of 32a0 and void radius r of 2a0,
it was initially found that the differences between elastic constants
calculated at various strain rates from 1011 s�1 to 108 s�1 are triv-
ial; and all these data are close to the experimental results via
ultrasonic pulse echo technique [79]. It seems that this MEAM
(a)
Fig. 2. (a). Illustration of radial distribution function (RDF) at the first nearest neighbo
calculated at different strain rates. g⁄(r0) is the value of g(r0) at _ex ¼ 108 s�1.
potential is reliable for elastic properties of vanadium even at
strain rate as high as 1011 s�1. However, the value of radial distri-
bution function (RDF) at 1NN distance r0 shows that there exists
local disorder in system under high rate deformation:
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where N is the total number of atoms, ni the number of atoms in
spherical shell centering at atom i with radius from (r0 � dr) to
r0; �qn the average number of atoms per unit volume under steady
tension. In 1-D strain condition, N = 65,477, dr = 0.00038 Å,
�qn = 0.07224 Å�3 and r0 = 2.63879 Å when ex = 0.01.

It can be seen from Fig. 2b that 109 s�1 is the critical strain rate
above which g(r0) decreased with increasing strain rate indicating
that there were fewer atoms at 1NN distance at higher rates. Since
the total number of atom remained unchanged, this result implied
that some atoms oscillated so heavily that they left the positions
where they should be at steady state. The simulations by Branício
et al. [80] and Wright et al. [81] showed that the lattice is stable
under low rate deformation, but becomes amorphous at higher
rates. However, there would never exist a determinate high strain
rate unless some criterion was set. For example, one would get a
higher critical rate if a larger dr was used in Fig. 4. In the following
studies, only _ex 6 109 s�1 were applied, so as to eliminate the
unnecessary oscillation of stress brought by local disorder; thus
an identical stress–strain ratio at elastic stage can be kept in differ-
ent strain rate cases.
(b)
r (1NN) distance r0 on any {100} plane. (b). The normalized RDF at 1NN distance
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Fig. 4. Illustration of mean square displacement (MSD) of void surface atoms. Ri

and Rc correspond to the displacement vectors of atom i and the center of mass of
surface atoms, respectively.
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2.4. Highlight of dislocation and void surface

The configurations of atoms were colored using centrosymme-
try parameter (CSP) [82], so as to highlight the dislocation and void
surface. The idea of CSP comes from the fact that a centrosymmet-
ric material (e.g., BCC lattice) will remain centrosymmetric under
homogeneous elastic deformation, where each atom has pairs of
equal and opposite bonds to its neighbors [83]. When a defect is
introduced nearby, this equal and opposite relation no longer
holds. Thus one can define the CSP which is zero for a centrosym-
metric material under any homogeneous elastic deformation but
non-zero for any plastic deformation. The original CSP for each
atom i is defined as

ci ¼
Xk

i¼1

jRj þ Rjþkj2 ð5Þ

where ci is the CSP of atom i, Rj and Rj+k are the vectors of bonds cor-
responding to k pairs of opposite neighbors, see Fig. 3. The more dis-
torted the local BCC lattice, the larger the CSP. An alternative CSP
definition was proposed by Li [82] and implemented in the Atom-
Eye visualization package; its definition follows

ci ¼
Pk=2

l¼1Dl

2
Pk

j¼1jRjj2
; ð6Þ

where the function Dl ¼ jRl þ Rl0 j
2 is minimized by bond Rl0 . ci is

dimensionless with a maximum value of 1. This implementation
has the advantage of finding dynamically the best opposite pairs
of atoms as it is required for a real time analysis of an arbitrary
structure being visualized [84]. Seven pairs within 2NN shell in per-
fect BCC lattice are summed over, which has been proved to be less
noisy than summing over the four pairs within 1NN shell [20]. In
our snapshots, only atoms with ci P 0.01 were visible (see Fig. 4).

2.5. MSD of void surface atoms

Mean square displacement (MSD) is usually used for measuring
the average distances some given atoms travel, showing how often
the atoms suffer collisions in liquid or gas:

M ¼
Xh

i¼1

Ri � Rc

�����
�����

2* +
ð7Þ

where M is the MSD of specified atoms, Ri the displacement vector
of atom i, Rc the displacement vector of center of mass of these
Fig. 3. Atom i with a non-zero centrosymmetry parameter (CSP) due to its three
pairs of neighbors, k is the number of its neighbors. The bonds pair formed by
hRj,Rj+ki is equal and opposite, while that by hRj+m,Rj+m+ki is equal but not opposite,
and that by hRj+n,Rj+n+ki is opposite but not equal. Both sums of vectors of the last
two bond pairs are non-zero.
atoms, and h the number of specified atoms. The square is then
averaged among time. If the system has been well relaxed and is
not being deformed, the MSD of void surface atoms, which are
determined by their CSP, remains unchanged during MD running.
However, as void grows, the MSD of surface atoms increases, and
it can geometrically depict the void evolution. The authors [9] have
used MSD to study cylindrical voids growth in 2-D specimen, and
will extent this method to the spherical void in 3-D specimen here.
3. Results and discussion

3.1. Strain rate dependence

Seven different strain rates, from 109 s�1 to 5 � 107 s�1, were
applied independently on box established in Section 2.3 under
two constraint conditions. Specimen of the same size but with no
void was also elongated at the same rates under 1-D stress condi-
tion. Snapshots of atoms colored by CSP are shown in Fig. 5, where
h111i{110} dislocations were punched out from the void surface.
This process is schematically shown in Fig. 6. The shear loops were
initially emitted at point A, where the shear stress is maximal un-
der 1-D tension along x axis. The edge components of loop moved
so fast at 10 K that the segments became straight. When loops ex-
panded to point B and C, where ½�111� and [111] directions inter-
sected the void surface respectively, the dislocation had no edge
components, and the remaining purely screw cores split on three
non-planar {110} planes. At point C, for instance, there is:

a
2
½111�ð01 �1Þ ) a

4
½111�ð01 �1Þ þ a

8
½011�ð01 �1Þ þ a

8
½101�

� ð10 �1Þ þ a
8
½110�ð1 �10Þ ð8Þ

Then the shear stress on void surface rs compressed the
[011]ð01 �1Þ factional dislocation inward, leaving a more stable
two-fold non-planar screw core with [110]ð1 �10Þ and [101]
ð10 �1Þ fractional dislocations, which stuck at point C. Thus, the
screw dislocations at point B and C became a Frank-Read disloca-
tion source, and ½�111�ð01 �1Þ and [111] ð01 �1Þ perfect dislocations
continued slipping outward so that a shear loop was formed. The
extremities of these loops had to remain connected to the void



Fig. 5. Snapshots from MD simulations for ½�11 0� direction at peak stress point of each case. h111i{110} shear loops were observed emitted from the void surface. Dislocation
asymmetry is more noticeable in low rate and small triaxiality cases.
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(a) (b)

(c)
Fig. 6. Schematic showing of emission of h111i{110} shear loops (red lines). (a) Initial emission of dislocations from point A, where the shear stress is maximal under 1-D
tension along x axis. The [111] and ½�11 1� directions intersected the void surface at points B and C, respectively. (b) At point C, the dislocation had no edge components, and
the remaining screw cores split on three non-planar {110} planes (blue arrows). Then the shear stress on void surface rs compressed the [011]ð01 �1Þ factional dislocation
inward, leaving a more stable two-fold non-planar screw core with [110]ð1 �10Þ and [101]ð10 �1Þ dislocations, which stuck at point C. (c) ½�1 11�ð01 �1Þ and [111]ð01 �1Þ perfect
dislocations continued slipping outward so that a shear loop was formed.
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so as to expand the void volume, as has been well discussed by
Bulatov et al. [85] and Bringa et al. [86]. Tang et al. [46] investi-
gated the growth of nanoscale voids for BCC Ta under uniaxial ten-
sile strain, and observed the nucleations of {112} shear loops at
300 K by adjacent {110} stacking faults intersecting the void sur-
face at 45�, which were absent in our simulations. This difference
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may be contributed to the much lower temperature of 10 K em-
ployed here.

Noticeable asymmetry of loops is also observed from the snap-
shots: under the same constraint condition, the loops were more
symmetric at higher rate; while at the same rate, symmetry was
more likely to appear in 1-D strain case, where the triaxiality
was larger. Rudd [20] considered this asymmetry as the result of
randomness of rare events, such as nucleation of dislocations on
thermally preferable glide systems among all cubically equivalent
ones. This explanation is also valid here: the higher stress accom-
panied with either higher strain rate or larger triaxiality led to
stronger atomic vibrations, which reduced the fluctuations brought
by heterogenous thermal activations.

It is found from Fig. 7 that the hydrostatic stress in specimen un-
der 1-D strain tension is the highest, where the triaxiality of box is
the largest. In the other two cases, the stress–strain ratio are iden-
tical at the elastic stage, which means that the void is too small to
influence the modulus of material. Additionally, in each case, the
higher the strain rate, the larger the peak stress. This is because a
higher macro strain rate led to a higher shear strain rate on void
surface, where the dislocation velocity was higher; this higher
velocity needed to be driven by a larger shear stress, which in our
study, came from nowhere else but a larger macro stress.
Fig. 7. (a–c). Stress–strain response of void contained box and intact box, under differen
(a) went through oscillation at point B in lower rate cases.
It is also found that the stress of intact specimen dropped shar-
ply at yield point. This is attributed to the homogeneous disloca-
tions all through the box, as found by Tschopp et al. [87]. These
instantly nucleated dislocations led to an unstable lattice, account-
ing for the stress oscillations at point B in Fig. 7a. Because of the
more uniform thermal activations under larger stress as mentioned
above, the oscillations were smaller for higher rate cases. As for
void contained specimen, especially at higher rate, however, the
dislocations were nucleated at void surface when stress–strain
curve deviated from straight line, then the stress continued
increasing till the peak stress point. Thus, we identified the yield
point as the point when linearity between stress and strain broke
down. By this definition, the relationship between hydrostatic
yield stress rY and rx at yield point in 1-D strain condition is found
to agree well with the model by Kanel et al. [88]:

rY ¼
1
3

1þ 2
C12

C11

� �
rx ð9Þ

where elastic constants of vanadium C11 = 232.4 GPa, C12 =
119.36 GPa. According to Rudd [20], time is needed in high rate case
for release wave to propagate through the box; in low rate case,
once the void surface is yielded, the void grows faster than box vol-
t constraint conditions; (d). Hydrostatic yield stresses in three cases. Note that rh in
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ume, and so this inertial effect is trivial. The relationship between
void(box) growth rate and stress change around peak point at dif-
ferent strain rates were also reported in other work [2]. In contin-
uum solid mechanics, the porosity f and the hydrostatic plastic
strain ep

h are related by [89]

_f
3ð1� f Þ ¼

_ep
h ð10Þ

where the dots denote time derivatives. This equation agrees well
with MD simulations as long as f is small [2]. _ep

h can be written as

_ep
h ¼

1
3

X
a

_ep
aa ¼

1
3

X
a
ð _eaa � S _raaÞ ¼ _eh � S _rh ð11Þ

where S is the elastic compliance tensor, _eh the hydrostatic strain
rate. At elastic stage, _eh equals S _rh; then from yield point to peak
point, _rh decreases to 0, when

_f
3ð1� f Þ ¼

_eh ð12Þ

Since void fraction is small even at peak point, f can be consid-
ered as a constant in our discussion. When _ex ¼ 5� 107 s�1, Eq. 12
is valid at yield point, which, therefore, is also the peak point. From
[22,23,30,90,91], one gets

_Vvoid � v loop � rY � ð _exÞm ð13Þ

where Vvoid is the void volume, vloop the dislocation loop velocity, m
the strain rate sensitivity. We also have

f ¼ Vvoid

V
) _Vvoid ¼ _f V þ fV0 _ex ð14Þ

where V0 is the initial box volume. So we get

_f � 1
V
ð _exÞm � fV0 _ex
� �

ð15Þ

Note that _eh varies linearly with respect to _ex no matter what
the loading pattern is. In our simulations, m is 0.067 for 1-D strain
and 0.016 for 1-D stress condition, see Fig. 7d. Like the modulus, m
is not affected by the existence of void, but by the constraint con-
dition. Since m < 1, porosity growth rate _f increases slower than
strain rate as the later one increases. Thus, there exists a strain rate
at which Eq. 12 is satisfied precisely once the surface is yielded, so
the yield point and peak point coincide; with rate increasing,
Fig. 8. Poisson ratio of the void contained box and intact box, under 1-D stress condition
and B.
though _f at yield point is higher than that in lower rate case, it
needs some time to grow to catch up with 3ð1� f Þ _eh, only then
does the hydrostatic stress start to drop.

In 1-D stress condition where Poisson effect is allowed, some
similar phenomenons are found, see Fig. 8. For intact specimen,
the shrinkage of transverse edges decreased abruptly at yield
point; while for void contained box, the dropping was rounded.
In the later case, oscillations of Poisson ratio are observed, which
were larger at lower strain rate; also, the transverse edges length
change around the yield point was less violent at higher rate. The
later situation can be explained by both the inadequate void
growth rate at high rate as stated above, and the traditional esti-
mation of the size of plastic zone around the void by Hill [92]:

rzone ¼
2E

3rY

� �1
3

r ð16Þ

where the Young’s modulus E = 151.4 GPa. For void contained box,
rY was lower at lower strain rate, leading to a larger plastic zone,
making the material surrounding the void stronger, so Poisson ef-
fect was less noticeable.

The MSD of void surface atoms calculated by Eq. 7 are shown in
Fig. 9. It is seen that MSD dropped at yield point at lower strain rate
in both constraint conditions, meaning that some surface atoms
turned inward. Through more detailed examinations, where all
surface atoms were divided into several groups, it is shown that
the dropping of MSD was attributed to the asymmetric dislocation
loops, which transferred the adjacent atoms away from the void,
thus driving atoms at the opposite surface, where much fewer dis-
locations were nucleated, towards their original positions.
3.2. Initial porosity effects

Two series of simulations were performed at strain rate of
109 s�1 under 1-D stress condition. The specimens in the first series
have a fixed edge length L of 32a0, with initial void radius r varying
from 0.5a0 to 10a0; in the other series, when initial void radius re-
mains 4a0, boxes with different edge length from 16a0 to 64a0 were
deformed.

For the first series, it is noteworthy that when r = 0.5a0, only one
atom was cut from the box, i.e., vacancy contained box, yet its yield
stress is significantly lower than that of intact box, and higher than
that of box with void of r = a0, where 15 atoms were deleted. For
. In (b), oscillations of poisson ratio were observed at lower strain rates, see points A



Fig. 9. Mean square displacement of void surface atoms at rates of 109 s�1 and
5 � 107 s�1 under both constraint conditions. Note that MSD decreased at yield
point when strain rate was low.
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vacancy contained box, the plasticity mechanism was different
from void contained one that some dislocations (marked by dash
arrow in Fig. 10a) were nucleated independently of the vacancy.
Nanovoid growth simulations in single crystalline Cu by Bringa
et al. [30] showed that the loops are nucleated homogeneously in
box missing one atom; for box containing two or four vacancies,
loops attached to vacancies surface form sequentially as defect
grows. In this study, we consider the defect, where all dislocations
were nucleated at its surface, as a void. Yet it is unclear that how
many adjacent vacancies are sufficient to form a void in other
materials.

It is known that the coalescence between a single void with
its periodic images and that between an isolated pair of voids
are markedly different [19]. As initial void radius increased, dis-
locations were nucleated on all {110} planes, see Fig. 10b, where
the void diameter was equal to the intervoid ligament distance
(ILD) [19] between void and its periodic images. With even lar-
ger initial void, ILD was smaller than void diameter, thus the
interaction between neighboring images was more prominent.
It is seen from Fig. 10c that there were eight isolated disloca-
tions (one of them is marked by dash arrow) apart from those
at void surface. These unattached dislocations were nucleated
from perfect lattice due to the concentrated shear stress between
periodic images.

It is also found that both the yield stress and Young’s modulus
decreased along with larger porosity, see Fig. 11. In addition, the
larger the porosity, the larger the Poisson ratio and the smaller
the MSD of surface atoms at elastic stage in both series. This
Fig. 10. Snapshots from MD simulations for ½�110� direction at peak stress point of each c
the initial defect (dash arrows). In (b), dislocations were nucleated on all {110} planes.
relationship between porosity and void growth rate indicated by
MSD was also reported in simulations of single void growth in
Cu by Seppälä et al. [19] that the normalized void volume grows
slower when porosity is larger. This agreement implied the ability
of MSD to reflect the void volume evolution. Furthermore, it is
shown that even under the same porosity, the Young’s modulus
of small box is smaller than that of large box, and this phenomenon
is specimen size effect, as will be discussed below.

3.3. Specimen size effects

Simulations where L/r was fixed as 16 were performed at rate of
109 s�1 under 1-D stress condition. L varies from 16a0 to 128a0. It is
of interest that, in our largest void case where r = 24.29 Å, unlike
the shear loops emitted from the surface of small void, triangular
prismatic loops were nucleated on (011) and ð0 �11Þ planes, see
dash arrows in Fig. 12a. The loops here concurred with the simula-
tions by Rudd [20], where prismatic loops were punched out from
surface of void with radius of 18.88 Å in BCC Mo and 33.06 Å in BCC
Ta. Tang et al. [46] observed for void evolution in BCC Ta under
hydrostatic tension that the screw components of three shear loops
with the same Burgers vector but opposite dislocation line direc-
tions annihilate, and the remaining edge components are con-
nected with each other to form a triangular prismatic loop. This
mechanism may not be valid here since the void contained box
was not under 3-D tension. The simulations of Bringa et al. [30]
showed that, when void size rises, the sphericity of void increases,
and the ledges on void surface may influence the dislocation nucle-
ation. In our deformations at 10 K, when the void was small, the at-
tached shear loops emitted from void surface were the main
mechanism of plasticity; but when initial void size increased, the
adjacent shear loops would intersect each other in some way to
form the prismatic loops on {110} planes. We believe that the
ledges along the void surface also have a significant effect on the
generations of prismatic dislocations, yet the detailed process re-
mains an open question for further study.

It is also found that the hydrostatic yield stress rY in constant
porosity series, constant box edge length series and constant void
radius series decreased as the initial void radius and porosity grew.
The data are plotted in Fig. 13b and compared with the continuum
analysis of Lubarda et al. [22]:

rcr

G
¼ b=rffiffiffi

2
p

pð1� mÞ
ð1þ

ffiffiffi
2
p

w=rÞ4 þ 1

ð1þ
ffiffiffi
2
p

w=rÞ4 � 1
ð17Þ

where rcr is the critical stress at void surface required for disloca-
tion emission, G the shear modulus, m the Poisson ratio of material,
b the magnitude of Burgers vector of dislocation, and w the disloca-
tion width. Under 1-D stress condition, rcr = 6rY, G = 45.95 GPa,
m = 0.34 and b ¼

ffiffiffi
3
p

a0=2. This equation is quite general by firstly
considering an edge dislocation near a void, then its equilibrium
ase when L = 32a0. In (a) and (c), some dislocations were nucleated independently of



(a) (b)
Fig. 11. (a) Stress–strain response of specimen with box edge length L = 32a0, the void radius varies from 0.5a0 to 10a0. (b) Young’s modulus of specimen in both constant box
edge length and constant void radius series. The results from intact box are also shown.

Fig. 12. Snapshots from MD simulations for h100i directions at peak stress point. The box edge length is 128a0, with void radius of 8a0. Triangular prismatic loops (dash
arrows) were formed on (011) and ð0 �11Þ planes.

(a) (b)
Fig. 13. (a) Stress–strain response of specimen with L/r = 16. (b) Hydrostatic yield stress as a function of normalized void radius from our MD simulations and prediction of
Lubarda et al. [22].

S.Z. Xu et al. / Computational Materials Science 50 (2011) 2411–2421 2419
position from the void surface dcr, where the attraction from the
void is balanced by the local stress, is given out by classical elastic
field theory, where r is supposed to be larger than 3w [22]. Then if
dcr = w, the dislocation is likely be emitted from the void surface. In
our simulations, the initial shear loops formed at point A in Fig. 6a
contained mainly the edge components, and the dislocation width
w equals 0.57b for BCC vanadium [93]. Therefore, it is reasonable
that rY calculated here is in well agreement with the results by
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Lubarda equation when w = 0.57b. When r went to zero, Lubarda
equation failed, as expected.

4. Conclusions

1. There exists a critical strain rate above which vanadium MEAM
potential is not suitable. The RDF of system at 1NN distance
showed that the amplitude of oscillations of atoms were larger
in higher rate case, making the local lattice unstable.

2. When void radius was eight times of the lattice constant and
the porosity was not very large, triangular prismatic loops were
observed at void surface on {110} planes. When void radius
was twice the lattice constant with the same porosity,
h111i{110} dislocations with straight segments were punched
out from void surface, then after some time the screw compo-
nents of the dislocations split on three non-planar planes and
became two-fold non-planar screw cores under compression.
The two-fold cores played a role as Frank–Read dislocation
source, and thus the shear loops were formed. The asymmetry
of loops was more noticeable in cases with lower rate and smal-
ler triaxiality.

3. The yield point was identified as the breakdown of the linearity
between stress and strain, and was the highest in fully con-
straint condition with the largest triaxiality. For intact box,
the stress dropped sharply at yield point with noticeable oscil-
lations; for void contained box, the yield point and peak stress
point coincided at low strain rate, yet the two points separated
as rate increased due to the inadequate void growth rate. Sim-
ilar phenomenons were observed for Poisson ratio. Moreover,
the yield stress decreased along with increasing initial void
radius and porosity. The hydrostatic yield stress calculated by
our MD simulations agreed well with that from Lubarda equa-
tion, especially for large void.

4. MSD of surface atoms was applicable for geometrically depict-
ing the void evolution. It dropped at yield point in low rate case
due to the asymmetric dislocation loops.

5. Homogenous nucleations involved in the plasticity mechanism
of vacancy contained box. As initial void radius increased, dislo-
cations were nucleated on all {110} planes. When porosity was
so large that the void diameter surpassed the ligament distance
between void and its periodic images, the interactions between
periodically neighboring voids were noticeable, leading to iso-
lated dislocations unattached to void at yield point. In addition,
as initial porosity rose, Young’s modulus and the MSD of surface
atoms dropped while the Poisson ratio increased.
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